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 Abstract: Background: Atomic Force Microscopy (AFM) Nanoindentation procedure regarding bio-
logical samples poses significant challenges with respect to the accuracy of the provided results. These 
challenges are related to the inhomogeneity of biological samples, various uncertainties in experi-
mental methods and certain approximations regarding the theoretical analysis. The most commonly 
used theoretical model for data processing at the linear elastic regime regarding biological samples is 
the Hertz model. 

Objective: This paper focuses on the investigation of the resulting errors of the basic equation of the 
Hertz theory that depend on the ratio, indentation depth/indenter’s radius regarding the Young’s mod-
ulus calculation. 

Methods: An extended new equation is derived which takes into account the influence of the indenta-
tion depth/indenter’s radius ratio on the calculation of the Young’s modulus and can be easily used for 
calculations. The derived equation is further combined with equations which take into account the 
shape of the sample. 

Results: Several examples in the literature that do not take into account the value of the ratio indenta-
tion depth/indenter’s radius are reported and the related errors are calculated and discussed. Moreover, 
a rational explanation, regarding the extended differences of the Young’s modulus calculations using 
the same experimental results when these are processed using the Hertz model and the Oliver & Pharr 
analysis (which is the general model that applies for any axisymmetric indenter) is provided. 

Conclusion: A complete and reliable theoretical tool was developed (that takes into account the inden-
tation depth/indenter’s radius ratio and the shape of the sample) which can be generally applied in or-
der to reduce the errors produced by the current methodology (Hertz model). 
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1. INTRODUCTION 

 The theory related to the interaction between two solids is 
of great value to the scientific fields of nanotechnology, bio-
physics and biological sciences [1]. More specifically, this 
theory is used in a wide range of nanotechnology-based ap-
plications and procedures, ranging from imaging at the na-
noscale to the nanomechanical characterization of samples 
and bio-samples [2-6]. The nanomechanical characterization 
can be performed using state of the art equipment such as 
Atomic Force Microscopy (AFM) [7-11]. The basic property 
of a material which can be calculated with AFM is the 
Young’s modulus of the sample of interest [1]. The Young’s 
modulus (Young's modulus is a measure of the stiffness of an 
elastic material, and it is defined as the ratio of stress to 
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strain) can be calculated using several models arising from 
the contact mechanics theory depending on the indenter’s 
shape (e.g. the shape of the AFM tip) and the shape of the 
sample [12, 13]. Towards this direction, in a typical 
nanoindentation experiment, the mechanical response of a 
sample is tested using the AFM tip. In particular, the tip is 
used in order to achieve a specific value of applied load 
and subsequently, the indentation is calculated (the inden-
tation can be easily calculated from the difference between 
the piezo-displacement for a hard reference sample and the 
soft sample in order to succeed the same deflection of the 
cantilever) [1, 11, 14]. Based on the applied load and the 
indentation values on a specific point of a sample, a load – 
indentation curve is constructed. Using this curve, the 
Young’s modulus can be easily determined as a fitting 
parameter [15].  

 In the field of biological samples and biomaterials, the 
most widely applied model for data processing is the Hertz 
model that can only be applied under specific restrictions 
[16]. Firstly, the tested sample must be isotropic (i.e. the 
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properties of the material are the same in all directions) and 
homogeneous (i.e. the material has uniform composition and 
uniform properties throughout) [16]. Despite the fact that 
biological samples at the nanoscale do not follow these re-
quirements, several approximations can be used. For exam-
ple, a sample can be considered as an elastic half-space when 
the indenter’s size is significantly smaller as compared to the 
dimensions of the sample and the indentation depths are small 
(an elastic half-space is an isotropic and homogeneous mate-
rial that is assumed to extend infinitely in all directions and 
in-depth, with the top surface as a boundary). In addition, the 
contact between the tip and the sample must be adhesionless 
and frictionless [17-19]. This requirement is difficult to be 
valid unless the sample is tested in a liquid environment. Fur-
thermore, according to Buckle’s rule, the indentation depth 
cannot exceed 5-10% of the sample’s thickness [14, 20], 
while the contact geometry must be axisymmetric, smooth 
and continuous [5]. Under the aforementioned requirements, 
the data related to nanoindentation experiments on bio-
samples (such as cells, proteins, articular cartilage, etc.) can 
be processed using the equation provided by the Hertz contact 
mechanics which relates the applied load to the indentation 
depth (the requirements in order to apply the Hertz model are 
presented in Table 1). In particular, 
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���                                                    (1.1) 

 In Eq. (1.1), P is the applied load, h is the indentation 

depth, R is the indenter’s radius, E and v are the Young’s 

modulus and the Poisson’s ratio of the sample, respectively 

(� � � � ���) [15]. 

