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Abstract

Alarming epidemiological features of Alzheimer’s disease impose curative treatment rather than symptomatic relief. Drug
repurposing, that is reappraisal of a substance’s indications against other diseases, offers time, cost and efficiency benefits
in drug development, especially when in silico techniques are used. In this study, we have used gene signatures, where up-
and down-regulated gene lists summarize a cell’s gene expression perturbation from a drug or disease. To cope with the in-
herent biological and computational noise, we used an integrative approach on five disease-related microarray data sets of
hippocampal origin with three different methods of evaluating differential gene expression and four drug repurposing tools.
We found a list of 27 potential anti-Alzheimer agents that were additionally processed with regard to molecular similarity,
pathway/ontology enrichment and network analysis. Protein kinase C, histone deacetylase, glycogen synthase kinase 3 and
arginase inhibitors appear consistently in the resultant drug list and may exert their pharmacologic action in an epidermal
growth factor receptor-mediated subpathway of Alzheimer’s disease.
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Introduction

The clinical term of dementia describes chronic progressive dis-
order of cognitive functions that include language, judgement,
orientation and predominantly memory. Alzheimer’s disease ac-
counts for 60% of dementias, and by 2050, patients are expected
to triple because of life expectancy increase [1, 2]. Unfortunately,
effective biomarkers and treatments remain elusive. So far, drugs
based on amyloid cascade hypothesis, tau protein hyperphos-
phorylation, brain vascular pathology, neurotransmitter dysfunc-
tion, cell cycle dysregulation, inflammation, oxidative stress and

mitochondrial impairment have failed to cure dementia [3]. The
mainstream of therapy includes Alzheimer-specific drugs—
acetylocholinesterase inhibitors and N-methyl-D-aspartate re-
ceptor (NMDA) antagonists—that temporarily restrain disease
progression and symptomatic treatment that tackles comorbid-
ities such as depression, psychosis and dysautonomia. In view of
the upcoming epidemiological burden, drug repositioning might
provide an elegant solution to the need for curative treatments.

Drug repositioning/repurposing/reprofiling identifies new
indications for existing drugs. Compared with novel drug
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discovery, drug repositioning is faster, safer and cheaper [4]. It
is implemented in vivo, in vitro and in silico when drug data ori-
ginate from living organisms, cell cultures and computational
modelling, respectively. In silico repurposed drugs deploy bio-
informatics to perform chemical structure comparisons, mo-
lecular docking, gene analyses, network simulations and
chemogenomics data processing [5]; the latter relates drugs to
their gene targets. In a systems biology extension of chemoge-
nomics, drugs perturb whole cell gene expression levels rather
than single genes. Microarray experiments, where samples are
divided by drug treatment or disease state, materialize this
claim by simultaneously measuring the expression levels of
thousands of genes and generating unique lists of up- and
down-regulated genes. These so-called gene signatures enable
drug–drug, disease–disease and drug–disease comparisons.
Connectivity Map (cMap, http://www.broadinstitute.org/cmap/)
is the prototypical chemogenomics tool of such an approach [6].
It consists of 6100 drug signatures that stem from five different
cell types treated with 1309 bioactive molecules of various con-
centrations and experiment duration (perturbagens). Users can
provide their own signatures in the form of up- and down-regu-
lated genes and compare them with those of the database.
cMap returns a connection score stemming from a two-tailed
non-parametric Kolmogorov–Smirnov statistical test.
Magnitude and sign quantify the gene signatures’ correlation,
and biological interpretations build on the signature reversion
principle: if a drug treatment anti-correlates with a disease sig-
nature, then it opposes to a cell’s pathologic gene expression
pattern, and by extension to the disease phenotype itself.
Applications of cMap range from identifying mode of action of
unknown substances to exploring new indications of existing
drugs and potential novel therapies for diseases [7]. Since its re-
lease in 2006, numerous implementations have refined cMap
methodology, providing different enrichment estimations and
statistical metrics [8, 9], combining network analyses’ features
[10, 11] or being embedded in integrative drug repurposing pipe-
lines [12]. More importantly, biological pluralism has been con-
ferred by incorporating different cell lines and compounds
under the so-called Library of Integrated Cellular Signatures
(LINCS) project [13]. Currently in its second phase, a cloud-based
platform (http://www.lincscloud.org/) has been made publicly
available, along with in-house tools to process the data.

As a currently incurable disease, Alzheimer gene signatures to
query such tools have been constructed: Williams G. analysed
the disease signature from conserved genes across animal micro-
array experiments in a cMap-based drug repurposing tool called
SPIED [8]; Hajjo et al. queried cMap with two signatures from
Alzheimer’s disease patients as part of their chemocentric
approach [14]; Chen et al. processed disease gene signatures from
six different brain regions in cMap to functionally describe
Alzheimer’s pathology [15]. A common feature of the above

signatures is that they are derived from either single microarray
experiments or summarized consensual gene lists. In this study,
we followed a gene signature-based approach on five different
gene expression experiments of Alzheimer-affected post-mortem
human hippocampus. We designed an original formula to merge
together outcomes from different implementations of the cMap
methodology, diversifying metrics of signature comparison
(SPIEDw, correlation coefficient), statistical processing (sscMap,
P-value calculation) and biological factors (LINCS-L1000, cell types
and compound enrichment). The main assumption is that a com-
pound’s consistent anti-correlation with the disease reinforces its
pharmacological significance. We then devised a back-loaded
pipeline that emphasizes on structural comparisons, a common
alternative in drug repurposing, based on an in-house developed
tool. To further elucidate the mode of action, we chose to perform
pathway/ontology enrichment as well as network analyses. A
common feature among the tools used is that they are either
web-based or desktop applications that can easily be embodied
in a drug repurposing pipeline and are of integrative nature be-
cause of the broad set of their underlying high-quality databases.
This multi-tool/application processing provides a more robust
drug list with less experiment-oriented and more disease-
associated mode-of-action interpretations.

