
IE
EE

Pr
oo
f

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 00, NO. 00, 2015 1

A Review of Emerging Technologies for
the Management of Diabetes Mellitus

1

2

Konstantia Zarkogianni, Member, IEEE, Eleni Litsa, Konstantinos Mitsis, Po-Yen Wu, Chanchala D. Kaddi,
Chih-Wen Cheng, Member, IEEE, May D. Wang, Senior Member, IEEE,

and Konstantina S. Nikita∗, Senior Member, IEEE

3

4

5

Abstract—Objective: High prevalence of diabetes mellitus (DM)6
along with the poor health outcomes and the escalated costs of7
treatment and care poses the need to focus on prevention, early8
detection and improved management of the disease. The aim of9
this paper is to present and discuss the latest accomplishments in10
sensors for glucose and lifestyle monitoring along with clinical deci-11
sion support systems (CDSSs) facilitating self-disease management12
and supporting healthcare professionals in decision making. Meth-13
ods: A critical literature review analysis is conducted focusing on14
advances in: 1) sensors for physiological and lifestyle monitoring,15
2) models and molecular biomarkers for predicting the onset and16
assessing the progress of DM, and 3) modeling and control methods17
for regulating glucose levels. Results: Glucose and lifestyle sensing18
technologies are continuously evolving with current research focus-19
ing on the development of noninvasive sensors for accurate glucose20
monitoring. A wide range of modeling, classification, clustering,21
and control approaches have been deployed for the development of22
the CDSS for diabetes management. Sophisticated multiscale, mul-23
tilevel modeling frameworks taking into account information from24
behavioral down to molecular level are necessary to reveal correla-25
tions and patterns indicating the onset and evolution of DM. Con-26
clusion: Integration of data originating from sensor-based systems27
and electronic health records combined with smart data analytics28
methods and powerful user centered approaches enable the shift29
toward preventive, predictive, personalized, and participatory di-30
abetes care. Significance: The potential of sensing and predictive31
modeling approaches toward improving diabetes management is32
highlighted and related challenges are identified.33

Index Terms—Clinical decision support systems (CDSS),34
lifestyle monitoring, molecular data, multilevel modeling, sensors.35

I. INTRODUCTION36

D IABETES mellitus (DM) is a group of metabolic diseases37

that affect the body’s ability to regulate blood glucose lev-38

els. In Type 1 DM (T1DM), the immune system attacks the in-39

sulin producing pancreatic cells resulting in absolute deficiency40

of insulin secretion, while Type 2 DM (T2DM) is characterized41
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by increased resistance of the body cells to insulin, which fre- 42