 The basic procedure is to fit the load – indentation data to 
equation (1.1) and calculate the Young’s modulus as a fitting 
parameter (under the condition that the indenter’s radius and 
the Poisson’s ratio of the sample are known) [15]. Eq. (1.1), is 
widely used in the literature, however, it is based on a basic 
approximation which is h<<R [6, 21]. In particular, if h<<R, 
the contact radius between a spherical indenter and an elastic 
half-space is given by the equation [22]: 

�� � ����                                                                     (1.2) 

 In Eq. (1.2), hc is the depth at which contact is made 
between the indenter and the sample during indentation 
(Fig. 1). Equation (1.2) provides approximately the contact 
radius and this approximation is taking into account for de-
riving Eq. (1.1) [16]. As a consequence, the generally used 
Eq. (1.1) is valid only under the assumption that (1.2) pro-
vides an approximately correct value for the contact radius. 
However, according to the Oliver – Pharr analysis in the 

case of a perfect spherical indenter, the contact radius is 
given by the following extended equation [6, 23]: 

�� � ���� � ��
�                                                            (1.3) 

 Usually, it is considered that ��
�
� ���� which is a ra-

tional approach in many cases (�� � � and as a result, this 

assumption is valid in cases that the indentation depth is 

significantly smaller than the indenter’s radius). In a real 

nanoindentation experiment, a logical relation between h 

and R is h<R/10 as it is presented by Radmacher, 2007 [21]. 

Hence, in the case that the indentation depth is significantly 

smaller than the indenter’s radius, Eq. (1.3) is approximately 

equal to Eq. (1.2) and as a result, Eq. (1.1) can be used for 

the Young’s modulus calculation. In this paper, we explore 

the range of values h/R which leads to negligible errors 

when using the Eq. (1.1) for the Young’s modulus calcula-

tion. In addition, a discussion regarding the rationality of the 

above-mentioned assumption is presented.  

2. THEORETICAL ANALYSIS AND EXPERI-
MENTAL RESULTS: MATERIALS AND METHODS 

2.1. Theoretical Investigation of the Errors Arising for 

Big h/R Ratios 

 As it has been proven by Oliver & Pharr, the Young’s 

modulus of a sample in an AFM nanoindentation experi-

ment can be calculated using the following equation which 

can be applied for any axisymmetric indenter [5]: 
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                                                          (2.1) 

where, E is the Young’s modulus, v is the sample’s Pois-

son’s ratio, S is the contact stiffness, and A is the effective 

cross-sectional or projecting area of the indenter. The con-

tact stiffness can be determined by the slope of the upper 

unloading part of the load-indentation curve, thus [6, 14]: 
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 , (at the inception � � ����)                               (2.2) 

 By substituting equation (2.2) to equation (2.1), we de-
rive the following expression: 
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�                                                             (2.3) 

 In the case of a nanoindentation experiment using a 
spherical indenter with radius R, the cross-sectional area can 
be calculated as follows [23]: 

� � ���
�
� � ���� � ��

�                                               (2.4) 

Table 1. Requirements for the application of the Hertz contact theory. 

Requirements for the Application of the Hertz Model in Nanoindentation Experiments 

The sample is flat, isotropic and homogeneous 

The contact between the tip and the sample is adhesionless and frictionless 

The contact geometry is assumed to be axisymmetric, smooth and continuous 

Τhe indentation depth cannot exceed the 5-10% of the sample’s thickness (Buckle’s rule) 
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Fig. (1). An illustration of a nanoindentation experiment using a 

spherical indenter. The magnitudes R, hc, rc and h are clearly pre-

sented. (A higher resolution / colour version of this figure is available 
in the electronic copy of the article). 