Methods
Data

We sought Alzheimer-related microarray studies in Gene
Expression Omnibus (GEO)—a transcriptional data repository
[16]. Results were filtered to human hippocampus origin and
included five GEO Series (GSE) data sets (Table 1). We focused on
hippocampal tissue to analyse a severely affected brain region
in Alzheimer, responsible for the early-onset memory deficits
and thus treatment desirable, as well as to acquire deconvolved
gene signatures from other brain tissue expression profiles.
Each data set was log2 transformed and quantile normalized.
Subsequent analysis was done in R (v.3.1.2) statistical environ-
ment and Microsoft Excel v.2010.

Methods to identify differentially expressed gene

Differential gene identification methods can be classified as
univariate, multivariate or hybrid, if a data set’s expression lev-
els are calculated for each gene individually, collectively or
both. A combination of different class-representative methods
can highlight distinct aspects of gene expression, leading to
multilevel gene signatures. Here, each of the five data sets were
processed with such a combination of methods: Limma, a gene
expression linear model that calculates a moderated t-statistic
[22]; Limma-ChDir, a re-ranking of Limma-significant genes by

Table 1. GEO data sets of Alzheimer’s disease-affected human hippocampus

No Author GEO accession
number

Control
number

Patient
number

Specimen Pathologic disease
stage

1 Liang W.S. et al. [17] GSE5281 13 10 Laser-captured CA1* hippocampal pyramidal cells Moderate to severe
2 Blalock E.M. et al. [18] GSE28146 8 22 Laser-captured CA1 hippocampal pyramidal cells Incipient, moderate,

severe
3 Hokama M. et al. [19] GSE36980 10 7 Hippocampal grey matter tissue Moderate to severe
4 Miller J.A. et al. [20] GSE29378 32 31 CA1 and CA3 hippocampal tissue Moderate to severe
5 Blair L.J. et al. [21] GSE48350 25 19 Hippocampal tissue Moderate to severe

*Cornu Ammonis.
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Characteristic Direction that defines a control-disease separating
hyperplane and estimates gene directional cosines [23]; and
mAP-KL, a multiple hypothesis tested gene summarization
through affinity propagation algorithm based on Krzanowski and
Lai clustering index [24]. After data set processing, probe set ids
were matched to gene symbols according to the platforms’ anno-
tation files. We discarded probe sets that did not have a match
and maintained the most differentially expressed one in cases of
gene symbol correspondence to multiple probe sets. In Limma,
we kept top 500 up-regulated and 500 down-regulated genes
based on logFC (fold change) from the gene list with unadjusted
P-value� 0.05. Number of genes corresponds to the input length
limit of cMap. In Limma-ChDir, we reordered the above gene list
according to the directional cosines to acquire gene sets of similar
size. Parameter gamma was set to zero (default), and cases of
sign discord between Limma and ChDir were rejected. In mAP-
KL, we obtained all of the returned genes after setting maxT fea-
ture selection size (genes to be considered for clustering) to 1500
and maximum number of clusters to 50. Parameters were arbi-
trarily chosen after rerun experimentations to ensure both up-
and down-regulated genes in the function output.

Drug repurposing tools

Up- and down-regulated genes–collectively termed as disease
signatures–queried four drug repurposing tools: cMap (build 2),
the prototype of drug gene expression comparisons; SPIEDw, a
platform-independent implementation of cMap with novel cor-
relation coefficient-based similarity score [25]; sscMap, a Java
application of more robust statistical significance on grounds of
a connection strength estimation [26]; and LINCS-L1000, the
advanced version of cMap with significantly increased drug
treatments, cell types and gene signatures based on L1000 high-
throughput technology [12].

For cMap and sscMap, a preceding step was undertaken to
convert gene symbols to unique databases’ required format of
HG-U133A probe sets via NetAffx database [27]. Six common
probe sets between up- and down-regulated gene lists were
found and removed. Instead of explicit gene expression levels,
notation of þ1 and �1 for up- and down-regulation was used for
appropriate SPIEDw and sscMap input format.

Negatively signed drugs consisted of cMap permuted results
with P-value< 0.05, SPIEDw entire outcome (results with signifi-
cance value> 2), sscMap treatment set score normalized to
unity with a tolerance of one false connection among all pos-
sible drugs (P< 1/1309, strictest parameterization) and LINCS-
L1000 summarized results with mean connectivity score across
the four cell lines in which the perturbagen connected most
strongly to the query (best score 4)<�0.9 (proposed threshold
for significant results). For each tool, we calculated the mean (l)
and SD (r) of common sign drug scores that stemmed from at
least two different methods.

To preserve the richness of LINCS-L1000 database, further
analysis of the results was dichotomized. Drugs that appeared
in two or more tools from cMap, sscMap and SPIEDw were
scored according to the relation:

Score1 ¼
lcMap � 1

CVcMap
þ lSPIEDw � 1

CVSPIEDw
þ lsscMap � 1

CVsscMap

1
CVcMap

þ 1
CVSPIEDw

þ 1
CVsscMap

;

where l and CV are the mean value and the coefficient of vari-
ation (r/l) of each tool, respectively (we predefined a value of
0.001 for SD¼ 0 cases). Scores of common drugs were summed

across data sets, and eight drugs were acquired. In contrast, we
collected LINCS-L1000 compounds that appeared in at least two
data sets and calculated their mean value (Score 2) to acquire 20
drugs.

The final outcome comprises 27 unique drug names (one
drug overlap), of which 11 were further grouped into four
pharmacological classes. Significance of its each class over-
representation (P-value) was estimated as the probability of get-
ting the same number of drugs in the class if 27 compounds
were randomly picked from the LINCS-L1000 database. Class
members in the total database were manually retrieved from
compound sellers catalogues.