quently coexists with limited insulin secretion. T2DM is often 43

progressed from prediabetes, which is classified into impaired 44

fasting glucose (IFG) and impaired glucose tolerance (IGT). In 45

the IFG condition, the fasting blood glucose is elevated above the 46

normal levels, while IGT is a prediabetic stage of dysglycemia. 47

Both IFG and IGT are associated with insulin resistance and 48

increased risk of cardiovascular disease [1]. 49

The prolonged elevated blood glucose levels, which is the 50

main characteristic of diabetes, may cause damage to large and 51

small blood vessels leading, in the long run, to mortality related 52

complications such as cardiovascular disease (CVD), neuropa- 53

thy, retinopathy, and nephropathy. Moreover, increased blood 54

glucose levels may lead to several acute episodes such as ke- 55

toacidosis and hyperosmolar hyperglycemic state. DM com- 56

plications can be delayed or even prevented through intensive 57

glycemic control. The latter involves frequent glucose mea- 58

surements and exogenous insulin administration in the case 59

of T1DM, while insulin treatment overdoses may cause hy- 60

poglycemic episodes. The multitude of factors that influence 61

glucose metabolism make optimal glucose regulation in pa- 62

tients with T1DM a very challenging task. In the case of T2DM, 63

glycemic control can be achieved through appropriate medica- 64

tion treatment in combination with effective lifestyle changes in 65

terms of diet and physical activity. However, due to the asymp- 66

tomatic nature of the disease at the early stages, T2DM is usually 67

diagnosed after the occurrence of complications. In particular, 68

although general blood-test-based guidelines have been estab- 69

lished for the diagnosis of T2DM and prediabetes, there is a 70

large time delay between the onset and the diagnosis of the 71

disease [2]. 72

According to the International Diabetes Federation (IDF), in 73

2014, 387-million people worldwide suffered from DM, while 74

it is estimated that by 2035 this number will rise to 592 million. 75

The undiagnosed cases of DM reach up to 179 million. In 2014, 76

4.9-million deaths were attributed to DM, while the associated 77

annual cost in health expenditure was estimated at USD 612 78

billion dollars, which corresponded to 11% of total spending 79

in adults [3]. 80

The high prevalence of DM, and the rapidly growing number 81

of patients with DM, along with the rising costs of care, the pre- 82

dictable number of deaths and medical errors, poses the need 83

to move from a reactive to a preventive approach in diabetes 84

care and to shift the emphasis from the disease to wellness. 85

Rapid advancements in wireless sensing combined with smart 86

data analytics can be used to facilitate personalized, predictive, 87
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preventive, and participatory medicine approaches with the ul-88