 In Eq. (2.4), hc is the depth at which contact is made 
between the indenter and the sample during indentation. By 
combining equations (2.3) and (2.4), we derive:  
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��                                              (2.5) 

Equation (2.5) can be modified as follows: 
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Where, ��
�
�

����

�
, x>0 and as a result, x=2R/hc (x is a con-

stant parameter for a specific nanoindentation experiment). In 

addition, according to Oliver & Pharr analysis, the contact 

depth is calculated by the following equation [6, 14, 23]: 

�� � ���� � �
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                                                         (2.7) 

where ε is a constant that depends on the geometry of the 
indenter. Furthermore, the applied load during indentation is 
related to the contact depth by the following equation [15]: 

� � ��
�                                                                          (2.8) 

 In Eq. (2.8), the coefficients a, m can be easily deter-
mined as fitting constants. The coefficients ε, m are related 
to the equation [6, 23, 24]: 
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                                            (2.9) 

 In Eq. (2.9), Γ is the Gamma function. Using Eq. (2.8), 
the contact stiffness (Eq. 2.2) can be written in the form: 
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��                                         (2.10) 

 The above-mentioned equation (2.10) can be also written 
in the alternative form: 
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Using Eq. (2.11), the contact depth results in:  
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Hence, the differential equation (2.3) takes the simple form:             
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� � �                                                                       (2.13) 

Where, the coefficient b is given by the following equation: 
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 The solution of the differential equation provided by Eq. 
(2.13) is presented below: 
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 However, in a nanoindentation experiment of h=0, 
P(h)=0, thus c1=0. As a result, the equation which relates the 
applied load and the indentation depth in an experiment us-
ing a spherical indenter is the following: 
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 By combining Eqs. (2.8) and (2.15), we conclude that in 
the case of a nanoindentation experiment using a spherical 
indenter, m=3/2. In addition, using Eq. (2.9) we conclude in 
ε=0.75 for spherical indentations. Thus, 
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 In the case that � � � (i.e. ��
�
� �), we derive the clas-

sic approximate solution for a spherical indentation: 
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���                                                  (2.17) 

Using the values m=1.5 and ε=0.75 we conclude that (since 
x=2R/hc):  
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                                                                        (2.18) 

 Following the above, we will investigate the errors aris-
ing for indentation depth values (using spherical indenters) 
in the range: 

�
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                                                             (2.19) 

 Indentation depths in the range indicated by Eq. (2.19) 
are common in the literature as it will be discussed in the 
‘Discussion’ section. As a result, 

�� � � � �                                                                    (2.20) 

 The equation which relates the Young’s modulus using 
the approximation � � � (h<<R), Ea and the real Young’s 
modulus Er is presented as follows: 
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                                                              (2.21) 

 A graphical representation of Eq. (2.21) is shown in 
(Fig. 2). For the range of values h/R provided by Eqs. 
(2.19), (2.20) the ratio Er/Ea results in: 

������ �
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� �����                                                    (2.22) 

 Eq. (2.22), indicates that the percentage difference be-

tween the real Young’s modulus value Er and the approxi-

mated value Ea is 0.63% if h=R/20 and 9.5% of h=2R/3. 

The proposal provided by Radmacher [21] [(i.e. that (1.1) 



A Discussion Regarding the Application of the Hertz Contact Theory Micro and Nanosystems, 2021, Vol. 13, No. 1    45 

can be used if h<R/10) is rational since in this case 
��

��

� ������, thus the real value is only 1.27 % bigger com-

paring to the approximate value]. 

 

 

Fig. (2). The variation of the ratio Er/Ea with respect to x. In the 

case that x=6, h/R=2/3 and Er/Ea=9.5. In addition, in the case that 

x=80, h/R=1/20 and as a result Er/Ea=1.0063. (A higher resolution / 
colour version of this figure is available in the electronic copy of the 
article). 

2.2. Investigation and Determination of the Arising Er-
rors in a Real Nanoindentation Experiment

 A typical load – indentation curve obtained on an H4 
human glioma cell is presented in (Fig. 3). The nanoindenta-
tion experiment was performed using an indenter with a 
radius equal to R=2.5 μm. In this experiment, the maximum 
indentation depth was equal to 1.014 μm. As a result, 
h/R=0.41 and x=9.76. In this case, Er/Ea =1.055 and the real 
Young’s modulus value is 5.5 % bigger comparing to the 
approximated value. Thus, using Eq. (1.1), we conclude that 
Ea=1.07 kPa. This value is based on the assumption (h<<R). 
However, using the extended Eq. (2.16), provided by this 
paper, we calculate Er=1.13 kPa, which is the correct value 
for the Young’s modulus. Details regarding the nanoinden-
tation experiments and data processing are also presented in 
the Appendix. 