Analysis of the drug list

The final drug list was further processed with:

• ChemBioServer: a web application for searching, filtering and

comparing drug structures [28]. We used 2D SDF files of both the

resultant drugs and Food and Drug Administration-approved

Alzheimer’s therapeutics in the tool’s hierarchical clustering func-

tion. Threshold value of Soergel distance� 0.4 was selected on the

grounds of pharmacological action-based guilt-by-association

principle; trichostatin-a and vorinostat are both well-studied his-

tone deacetylase (HDAC) inhibitors and were grouped together at

this level.
• Enrichr: an integrative gene set enrichment analysis tool, to

evaluate drugs’ pathways and ontology [29]. For each gene list in-

put, the tool calculates an enrichment score based on a modified

Fisher exact test, where binomial probability distribution

merges with a z-score that corrects the randomness of the result.

Enrichr allows wide access to biological information by analysing

transcription factors, pathways, ontology, disease/drugs,

cell types and others. Results were ranked according to the

combined score> 5 [c¼ log (adjusted P-value)*jz-scorej],
which approximately corresponds to Benjamini–Hochberg

adjusted P-values< 0.1.
• NetworkAnalyst: a web-based tool for network construction,

analysis and visual inspection [30]. NetworkAnalyst has an

underlying database of 14 755 proteins and 145 955 human pro-

tein–protein interactions, along with in-tool functions to provide

extensive network exploration. Top 3 ranked nodes were ob-

tained in Hub Explorer, and modules with P-value< 0.05 were

highlighted in Module Explorer applications.
• Mode of Action by NeTwoRk Analysis (Mantra 2.0): a publicly avail-

able drug network clustered according to network theory and

based on drugs’ gene signature similarity metrics [31]. Given a

compound’s gene signature input, Mantra automatically incorpor-

ates it into the network in which the topology can reveal shared

intra-cluster features (mode of action, chemical structure, etc).
• Compound Digest App: a lincscloud.org application that esti-

mates drug–drug or drug–gene similarity based on transcrip-

tional responses from treatment, gene knockdown and gene

overexpression experiments. The same threshold of LINCS-

L1000 drug filtering (best score 4� 90) was considered significant.

Our approach is summarized in the diagram below (Figure 1)

Results
Drug targets

Five data sets of Alzheimer-affected human hippocampus were
collected and further processed via three class-distinct differen-
tial expression identification methods, Limma, Limma-ChDir

Bioinformatics methods in drug repurposing for Alzheimer’s disease | 3
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and mAP-KL. The generated gene signatures were used as input
to four cMap-based implementations (cMap, SPIEDw, sscMap,
LINCS-L1000) to diversify results on account of the novelties
each tool conveyed. Derived drugs were combined and scored ac-
cording to an original formula. The pipeline has resulted in 27
drugs (Table 2). We observe that common anti-Alzheimer
agents—tacrine, donepezil, galantamine, memantine and riva-
stigmine—are absent. Except for rivastigmine that eludes the
analysis because it only participates in LINCS-L1000 as treatment
instance and not as summarized result, the rest display
mean values close to zero and relatively high SDs. Therefore,
cMap implementations cannot detect their established thera-
peutic value.

We subsequently sought mechanistic similarities between
the resultant compounds and anti-Alzheimer drugs, namely in-
hibition of acetylocholisterase or NMDA antagonism.
Skimmianine—an alkaloid furoquinoline—inhibits acetyl-
cholinesterase and may act to replenish the cholinergic deficit
[32]. Paradoxically, biperidin is also negatively signed, despite
being a cholinergic antagonist [33]. Significant drugs of the final
list are defined as overlaps of: (i) the separated analyses (6-bro-
moindirubin-3’-oxime), (ii) the majority (at least three) of the
data sets (SB-216763, inhibitor BEC) and (iii) drug classes (HDAC
inhibitors; vorinostat, trichostatin-a, HC-toxin, panobinostat,
dacinostat and protein kinase C (PKC) inhibitors; bisindolylma-
leimide, enzastaurin, PKCbeta-inhibitor, rottlerin). These are
further grouped into four over-represented drug classes
(Table 3).

Arginase (ARG) occurs in two isoforms (ARG1, ARG2) and
converts arginine to ornithine and urea. Ornithine is further
metabolized to polyamines (putrescine, spermidine, spermine)
that promote cell proliferation. ARG competes with the nitric
oxide synthase for their common substrate, arginine; the latter
enzyme metabolizes arginine to the vasodilator nitric acid (NO)
[34].

Glycogen synthase kinase 3 (GSK3) exists in two isoforms
(GSK3a, GSK3b) and is mainly located in the cytoplasm. It par-
ticipates in the Wnt and insulin pathways, regulating cell prolif-
eration, migration, inflammation, glucose metabolism and
apoptosis. In Alzheimer’s disease, it is implicated in the hyper-
phosphorylation of tau protein [35].

HDACs are classified into four classes (I, IIA/IIB, III, IV) and
are primarily found in the nucleus. They are associated with
epigenetic modification—inherited genetic changes without nu-
cleotide sequence alterations—by preventing the acetylation of
histones—DNA structural proteins—and the subsequent bind-
ing of transcription factors for gene expression. They are
involved in Notch signalling pathways, regulating cell cycle and
apoptosis [36].

PKC belongs to the superfamily of protein kinases AGC (PKA,
PKG and PKC) and occurs in 15 isoforms. Typically, it is activated
by diacylglycerol—after the hydrolysis of the cytoplasmic mem-
brane phospholipids—or calcium ions and phosphorylates
other proteins on serine and threonine residues. PKC is a
multifunctional protein that mediates numerous cellular func-
tions such as desensitazation of receptors, transcriptional

Figure 1. Analysis workflow: initially, each GSE data set is processed with Limma, Limma-ChDir and mAP-KL methods to find differentially expressed genes. The gener-

ated lists of up- and down-regulated genes are used as input in four drug repurposing tools, cMap, SPIEDw, sccMap and LINCS-L1000. For each tool, common drugs ex-

tracted from gene lists of two or more methods are qualified to the next stage. LINCS-L1000 subsequent analysis is separated from cMap, SPIEDw and sscMap results:

the latter are combined to acquire common drugs in more than two tools, and the whole procedure is repeated for all original five data sets, whilst LINCS-L1000 results

comprise common drugs across the five data sets. The final drug list—a summation of the above drugs—is further processed with regard to structure similarity, path-

way/ontology enrichment and network analysis.
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regulation, immune response and cell proliferation, as well as
memory and learning processes in the brain [37].

