Projects

Completed
ENDORSE: A comprehensive approach to empower self-management of health in children and adolescents with Type 1 Diabetes Mellitus and/or Obesity based on gamification mechanisms and biofeedback

The project aims at the design, implementation and evaluation of a prototype integrated platform based on advanced and emerging Information and Communication Technologies (ICT), gamification and biofeedback mechanisms facilitating self-management of health in Type 1 Diabetes Mellitus (T1DM) and obesity. ENDORSE will focus on the development of a pervasive environment able to deliver applications and services with the ultimate goal to raise awareness, to train, to monitor, to comply, to promote healthy lifestyle behavioral changes and to support decision-making by placing the target groups (children and adolescents with T1DM and/or obesity) at the center of their healthcare.

Completed
smarty4covid: Intelligent Multimodal Framework for COVID-19 Risk Assessment and Monitoring based on Explainable Deep Learning

The project aims at the development of an Intelligent Multimodal Framework for COVID-19 Risk Assessment and Monitoring based on Explainable Deep Learning. Multimodal deep learning techniques will be applied on heterogeneous data, consisting of self-reported risk factors, along with audio recordings of breathing, voice and speech, towards the discovery of novel biomarkers of infection and disease progression with the ultimate goal to (i) increase the sensitivity of the screening procedure by detecting cases with high risk of COVID-19 infection, (ii) enable the remote monitoring of patients with COVID-19, and (iii) provide alert signals in case of emergency. The project advances the current state of the art by initiating innovative clinical pilots involving hospitalized patients with COVID-19 through a strategic partnership with the AHEPA Hospital. It is expected that the application of AI on the heterogeneous data (e.g. medical history, laboratory exams, audio recordings of breath, speech and cough) that will be collected within the framework of the clinical pilots will produce new biomarkers of disease progression. Besides the version used within the clinical study under the supervision of healthcare professionals, smarty4covid has released a web-based application [smarty4covid](http://www.smarty4covid.org) to facilitate crowd sourcing data collection. This parallel study aims at the development of models able to predict the risk of COVID-19 infection and provide biomarkers for disease progression in infected non-hospitalized individuals.

Completed
Cockpit Crew Health Monitoring (CCHM)

Human factors are the principal cause of aircraft accidents, at a rate of 70 – 80%. Of these accidents, 10% are due to "disease" and the rest are due to "human error". "Pilot incapacitation" is the term used in the literature to describe the inability of a pilot, who is part of the operating crew, to carry out his flight duties, because of one or more factors which arise in flight and affect either human physiology (i.e. disease, hypoxia) or human performance (i.e. fatigue). The incapacitation can be physical or mental, acute or progressive, evident or latent. It is evident that acute and latent incapacitation is the most dangerous for the flight safety. The COCKPIT project aims to the "in flight" monitoring -in a flight simulator environment- of a set of human physiology parameters (heart rate, breath rate, hemoglobin oxygen saturation, muscle tone and sleepiness), by using specialized sensors and advanced signal and image processing techniques. In particular, COCKPIT's goal is to develop: (i) a real time "Cockpit Crew Health Monitoring System" and (ii) an "Early Warning System for the Second Pilot" so he resumes the control of the aircraft, thus minimizing the probability that an aircraft accident happens.

Completed
Medication Adherence System for Chronic Patients by Redesigning of the Medical Blister (SMART-BLISTER)

The goal of the SMART BLISTER project is to study, design and develop a novel smart blister concept based on a passive electronic circuit that will be printed on available blisters with the use of conductive or high resistance one layer inks. A small electronic device will be used to activate the blister and communicate with a central information cloud computing system. The project aspires to develop a concept/device that will have low cost in mass production and can be easily adopted and used in real life. The integrated system consisting of the prototype blister, the activation device and the central information and communication system will inform patient about his/her treatment and provide alert signals in case of a dosage omission, thus increasing the level of medical adherence.