3. RESULTS AND DISCUSSION 

As it has been already mentioned in the introduction, the 
Hertz model is probably the most widely used contact me-
chanics model used in experiments regarding biological 
samples and biomaterials with regards to the Young’s mod-
ulus calculation. Eq. (1.1) is usually used for fitting the ex-
perimentally obtained data in order to determine the 
Young’s modulus of the sample of interest. However, as it 
was presented in this paper, the use of Eq. (1.1) could prob-
ably induce errors in the analysis depending on the ratio 
h/R. Thus, we presented an extended equation which relates 
the Young’s modulus value to the ratio h/R. Despite the fact 
that empirically obtained findings are provided in the litera-
ture (e.g. the assumption provided by Radmacher, 2007 
[21], h/R<10) in this paper, an extended analysis was per-

formed which justifies the Radmacher assumption and pro-
vides an extended discussion regarding the resulting errors 
that arise by using the Eq. (1.1). In addition, an accurate 
equation (Eq. 2.16), which depends on the ratio h/R was 
presented that can be used for an accurate fitting procedure 
to avoid the underestimation of the Young’s modulus value.  

 

 

Fig. (3). A typical load – indentation curve obtained on a H4 hu-

man glioma cell. The nanoindentation experiment was performed 

using an indenter with radius equal to R=2.5 μm. In this experi-

ment the maximum indentation depth was equal to 1.014 μm. As a 

result, h/R=0.41 and x=9.76. Thus, the arising error using Eq. (1.1) 

results in 5.5 %. The fitting was performed using the Atomic J 

software. (A higher resolution / colour version of this figure is availa-
ble in the electronic copy of the article). 

It is a fact that Eq. (1.1) is usually used without taking 
into consideration the relationship between the indenter’s 
radius and the indentation depth. Many examples can be 
found in the literature. In particular, Guo et al., 2014 per-
formed nanoindentation experiments on cancerous and non-
cancerous human mammary epithelial cells. In their experi-
ments, they used a 2.65 μm radius spherical tip [25]. The 
indentation depth for all the experiments was selected equal 
to 1500 nm. As a result, h/R=0.57 and x=7.067. Thus, the 
resulting error is 7.93 %. Shimizu et al. 2012 performed 
nanoindentation experiments to measure the Young’s modu-
lus of mesenchymal stem cells and HEK293 cells in the 
floating state [26]. For the Young’s modulus determination, 
a modification of Eq. (1.1) was used which takes into ac-
count the spherical shape of the cell. In particular, the effec-
tive radius was used which is equal to R*=R1R2/(R1+R2), 
where R1 is the radius of the spherical probe and R2 the 
cell’s radius. The nanoindentation depths presented in this 
paper were in the range 1 μm – 2.5 μm. In addition, R1=2 
μm and R2=7.5 μm for the hMESC and R2’= 6.6 μm for the 
HEK 293. For the case of an hMEC cell R*=1.58 μm. Thus, 
for an indentation depth equal to 1 μm, h/R*=0.63, x=6.33 
and the resulting error in the Young’s modulus calculation is 
approximately 9.0 %. In addition, for a HEK 293 cell, 
R*=1.53 μm, h/R*=0.65 and x=6.15. Hence, the resulting 
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error is approximately 9.3 %. It is obvious that for h>1 μm 
the errors are significant and major miscalculations regard-
ing the Young’s modulus have been observed. Moreover, 
Grant et al. 2009 used the AFM nanoindentation method to 
determine the mechanical properties of hydrated collagen 
fibrils [27]. They used the modification of Eq. (1.1) for the 
contact problem of sphere-cylinder interaction (i.e. 
R’=R1R2/(R1+R2) where R1 is the radius of the spherical 
probe and R2 the cylinder’s radius. As it is reported in their 
work, Eq. (1.1) can be used for a spherical or a parabolic 
probe. However, they used high indentation depths, up to 
5�Rtip. According to our analysis, this fact leads to a signif-
icant underestimation of the Young’s modulus. Further-
more, Sajeesh et al., 2016 used Eq. (1.1) to calculate the 
Young’s modulus of fibroblasts [28]. In their experiments, 
they used a spherical probe with radius equal to 5 μm and 
maximum indentation depth 1000 nm (i.e. h/R=0.2). In this 
case, x=20 and the resulting error is small, 2.6 %.  