Chemical structure similarity

To elucidate potential anti-Alzheimer properties through mech-
anisms other than the primary drug action, we exploited
ChemBioServer to compare the molecular structure with drugs
of clinical use. We carried out a hierarchical clustering based on

Soergel distance and Ward linkage (Figure 2). The following
seven drug groups were produced: (i) dapsone, KM-00927, (ii)
donepezil, galantamine, (iii) forskolin, rottlerin, (iv) THM-I-94,
dacinostat, panobinostat, (v) HC-toxin, SN-38, (vi) enzastaurin,
PKCbeta-inhibitor and (vii) bisindolylmaleimide, SB-216763. We
notice that no drug clusters with typical anti-Alzheimer drugs,
including skimmianine that shares common anticholinesterase
activity. With respect to the other drug similarities, we reason
that KM-00927 may possess anti-inflammatory properties,

Table 2. Final drug list

Data
sets

Drug
name

Pharmacologic class/action Score 1 Score 2

cM
ap

,
SP

IE
D

w
,s

sc
M

ap

1 – � –
2 Rottlerin Experimental/inhibitor of PKCd �0.62
3 Dapsone Antimycobacterial/anti-inflammatory �0.53

Biperiden Antiparkinson/anticholinergic �0.58
4 Skimmianine Experimental/acetylcholinesterase inhibitor �0.37

Bupropion Antidepressant/noradrenaline and dopamine
reuptake inhibitor

�0.62

Milrinone Cardiac stimulant/inhibitor of phospho-
diesterase-3 (PDE3)

�0.66

5 Pioglitazone Antidiabetic/activator of PPAR-c (peroxisome
proliferator-activated receptor gamma)

�0.32

LI
N

C
S-

L1
00

0

1, 4 Rucaparib Experimental/inhibitor of poly-ADP ribose
polymerase (PARP)

�0.96

Nifedipine Antihypertensive/calcium channel blocker �0.96
1, 5 BRD-K05331696 � �0.94

SN-38 Irinotecan metabolite/inhibitor of topoisom-
erase I

�0.96

Isoliquiritigenin Experimental/sirtuin activator �0.96
3, 4 Forskolin Experimental/activator of adenylyl cyclase �0.91
3, 5 Vorinostat Antineoplastic/inhibitor of HDAC �0.94

Trichostatin-a Antifungal/inhibitor of HDAC �0.95
HC-toxin Experimental/inhibitor of HDAC �0.95
THM-I-94 � �0.96
Panobinostat Experimental/inhibitor of HDAC �0.96
Dacinostat Experimental/inhibitor of HDAC �0.98
KM-00927 � �0.98

4, 5 Bisindolylmaleimide Experimental/inhibitor of PKC �0.95
THZ-2-98-01 � �0.95
Enzastaurin Experimental/inhibitor of PKCb �0.97
PKCbeta-inhibitor Experimental/inhibitor of PKCb �0.97

1, 4, 5 Inhibitor BEC Experimental/inhibitor of ARG �0.96
3, 4, 5 SB-216763 Experimental/inhibitor of GSK3 �0.95

C
M

ap
,

SP
IE

D
w

,
ss

cM
ap

LI
N

C
S-

L1
00

0

4, 5 6-bromoindirubin-3’-oxime Experimental/inhibitor of GSK3 �0.88 �0.92

Data set origin, drug name, pharmacologic class/mechanism and the two scores related to cMap, SPIEDw, sscMap and LINCS-L1000 results are displayed.

Table 3. Over-represented drug classes in the final list, drug members and probability of obtaining the same classes by chance (P-value)

Drug class Drug member P-value

PKC inhibitor Bisindolylmaleimide, enzastaurin, PKCbeta-inhibitor, rottlerin 1.59E-05
ARG inhibitors Inhibitor BEC 0.00824931
HDAC inhibitors Vorinostat, trichostatin-a, HC-toxin, panobinostat, dacinostat 9.67E-07
GSK3 inhibitors GSK-3-inhibitor-IX, SB 216763 0.00223632

Bioinformatics methods in drug repurposing for Alzheimer’s disease | 5
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rottlerin could activate adenylyl cyclase, THM-I-94 might act as
HDAC inhibitor and bisindolylmaleimide could inhibit GSK3 in
addition to PKC, although inverse correlations cannot be
excluded.

Pathway–ontology analysis

To assemble a representative gene set of Alzheimer’s disease,
we obtained the most common differentially expressed genes
from the generated gene signatures across the majority of the
studies (three or more). Common statistically significant genes
may best summarize the disease-related transcriptional per-
turbation. A list of 154 genes was used as input in Enrichr, a
publicly available, multi-database enrichment analysis tool. We
limited our search to pathway and ontology analysis: a pathway
is a directional graph with distinct relationships between nodes
that cooperatively exert a biological effect; gene ontology is con-
structed on the basis of a controlled vocabulary to describe cel-
lular compartment, molecular function and biological process.
We used KEGG [38], WikiPathways [39], Reactome [40] and
Biocarta [41] databases for pathway analysis, and all terms of
Gene Ontology enrichment, namely Biological Process, Cellular
Component and Molecular Function [42]. The following terms
were deemed as significant (Table 4)