Completed
Education in advanced VR/AR safety systems for maintenance in extreme environments (EDUSAFE)

EDUSAFE is a 4-year Marie Curie ITN project that provides training for 10 Early Stage Researchers and 2 Experienced Researchers. The project focuses on research into the use of Virtual Reality (VR) and Augmented Reality (AR) during planned and emergency maintenance in extreme environments (nuclear installations, space, deep sea etc). The scientific objective of EDUSAFE is research into advanced VR and AR technologies for a personnel safety system platform, including features, methods and tools. Current technology is not acceptable because of significant time-lag in communication and data transmission, missing multi-input interfaces, and simultaneous supervision of multiple workers who are working in the extreme environment. The aim is to technically advance and combine several technologies and integrate them as integral part of a personnel safety system to improve safety, maintain availability, reduce errors and decrease the time needed for scheduled or sudden interventions.

Completed
Models and simulation techniques for discovering diabetes influence factors (MOSAIC)

MOSAIC will address two very specific aspects linked to the prediction of risk of developing diabetes (type 2 and gestational) and complications associated to diabetes. These objectives respond to a widely recognized problem related to diabetes management and have the potential to have a major impact in the way diabetes is currently diagnosed and followed in Europe. The MOSAIC consortium counts with the expertise of four modelling partners who have worked over 25 years in the development of models of the human metabolic response in diabetes that will be enhanced in the project with the incorporation of elements that provide information related to environmental and clinical factors that prove to be relevant for the objectives defined such as socio-economic aspects, geographic localization, cultural background, nutrition, etc. Multiple data bases cutting across geographic boundaries are available to the MOSAIC consortium as a result of the activities of previous studies and projects of the members, such as (a) METABO 7FP EU project; (b) from the transversal study "Healthy Breakfast" enriched with Medtronic's CareLink© reports for continuous glucose monitoring systems; (c) two large longitudinal epidemiological studies over 10 years long (VIVA study, BOTNIA prospective study); (d) outpatient data treated by FSM, Health Department 'Valencia-La Fe', ASL Pavia program over more than 10 years and (e) other data bases generated in ongoing 7FP EU studies like ePREDICE. MOSAIC will integrate these models into an already existing platform for diabetes management and remote monitoring, NOMHAD Chronic, to facilitate the interpretation and visualization of the data and to enable a comprehensive understanding of the information by the health care professionals. At the same time this platform will be used during the validation phase of the project to acquire data during the prospective study to feed the models under test.

Completed
Multilevel assessment on biological effects of radioFrequency electromagnetic waves (mBioRF)

Researh project mBioRF aims to produce beyond state of the art multilevel research data on Biological effects of RafioFrequency (RF) ElectroMagnetic (EM) waves. The research project is structured to be developed in three (3) main levels: i) Cellular level: A thorough, in depth study on biological effects of low level EM Fields (EMF) radiation is foreseen. mBioRF will explore the production of free radicals from cells and generation of an oxidative stress state. The study will be done in total peripheral blood lymphocytes isolated from human volunteers in an attempt to minimize any overstatements from the misdetection of any experimental effects due to the use of cell cultures etc. Furthermore, the study will take place under a realistic scenario during which isolated human blood lymphocytes will be exposed to a modulated signal of mobile phones (e.g. 3rd Generation-UMTS) under controlled conditions in order to well define the radiation. Numerical dosimetry study will enable the detailed characterization of the exposure conditions. ii) Tissue level: Emphasis will be placed on dosimetric outcomes for children and other groups (e.g. pregnant women), which are considered of potential sensitivity. The study will focus on the calculation of EM dosimetric quantities, in comparison with international reference levels, taking into consideration a) the inter-subject variability in the numerical description of anatomical human models, b) the use of updated, age-related dielectric properties that characterize biological tissues and have been introduced in recent literature and c) the accurate description of the EM source. Moreover, it will explore the need for more complex and combined design scenarios, such as the use of portable sensors or other antennas in the presence of mobile phones or uncontrolled environments of general EM radiation. Additionally, the temperature (and potential conductivity) variation will be measured non-invasively in experimental head models and healthy volunteer participants, based on microwave radiometry methods. The experimental data will be combined with the corresponding computed ones, along with EM absorbed power information. iii) Neurophysiological level: A human volunteers study aims to evaluate potential alternations in ElectroEncephaloGram (EEG) and Evoked Potentials (EP) recordings, due to 3G EM irradiation. EP will be recorded due to acoustic or/and optical stimuli. Advanced Digital Signal Processing (DSP) methods will be used in order to detect potential statistically significant differences. In order to study the potential neurophysiological effects, alternations in the product of temperature and conductivity of brain tissue will be also recorded in real time and will be combined with the available information concerning the EM power absorption.