 An interesting analysis regarding the mechanical proper-
ties of murine collagen fibrils is presented by Andriotis et 
al., 2014 [29]. In their analysis, they performed a compara-
tive analysis for the determination of the Young’s modulus, 
using Eqs. (1.1) (approximate Hertz model) and (2.1) (Oli-
ver and Pharr analysis). Using the modified Hertzian contact 
model for the sphere – cylinder interaction, the Young’s 
modulus of the fibrils resulted in 6.9�1.3 GPa. However, 
using the Oliver & Pharr analysis, the result was significant-
ly bigger, i.e. 9.3±1.3 GPa. In addition, it must be reported 
that statistical analysis showed significant differences (P-
value <0.05) between the Oliver–Pharr and the Hertzian 
analysis (P-value=0.02). Despite the fact that our analysis 
explains up to a level the difference in the Young’s modulus 
value (by using either the Hertz model or the Oliver-Pharr 
analysis), it seems that it is not the only factor that influ-
enced this result. More specifically, the difference as it was 
calculated by Andriotis et al., 2014 analysis between the 
two approaches was ~ 34 %. This difference indicates that 
there are more factors responsible for deviations regarding 
the Young’s modulus calculations using the aforementioned 
approaches. However, our analysis provides a rational factor 
that explains this difference up to a level. It seems that the 
Oliver-Pharr analysis provides more accurate results in this 
case (comparing to the Hertz model) since for the Young’s 
modulus calculations it takes into account Equation (1.3) 
instead of (1.2).  

 The Young’s modulus calculations regarding biological 
samples is a challenging procedure. A variety of bio-
samples have been investigated using AFM by many re-
searchers in different laboratories. As a consequence, a sig-
nificant number of papers that concern the mechanical prop-
erties of biological samples have been published. However, 
the aforementioned papers present significant variations in 
the provided values, even for the same biological tissue. 
These variations can be related to two main sources: biolog-
ical variability and technical inaccuracy. An interesting bio-
logical sample with an extended range of Young’s modulus 
values in the literature is collagen. In particular, Heim et al., 
2006 concluded that the Young’s modulus of individual 
collagen fibrils is in the range 1 – 2 GPa [30]. In the same 
order of magnitude are also the results provided by Grant et al., 
2009 (1.9�0.5) GPa [27]. On the contrary, Wenger et al., 
2007 concluded in a significantly bigger range of values: 5 

GPa – 11.5 Gpa [23]. An interesting fact is that the results 
provided by Grant et al., 2009 and Heim et al., 2006 were 
about 7 times smaller compared to the results provided by 
Wenger et al., 2007 even though all these experiments fo-
cused on type I collagen fibrils (however, the samples were 
provided from different species) [23, 27, 30]. Significant 
research efforts have been performed in the previous years 
to explain the aforementioned differences. For example, a 
possible explanation could be related to the variation of the 
cross-linking. Apart from biological reasons, Andriotis et 
al., 2014 proved that the model that is used for the contact 
mechanics analysis results in significant differences regard-
ing the Young’s modulus calculations [29]. In this paper, we 
provide an explanation that up to a level explains the de-
pendence of the calculated values from the used model. This 
research is a step forward towards the development of sig-
nificant theoretical tools to minimize the dependence of the 
results on the model used in the data processing. However, 
more research is needed in order to provide a complete ex-
planation regarding the differences provided by the Hertz 
model and the Oliver-Pharr analysis since our proposal ex-
plains it up to a certain level. 

 Previous studies presented the resulting errors which 
arise from the consideration of a cylindrical/spherical sam-
ple as a half-space [12]. This analysis concluded that Eq. 
(1.1) can be modified for the case of cylindrical samples: 
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�                                                 (3.1) 

Where Z is a correction factor which expands the applicabil-
ity of Eq. (1.1) to cylindrical samples.  