• Physiological and pathological hypertrophy of the heart (Homo

sapiens): the term refers to normal heart growth after systematic

exercise and pathological hypertrophy in heart failure and other

diseases. Growth factors such as EGF and IGF1, cytokines, hor-

mones and mechanic stress activate the pathway, which induces

the transcription of hypertrophy genes and synthesis of cell

growth proteins.
• Axon guidance: nerve cells communicate via cell membrane pro-

trusions called axons. The mechanism by which an axon is dir-

ected to the receptive neuronal cell involves interaction with

molecules (netrins, slits, ephrins, semaphorins), cell adhesion

proteins (cell adhesion molecules), growth factors, neurotrans-

mitters, etc.
• Depolarization of the presynaptic terminal triggers the opening of

calcium channels: in membranes of presynaptic nerve cells, elec-

trical signals (action potentials) stimulate the opening of Ca2þ

channels to initiate neurotransmitter release in the synaptic cleft.
• Sarcolemma: the cell membrane of a striated muscle fibre cell.
• Cell–substrate adherens junction, cell–substrate junction, adhe-

rens junction, anchoring junction, focal adhesion: a collection of

terms sharing common genes that mediate cell–cell and cell–

extracellular matrix communication.
• Collagen binding: collagen, as the dominant protein of the extra-

cellular matrix, binds to the cell via collagen receptors (CBP) and

regulates cell proliferation, migration, adhesion, etc.
• Growth factor binding and transmembrane protein kinase activ-

ity: the first term refers to interactions of cells with proteins or

polypeptides that promote cell growth or proliferation, while the

latter is a general descriptor of signal transmission via catalysis

of the reaction: proteinþATP¼phosphoproteinþADP.

Among the enriched pathways, most frequently appeared
genes consist of interleukin 6 signal transducer (IL6ST), colla-
gen, type VI, alpha 1 (COL6A1) and epidermal growth factor re-
ceptor (EGFR).

Network analysis

To reduce the bias of preprocessed pathway databases, we built
our own network using NetworkAnalyst web application. The
network was constructed based on the previous 154 genes that
acted as seeds to find their direct neighbours (first-order inter-
actors). A trim function was interposed to extract the minimally
connected subgraph of the original seed proteins and reduce
the bias towards well-studied proteins. The resultant network
consists of 357 nodes and 857 edges. For our analysis, we used

Figure 2. ChemBioServer hierarchical clustering of the final 27 compounds along with marketed anti-Alzheimer drugs (tacrine, rivastigmine, donepezil, galantamine

and memantine) based on structure similarity. The different groups in each box are thresholded at Soergel distance value 0.4.
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the Hub Explorer application to estimate the topological meas-
ures of degree and betweenness centrality: number of node con-
nections with other proteins in the network and number of
shortest paths passing through the node, respectively. We note
c-Jun (JUN), Yes-associated protein 1 (YAP1) and EGFR are
ranked at the top of the list if sorted according to betweenness
centrality—a measure that highlights a network’s ‘bottleneck’
nodes. Their significance is retained even if another network
analysis tool is used based on the same protein–protein inter-
actions called CytoNCA [43] (new JUN, YAP1 and EGFR positions
are third, fifth and second, respectively).

• EGFR, a transmembrane glycoprotein with tyrosine kinase activ-

ity, belongs to the superfamily of HER/ErbB receptors, which con-

sists of four members: (i) EGFR or HER1/ErbB1, (ii) HER2/ErbB2,

(iii) HER3/ErbB3 and (iv) HER4/ErbB4. Structurally, it is divided

into three sections: the extracellular portion which is composed

of about 620 amino acids, a small hydrophobic transmembrane

segment and a cytoplasm with tyrosine kinase activity. When

ligands (EGF, TGF, amphiregulin, EPGN, BTC, heparin-binding

EGF and others) bind to the EGFR, they induce receptor’s homo-

or heterodimerization, namely the connection with another

EGFR or similar receptor. The new conformation activates the

cytoplasmic enzyme activity and initiates a downstream sig-

nalling cascade [44].
• Proteins Jun (c-Jun, JunD, JunB) constitute a family of transcrip-

tion factors that either omodimerize or heterodimerize with ATF

(ATF-2, ATF-a) and Fos (c-Fos, FosB, Fra-1, Fra-2) factors to syn-

thesize the Activator protein 1 (AP-1). The activation of AP-1

complex is mediated by the MAPK kinases, namely the c-Jun-

NH2-terminal (JNK) kinases. Phosphorylation of c-Jun subunit re-

leases the AP-1 from a wider repressor complex and allows its

transition to the nucleus to initiate transcription. Overactivation

of the Jun protein promotes cell proliferation, whereas down-

regulation mediates apoptosis and cell differentiation [45].
• YAP1 is a transcription co-activator, inducing gene expression

via activating transcription factors. Functionally, it is located

downstream of the Hippo pathway; the latter includes conserved

proteins that inhibit cell proliferation and promote apoptosis

during organogenesis. When phosphorylated by specific kinases

(Mst, WW45, Lats, Mob), YAP1 moves to the cytoplasm where it is

deactivated. In contrast, non-phosphorylated form localizes at

the cell nucleus where it is associated with transcription factors

(PEBP2a, TEAD) to promote cell growth [46].

We have distinguished EGFR by both pathway/ontology en-
richment and network analysis, and we set forth to investigate its
role in the network. To elaborate more in the network topology,
we also identified subgraphs with more inter-connectivity
than randomly expected estimated by random walk-based
Walktrap Algorithm of in-tool Module Explorer application.
Significant modules displayed ubiquitin C (UBC) and YAP1 as
their respective hub proteins (by degree centrality). We
also identified Amyloid Precursor protein (APP), the con-
sidered culprit of Alzheimer pathology, among the resultant
network nodes, despite its absence in the original seed
proteins. Path Explorer section of NetworkAnalyst was used to
determine shortest paths between APP and EGFR. Signalling

Table 4. Enrichr statistically significant pathway/ontology terms

Database Term P-value Adjusted
P-value

z-score Combined
score

Genes

KEGG –
WikiPathways Physiological and pathological

hypertrophy of the heart (Homo
sapiens)

0.000187 0.0305 �2.006 7.000 MAPK11, JUN, LIFR, IL6ST

Reactome Axon guidance 0.000143 0.0512 �2.211 6.571 ENAH, CACNB2, NRP2, CACNB4, COL6A1,
ITSN1, ARPC4, IL6ST, MET, SRGAP1,
EGFR