Completed
Implantable and ingestible medical devices (IIMDs): optimal-performance-oriented design and evaluation methodology (DEM-II-MED)

Biotelemetry permits the measurement of physiological signals at a distance. Its latest application is in implantable and ingestible medical devices (IIMDs). In this project, a Design-and-Evaluation closed-loop Methodology for biotelemetry-telemedicine-integrated systems of antenna-enabled IIMDs (DEMIIMD) is implemented. The DEMIIMD consists of five interconnected design-and-evaluation steps (1. data/power circuit, 2. IIMD-antenna, 3. biotelemetry link, 4. patient safety, 5. telemedicine link), and one overall evaluation step. Application-specific requirements must be taken into account at all steps to render the design suitable for the application at hand. Studies will be developed in six workpackages (WPs). The first five WPs will address research issues raised within the first five steps of the DEMIIMD, respectively. Emphasis will be on IIMD-antenna design, biotelemetry link modeling and performance, and safety. Extensive numerical and in-vitro/in-vivo studies will be performed. Electronics and biotelemetry-telemedicine-integration issues will also be addressed. The sixth WP will be devoted to numerical and in-vitro studies to validate the DEMIIMD within the framework of a novel system for wireless intracranial pressure (ICP) monitoring, as an alternative to the traditional wired approaches. Novelty lies in the proposal of the DEMIIMD as a standardized procedure which addresses interconnecting interdisciplinary challenges to design and test integrated systems for antenna-enabled IIMDs. Significant progress beyond the state of the art will be provided, with the highlights being: optimized design algorithms for miniature IIMD-antennas, reliable antenna testing, thermal/multi-source/in-vitro dosimetry for IIMDs, novel methods to assess tissue temperature rise, in- and out-of-body channel modeling, biotelemetry-telemedicine-integration, and a novel wireless approach to ICP monitoring.

Completed
Semantic Infostructure interlinking an open source finite element tool and libraries with a model repository for the multi-scale modelling of the inner-ear (SIFEM)

The clinical evidence indicates that the number of people with all levels of hearing impairment and hearing loss is rising mainly due to a growing global population and longer life expectancies. Hearing loss caused by pathology in the cochlea or the cochlear nerve is classified as sensorineural hearing loss. The study of the normal function and pathology of the inner ear has unique difficulties as it is inaccessible during life and so, conventional techniques of pathologic studies such as biopsy and surgical excision are not feasible. SIFEM focuses on the development of a Semantic Infostructure interlinking an open source Finite Element Tool with existing data, models and new knowledge for the multi-scale modelling of the inner-ear with regard to the sensorineural hearing loss. The experts will have access to both the data (micro-CT images, histological data) and inner ear models, while the open-source developed tools and the SIFEM Conceptual Model will be contributed to the VPH toolkit enhancing their reusability. These SIFEM open source tools and services enhance and accelerate the delivery of validated and robust multi-scale models by focusing on: (i) Finite Element Models manipulation and development, (ii) cochlea reconstruction and (iii) 3D inner ear models visualization. The final outcome is the development of a functional, 3D, multi-scale and validated inner-ear model that includes details of the micromechanics, cochlea geometry, supporting structures, surrounding fluid environment and vibration patterns. In the open context that the project addresses, the results can be used to better identify the mechanisms that are responsible for the highly sensitive and dynamic properties of hearing loss. These result to the description of alterations that are connected to diverse cochlear disorders and assist the experts to better assess each patient's condition leading to more efficient treatment and rehabilitation planning and, in long-term, to personalized healthcare.

Completed
The carotid atheromatous plaque: a multidisciplinary approach for optimal management of symptomatic and asymptomatic patients (Carotid Atherosclerosis)

The scope of the project is a multiscientific view of atherosclerosis in the carotid artery by investigating environmental causes and clinical manifestations of the disease. Specifically, the project attempts to (a) identify novel quantitative indicators for the diagnosis of atherosclerosis by associating biochemical, biomechanical and imaging parameters, (b) achieve a personalized management of the disease and (c) develop an integrated information system that can be used in clinical practice to improve health services.