 In addition, Eq. (1.1) can be also modified for spherical 
samples as follows: 
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����                                                 (3.2) 

Where Q is the correction factor which expands the applica-
bility of Eq. (1.1) to spherical samples. These results can be 
combined with the analysis provided in this paper to devel-
op an equation which takes into account both the shape of 
the sample and the dependence on h/R ratio. Thus, for cy-
lindrical shaped samples, we conclude that: 
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In addition, for a spherical shaped sample: 
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 An interesting point regarding collagen (which can be 
modeled as a cylinder-shaped sample) is that the considera-
tion of a fibril as a half-space combined to a high ratio of 
h/R could result in a significant error in the analysis. For 
example, under the assumption Rt/Rc=0.3 where Rt is the 
indenter’s radius and Rc the cylinder’s radius and h/Rc=0.5 
we conclude that Z=1.066 [12] and x=8. Hence, the devia-
tion of the Young’s modulus value [calculated from Eq. 
(1.1)] from the actual value [calculated from Eq. (3.3)] is 
approximately 14 %. This result proves the significance of 
the research concerning the improvement of models of ap-
plied mechanics that are being used in AFM nanoindenta-
tion experiments on biological samples. 
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4. FUTURE APPLICATIONS 

 It must be clarified that the proposed analysis applies 
also for any type of sample that presents a linear elastic be-
haviour [31]. For example, the presented by this paper ap-
proach for the accurate determination of Young’s modulus 
for big h/R ratios (Eq. 2.16) can be also used for the case of 
non-biological samples like the polyelectrolyte complex 
films [32] or polyelectrolyte multilayers [33]. As it has been 
previously reported, Polyelectrolyte multilayer films are 
frequently employed as a functional surface coating due to 
their stimuli responsiveness, and their electrical and me-
chanical properties [32]. The determination of their mechan-
ical properties can be accurately performed using the analy-
sis provided by this paper. However, it must be noted that 
biological samples are tested in a liquid environment and as 
result, adhesion forces are minimized. On the contrary, 
when non-biological samples are tested in ambient air con-
ditions, the interaction between the AFM tip and the sample 
is affected by the humidity [34]. The tip-sample interaction 
is dominated by capillary forces (if the relative humidity is 
high), especially for hydrophilic surfaces [34]. The humidity 
of the environment can affect the Young’s modulus meas-
urements (a thin layer of humidity between the tip and the 
sample contributes to the interaction force). In this case, the 
provided by this paper theory combined with the theory of 
the geometric potential can be used [35-39]. The effects of 
the capillary forces can be easily determined in the afore-
mentioned cases [35, 36]. In addition, another interesting 
application is the mechanical characterization of biological 
membranes on artificial surfaces. These biological mem-
branes can be used as coatings for microcapsules. For ex-
ample, the leucocyte cell membrane can be used for the 
modification of Janus microcapsules [40]. The mechanical 
characterization of the membrane can be performed using 
AFM and the related theory regarding the Young’s modulus 
determination as it was previously presented in this paper. 

CONCLUSION 

 In this paper, we present an analysis regarding the errors 
provided in spherical indentations for big h/R ratios. In ad-
dition, an equation which takes into account the relation 
between the indentation depth and the indenter’s radius as a 
factor is presented. Despite the fact that the arising errors 
were not that extended, when combined to errors resulting 
from other parameters may lead to significant errors in the 
calculation of the Young’s modulus values. Thus, signifi-
cant research efforts should focus on the development of 
reliable theoretical tools and equations which can be applied 
generally without significant assumptions that may lead to 
false results. 
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Appendix: Materials and Methods 

 Cell culturing: H4 human glioma cells (ATCC) were 
used for the evaluation of the proposed technique. The pro-
tocol used for the preparation of glioma cells has been pre-
viously reported by Kontomaris et al., 2019 [24]. 

 AFM experiments and analysis: A Molecular Imaging-
Agilent PicoPlus AFM system (now known as AFM 5500 
Keysight technologies) with a round (nominal value: 2.5 μm 
radius) ball-shape tip (CP-PNPL-BSG), and spring constant 
of 0.08 N/m was used for spherical indentation experiments. 
The spring’s constant of the cantilever was determined us-
ing the thermal noise method. Curve fitting was performed 
using the Atomic J software [41]. 
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