Depolarization of the presynaptic
terminal triggers the opening of
calcium channels

0.000272 0.0512 �1.877 5.579 CACNB2, CACNB4, CACNG2

BioCarta –
GO biological

process
–

GO cellular
component

Sarcolemma (GO:0042383) 0.00023 0.0413 �2.150 6.850 DTNA, ANXA1, AHNAK, COL6A1, SSPN
Cell–substrate adherens junction

(GO:0005924)
0.00085 0.0554 �2.367 6.849 ENAH, ANXA1, AHNAK, PALLD, TGFB1I1,

LUC7L3, SORBS1, EGFR, PDLIM7, DDR2
Cell–substrate junction

(GO:0030055)
0.000923 0.0554 �2.364 6.840 ENAH, ANXA1, AHNAK, PALLD, TGFB1I1,

LUC7L3, SORBS1, EGFR, PDLIM7, DDR2
Adherens junction (GO:0005912) 0.002087 0.0834 �2.309 5.737 ENAH, ANXA1, AHNAK, PALLD, TGFB1I1,

LUC7L3, SORBS1, EGFR, PDLIM7, DDR2
Anchoring junction (GO:0070161) 0.002655 0.0834 �2.296 5.703 ENAH, ANXA1, AHNAK, PALLD, TGFB1I1,

LUC7L3, SORBS1, EGFR, PDLIM7, DDR2
Focal adhesion (GO:0005925) 0.00278 0.0834 �2.271 5.642 ENAH, ANXA1, AHNAK, PALLD, TGFB1I1,

LUC7L3, EGFR, PDLIM7, DDR2
GO biological

process
Collagen binding (GO:0005518) 0.000186 0.0555 �2.267 6.552 ACHE, ECM2, ABI3BP, ANTXR1, DDR2
Growth factor binding

(GO:0019838)
0.000557 0.0625 �2.363 6.551 TGFBR3, NRP2, COL6A1, LIFR, IL6ST, EGFR

Transmembrane receptor protein
kinase activity (GO:0019199)

0.000629 0.0625 �2.242 6.216 TGFBR3, NRP2, MET, EGFR, DDR2

Most frequently found genes across databases are in bold.
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flow is mainly interceded by JUN node, as well as the two mod-
ules previously defined, proposing an indirect EGFR–APP inter-
play (Figure 3).

Gene signature-based approach to mode of action
identification

While previous analyses have underlined EGFR’s significance in
Alzheimer gene expression perturbation, we have found no spe-
cific inhibitor of the receptor in the final drug list, although
such agents are included in the repurposing tools used. To in-
vestigate the drugs’ mode of action, we exploited Mantra tool’s
capability to interpolate compounds to its underlying drug net-
work clusters according to gene signature similarity. Drugs that
group together are supposed to share enriched features. We
have retrieved cluster (community) ids for each of the drugs in
the final derived list that are also included in Mantra’s database
(12 of the total 27 compounds). Results consist of enriched
communities no. 16 and no. 32, namely HDAC inhibitors (vori-
nostat, trichostatin-a, HC toxin) and Topoisomerase (TopoI) in-
hibitors (skimmianine, nifedipine). Both drug classes modify
DNA to confer epigenetic cell changes.

To overcome the limited drug overlap between Mantra and
the derived final list, we exploited Compound Digest of the
Lincscloud database (http://apps.lincscloud.org/compound_
digest), where compound–compound enrichment scores are
provided based on the gene signature similarity for 2920 entries
(included are 24 of the total 27 final drugs). We accumulated the
most significant drug neighbours of each compound and
constructed the drug–drug unweighted network in Cytoscape
platform [47]. By applying Newman’s modularity clustering

algorithm, we ended up with five clusters, among which one
coincides with a Mantra’s cluster (vorinostat, trichostatin-a, HC-
toxin). To further elucidate the mode of action of each cluster,
we devised a similar approach for drug–gene signature similar-
ities derived from knockdown and mutated overexpression
experiments. The underlying assumption is that if a drug correl-
ates with a knockdown/overexpression gene study, then the
drug could inhibit/stimulate this gene’s expression. Top regu-
lated genes were considered those that appear in the majority
of the intra-cluster population (Figure 4).

Injection of prior knowledge to mode of action
identification

In the previous analyses, we initially processed Alzheimer data
sets to derive 27 drugs that potentially reverse transcriptional
changes. Based on the same data sets, we correlated EGFR with
Alzheimer’s disease in terms of pathway/ontology enrichment
and network analysis. We also hypothesized that because we
have found no EGFR inhibitor, mode of action is mediated by
shared mechanisms in gene signature-based clusters of prede-
fined and originally constructed networks.

We assume that drugs might act in EGFR-mediated down-
stream signalling cascades. These include Ras/Raf/MAPK, PI3K/
Akt, PLCc, STAT and src kinase activation. The receptor’s activ-
ity is regulated by Cbl-mediated endocytosis and subsequent
degradation in lysosomes [48]. Drug targets of two of the over-
represented classes relate to the above path: PKC and GSK3 ap-
pear on PLCc and PI3K/Akt, respectively. For the remaining
classes, we turn to Compound Digest App results and document
EGFR-related genes from each cluster’s top results. A P-value

Figure 3. Network Analyst-derived protein–protein interactions network and subsequent in-tool analyses’ results. (A) Network constructed with the 154 genes shared

across the majority of data sets (i.e. at least three) as seed proteins. ‘Trim’ function was implemented to the first-order neighbours’ network to extract a minimally

connected subgraph of the original seed proteins. Final network has 357 nodes and 857 edges. (B) Sorted nodes according to betweenness centrality measure. Top

nodes consist of JUN, YAP1 and EGFR and are highlighted according to the network’s colouring. (C) Subgraphs with relatively more inter-connectivity than randomly

expected (modules) estimated by random walk-based Walktrap Algorithm. Top results according to P-value are provided. Hub proteins (by degree centrality) of the

modules include UBC and YAP1 as highlighted respectively. (D) APP (Amyloid beta A4 protein), a renowned pathogenic protein of Alzheimer’s disease, is generated by

the network construction despite its absence from the original seed proteins. Occupation of the 15th position in the betweenness centrality ranked list is illustrated.

Shortest paths between APP and EGFR (red coloured in the network) indicate that potential signals propagate principally through the JUN node and UBC and YAP1

modules.
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calculating the probability of randomly picking EGFR-related
genes—as retrieved from KEGG database—from the total gene
population of the application is calculated (Table 5). Inhibitor
BEC clusters with drugs that down-regulate an isomorph of
GSK3B gene (GSK3A, P-value¼ 0.01736), while HDAC inhibitors
modulate KRAS, AKT3, JUN, MYC and ERBB3 (P-value¼ 0.00012)
(Figure 5). Their action in EGFR-signalling cascade is depicted
pictorially in Figure 5.

Discussion
Drug relations with Alzheimer’s disease

Our analysis of Alzheimer’s disease gene signatures resulted in
27 drugs that are structurally different from drugs in current
clinical use, namely acetylcholinesterase inhibitors and NMDA
channel blockers. Rather, they seem to target specific EGFR-
related proteins. Among the proposed drugs, we notice common
substances with other gene signature endeavours based on dir-
ect or indirect pharmacologic similarities (milrinone, H-7 and
camptothecin [8], troglitazone [13] and vorinostat and trischos-
tatin [14]). Traditional drug repurposing, arising from research
in cell lines, animal models and clinical trials, favours dapsone
and pioglitazone as well [49]. Dapsone has been tested with
contradictory results, while pioglitazone has demonstrated clin-
ical benefit in Alzheimer’s disease patients with diabetes
comorbidity.

The above findings justify the search for a relationship be-
tween EGFR and Alzheimer’s disease. In Alzheimer, EGFR is

overexpressed in amyloid plaques’ neurons, astrocytes and
endothelial cells. Ab oligomers activate the EGFR, and cleavage
products of presenilines regulate transcription factors that con-
trol the receptor’s gene expression [50]. Additionally, inhibition
of EGFR by gefitinib and erlotinib prevents memory disorders in
Ab42-overexpression species of Drosophila, although apoptosis
is not obviated [51].

To find out the significance of the results, we manually cura-
ted available literature in Google Scholar search engine, based
on a reversed hypothesis: were these drugs to proceed in
preclinical or clinical trials, would their mode of action suppress
or promote Alzheimer-disease features? While a number of
drugs may act therapeutically, others seem to induce
pathology (Table 6). Gene perturbation alone is unable to accur-
ately predict treatment options, although discrepancies pertain-
ing to disease genetic variability and experimental settings
(dose, duration, age, stage of disease, etc) should be considered
as well. The case of ARG inhibitor recapitulates these concerns:
M. J. Kan et al. have shown that ARG and ornithine decarboxyl-
ase inhibitor, although expected to increase neurotoxic
nitric oxide levels, can protect mice from Alzheimer-like path-
ology [52].

To test the brain region dependence of the results, we
applied the same workflow to three data sets from entorhinal,
temporal and frontal brain regions, respectively (GSE5281,
GSE36980). No significant commonalities among them are
observed and, interestingly, these seem to attenuate the further
we move from hippocampus (Figure 6). Because Alzheimer’s

Figure 4. Drug–drug LINCS signature similarity-based network. Nearest neighbour drugs have been accumulated for the 24 (seed drugs) of the 27 final compounds

through lincscloud web app, ‘Compound Digest’. Best score 4�90 has been placed as threshold (mean connectivity score across the four cell lines in which the pertur-

bagen connected most strongly to the query). Resultant network after implementation of Girvan–Newman clustering algorithm is displayed.

Bioinformatics methods in drug repurposing for Alzheimer’s disease | 9
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disease causes progressive neurodegeneration, eventually
affecting almost the whole brain, we can argue that rucaparib,
inhibitor BEC and HDAC inhibitors (trichostatin-a, panobinostat,
dacinostat) pertain to global disease-modifying capability. On
the contrary, GSK3 inhibitors are more hippocampal-specific
drugs. It is clear that a greater number of data sets are needed
to firmly support the arguments made.

Pipeline limitations

Limitations of our study relate to the Alzheimer’s disease fea-
tures, the bioinformatics tools used and the study’s methodology.
Alzheimer’s pathology implicates almost all cell functions so
that significance of highlighted pathways is diluted. Moreover,
Alzheimer’s disease share common pathologic features with
other neurodegenerative diseases and listed drugs may not be
disease-specific. As far as gene signatures are concerned, they
ignore epigenetic and post-transcription modifications. In the
Alzheimer’s context, signatures derive from post-mortem speci-
mens and may capture the underlying hypoxia rather than de-
mentia-related perturbations per se.

Because we have considered the summarized drug signatures
in cMap results, we have, in essence, tested similarities between
genes ubiquitously expressed across different cell lines. These
genes cannot represent direct effects of neurotransmission
modulation—the mode of action of current anti-Alzheimer drugs.
Rather, the gene signatures may capture downstream events
shared by the majority of cells, particularly cell cycle regulation
and differentiation, for they relate to cancer cell types. It may
seem that current treatment options are unable to regulate such
downstream signals, thus their inability to cure the disease and
only provide symptomatic relief.

Drug repurposing tools amplify the biological gap; they use
different cells from neurons, batches are both concentration-
and time-limited and antineoplastic drugs overpopulate their
database. Methodologically, the limited number of data sets
and their separate processing may have allowed disease hetero-
geneity to decorrelate final results. Furthermore, disease signa-
tures of 1000 genes provided small absolute enrichment scores,
close to noise values. Regarding the a posteriori analyses, we pro-
posed EGFR downstream protein modulation as the sole mode
of action of the enriched results. This assumption ignores a

Table 5. Enriched modules of the clustered drug–drug network

Cluster Mantra
community
(neighbour drug)

Seed members Down-regulated
genes
(no. times found)

Up-regulated
genes
(no. times found)

Highlighted
genes

overrepresentation
(P-value)

1 32 (Skimmianine)* Rucaparib, nifedipine, inhibitor
BEC, forskolin, enzastaurine,
THZ-2-98-01, SB-216763,
PKCbeta-inhibitor

GSK3A (5) GPR139 (2) 0.01736842

2 16 Vorinostat, trischostatin-a, panobi-
nostat, dacinostat, THM-I-94,
KM-00927, HC-toxin

KRAS, PDHX, PSMB2, ERGIC2,
TMED10, COPS2, GMPS, TERF1,
AKT3, PAF1, PSMA1, LRSAM1,
RYK, PPAP2B, JUN, PPIA, INPP5D,
MYC, UBC, FAS, EIF2AK3, ERBB3,
ABAT, BIRC6, GNE, ARF4,
PAPOLA, OGG1, ATR, KNDC1 (7)

CDX2, HNF4A, EBF1,
SOX2 (7)

0.000119848

3 13 BRD-K05331696, isoliquiritigenin,
bupropion

PSMB2, PSMD1, PSMA1, KEAP1,
PSMA3, TMED10, PSMD2,
ZNF785, SULT1A3, GSK3A, KRAS,
SNCA, UBQLN2 (2)

NFE2L2, CTBP1 (2) 0.01922224

4 – Bisindolylmaleimide, SN-38 RRM1, RPA2, PPIE, SUPT5H, PAF1,
ABAT, TYMS, NR2F2, JUN,
YWHAH, RPA1, ZFX, RAD9A,
NOTCH2NL, ATXN3, WT1,
TMEM2, PPFIBP2, MYB (2)

– 0.2417124

5 0, 62 GSK-3-inhibitor-IX, rottlerin COPA, COPB2, VCP, EIF2S2, EIF2B3,
AFG3L2, RXRA, PHB2, HSPA5,
TMED10, YME1L1, EIF2B2, CDK6,
NR2F2, IARS2, COG4, MTA1, TTK,
USF1, ATP5L, BIRC5, SAP18, MB,
EIF2B5, XPNPEP1, ENTPD6,
CHMP2A, HSPE1, CASC3 (2)

PHB, IFNG, SLC37A4 (2) –

6 27 Dapsone – – –
7 81 Biperidin – – –

*Skimmianine is absent from LINCS Compound Digest drugs, but colocalizes with nifedipine in Mantra’s Community 32.

The Mantra community, seed members, signature correlated up- and down-regulated genes, and P-values of EGFR genes’ over-representation out of the total down-

regulated gene lists are tabulated. Mantra communities refer to pre-composed drug clusters based on gene signature similarities of cMap (build 2) compounds after

various network clustering algorithms were used. Highlighted* in bold* in seed members’ column are each LINCS cluster’s drugs also discovered in Mantra’s network.

Down-/up-regulated genes derived from drug–gene knockdown/overexpression experiments’ signature similarity, where the same threshold (best score 4�90) has

been used as before. Top genes according to the number of times found are provided. Highlighted* in bold* are genes that appear in KEGG-curated EGFR pathway. Last

column shows P-values for these EGFR pathway-related genes’ over-representation estimated by a hypergeometric distribution.
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systems biology perspective of pharmacology, a substance’s
ability to intervene in a variety of pathways. In addition, path-
way/ontology enrichment and network analysis are biased in
favour of well-studied cellular functions and proteins. Finally,
discordances between the computational-predicted and theor-
etical drug actions against Alzheimer warrant careful reception
of the results.

Conclusion

There is a need to discover treatment options for Alzheimer
in view of the disease incidence rise in the upcoming years.

In silico drug repurposing tackles speed, cost and safety issues
in drug research. Our method of gene signature comparison
tools proposes that PKC, HDAC, ARG and GSK3 inhibitors
could reverse Alzheimer-induced gene expression pattern, thus
tackling the disease phenotype. The majority of them are
linked to EGFR-downstream signalling regulation, which in
turn participates in Alzheimer’s pathology. We propose that
a network simulation of the drug actions could clarify the
underlying modes of action. Other drug properties should
be evaluated as well, regarding pharmacokinetics, pharmaco-
dynamics, blood–brain barrier permeability and toxicity.
These are sine qua non factors of drug development in

Figure 5. KEGG pathway of Erbb signalling cascade. Highlighted are PKC, HDAC, ARG and GSK3 inhibitors hypothetical targets as proposed by drug-knockdown experi-

ments’ gene signature similarities.

Figure 6. Venn diagram of common drugs from four different brain region data sets’ analyses. (A) Entorhinal, temporal and frontal cortex related data sets (GSE5281

and GSE36980) were processed similarly to the data sets of hippocampal origin. (B) Topographic relationship among the brain regions. Entorhinal cortex and hippocam-

pus are medial structures of temporal cortex. (C) Region-specific common drugs.
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Alzheimer, especially when the disease complexity imposes a
polypharmacological approach as shown in other neurodege-
nerative diseases [67].

Key Points

• In silico drug repurposing may facilitate the discovery
of new agents for so far incurable diseases such as
Alzheimer’s disease.

• Accumulation of Alzheimer microarray studies in pub-
lic repositories has enabled a multi-data set processing
via diverse methods and tools based on the gene sig-
nature concept.

• We defined a drug set with enriched drug targets of
PKC, HDAC, ARG and GSK3.

• Molecular similarity, pathway/ontology enrichment,
network analysis and gene signature-based drug clus-
tering proposed a relation between EGFR and
Alzheimer’s disease.

• PKC, HDAC, ARG and GSK3 inhibitors may exert anti-
Alzheimer properties in an EGFR-mediated way, although
further studies are needed to confirm the hypothesis.
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