timate goal to optimize the management of DM through the89

following multifold focus:90

1) identification of biomarkers which are strongly related91

with the onset and the progress of diabetes;92

2) identification of individuals being at an increased risk of93

developing diabetes;94

3) detection of diabetes at its early stages, in order to initiate95

appropriate treatment;96

4) risk prediction of the incidence of long term diabetes com-97

plications enabling early intervention;98

5) patients stratification facilitating the selection of optimal99

treatment;100

6) tight glycemic control enabled through patient’s active101

participation.102

Rapid advancements in wireless sensing and smart devices103

are creating a pervasive wireless environment that can address104

a wide range of major diabetes-related challenges through inte-105

gration of different types of data acquired from heterogeneous106

sources. Sensor-based technologies for continuous glucose and107

lifestyle monitoring with the ability to operate with a resolution108

time up to 5 and 1 min, respectively, provide important in-109

formation regarding the patient’s glucose profile as a re-110

sult of treatment and lifestyle. Moreover, data from patient’s111

electronic health records (EHR), which include demographic,112

clinical, treatment, and medical history information, constitute113

the patient’s health profile. Genetic information such as partic-114

ular genes that are associated with the onset of T2DM gives ad-115

ditional insights about an individual’s predisposition to T2DM116

development [4]. High-throughput omic technologies such as117

microarrays, next-generation sequencing (NGS), and mass spec-118

trometry have led to the identification of molecular biomarkers119

associated with the onset and progress of T2DM and have cre-120

ated new opportunities in diagnosing, monitoring, and managing121

T2DM [5]. Common omic profiles include genomic, transcrip-122

tomic, epigenomic, proteomic, and metabolomic.123

As more and more data are gathered, data processing and124

interpretation become more crucial in order to turn acquired125

data and information into knowledge toward supporting dia-126

betes decision making and action and providing powerful tools127

for the patient and the clinician. Advanced modeling, control,128

classification, and clustering methodologies applied on differ-129

ent combinations of datasets, have led to the development of130

a range of clinical decision support systems (CDSSs). Glucose131

prediction models for patients with T1DM are able to forecast132

glucose profile, enabling early decision making in order to pre-133

vent the occurrence of large glucose excursions, while numerous134

studies have addressed the design, development, and evaluation135

of closed-loop glucose controllers able to provide estimations136

of appropriate insulin infusion rates and premeal boluses [6].137

Moreover, several computer-based risk prediction models for138

the incidence of long-term diabetes complications have been139

proposed and their potential to support clinical decision making140

toward initiating appropriate treatment has been demonstrated141

[7]–[9]. Models able to detect T2DM at its early stages and iden-142

tify people at an increased risk of developing the disease have143

also been proposed. These are based on multilevel, multiscale144

approaches taking into consideration several mechanisms at the 145

molecular, tissue, and organ levels that are known to contribute 146

to the physiological processes leading to the development of 147

T2DM. In addition, T2DM is highly heterogeneous in terms 148

of clinical and molecular profiles, and it is well known that 149

different patients respond differently to existing therapies [10]. 150

Hence, the integration of clinical and molecular profiles can pro- 151

vide important information for selecting appropriate therapy and 152

monitoring the progression of the disease toward personalized 153

treatment. 154

The aforementioned CDSS constitute the key modules for 155

the development of integrated systems and services for diabetes 156

management, with the ultimate goal to empower patients toward 157

the self-management of their disease and to support healthcare 158

professionals in clinical decision making. Multiparametric mon- 159

itoring systems combined with intelligent interoperable commu- 160

nication platforms have been developed within the framework 161

of several EU-funded research projects, such as METABO [11], 162

INCA [12], Reaction [13], AP@home [14] and SMARTDIAB 163

[15]. These systems allow continuous glucose monitoring, con- 164

text awareness, integrative risk assessment, as well as auto- 165

mated closed-loop insulin delivery. In order to ensure safety, the 166

systems are usually equipped with remote alarms facilitating 167

expert’s intervention upon cases of emergency [16]–[18]. 168

This paper focuses on describing and comparatively assess- 169

ing state of the art and emerging technologies related to sen- 170

sors and data analytics methodologies applied for personalized 171

diabetes management. The latest advances in sensors for moni- 172

toring physiological and lifestyle-related parameters, which are 173

relevant to DM, are discussed. Moreover, CDSSs with the abil- 174

ity to produce clinically meaningful outputs for the prevention, 175

detection, and management of T2DM are presented, along with 176

CDSS for the management of T1DM, including risk prediction 177

models for the incidence of long-term complications, glucose 178

prediction models and closed-loop glucose controllers. The po- 179

tential of utilizing molecular data toward the development of 180

multilevel predictive models for DM is discussed, while future 181

research directions and challenges are highlighted. 182

II. SENSORS FOR GLUCOSE AND LIFESTYLE MONITORING 183

Glucose measurements are particularly important for arrang- 184

ing meals and exercise and for adjusting insulin doses in insulin- 185

treated patients. Moreover, the physician can utilize them in 186

order to assess the patient’s status and adjust therapy properly. 187

The most widely used method for measuring blood glucose lev- 188

els in patients with DM is the finger-stick procedure, which 189

requires a small amount of capillary blood obtained by pricking 190

one finger with a lancet. The main disadvantage of this method 191

is that it provides the current capillary blood glucose concen- 192

tration without giving information about the glucose trend, and 193

thus, it can lead to wrong treatment decisions. 194

Recent advances have enabled the development of continu- 195

ous glucose monitoring systems (CGMS), which can provide 196

information regarding the glucose levels every 1 or 5 min. The 197

CGMS are wearable devices consisting of a glucose sensor, a 198

transmitter, and a receiver/wireless monitor that can be worn 199
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TABLE I
TECHNICAL SPECIFICATIONS AND ACCURACY OF COMMERCIALLY AVAILABLE CGMS [20]

Device Technology Sensor Lifespan Sensor
Warm-Up

Calibration Records
Frequency

Accuracy Reference

Dexcom Seven Plus
(Dexcom)

Invasive 168 h 2 h every 12 h 5 min MARD: 16% MAD in
hypoglycemia: 16 mg/dL

YSI blood glucose analyzer

Dexcom G4
Platinum (Dexcom)

Invasive 168 h 2 h every 12 h 5 min MARD: 13% MAD in
hypoglycemia: 11 mg/dL

YSI blood glucose analyzer

Guardian Real-Time
(Medtronic)

Invasive 72 h 2 h every 12 h 5 min MARD: 17.6% EGA (A+B):
99.6%

Arterial samples

FreeStyle Navigator
(Abbott)

Invasive 120 h 10 h calibration at 10 h,
12 h, 24 h and 72 h.

1 min MARD: 12.8% MedARD:
9.3% EGA (A+B): 98.4%

YSI blood glucose analyzer

FreeStyle Navigator
II (Abbott)

Invasive 120 h 10 h calibration at 10 h,
12 h, 24 h and 72 h.

1 min

HG1-c (C8
Medisensors)

Non Invasive(Raman
spectroscopy)

– – 5 min MARD: 38 mg/dL MedARD:
30 mg/dL EGA (A+B): 92%

Blood glucose reference
values

GlucoTrack
(Integrity
Applications Ltd.)

Non Invasive
(thermal ultrasound

and electromagnetic)

6 months (ear
clip lifespan)

– Every 6 months (for
a new ear clip)

MARD: 29.9% MedARD :
19.9% EGA (A+B): 92%

Commercial glucose meter
and glucose analyzer

Symphony (Echo
Therapeutics Inc)

Prelude SkinPrep
System

– – 1 min EGA (A+B): 96.9% YSI 2300 STAT Plus glucose
analyzer and commercial

glucose meters

on the belt. The glucose readings are stored in a chip and can200

be subsequently downloaded and assessed by the physician or201

even the patient, while newer devices are equipped with a dis-202

play to show in real time the glucose records, usually accom-203

panied with a graph, and the glucose trend. The majority of204

the sensors embedded in the CGMS are invasive and mainly205

subcutaneous sensors. Thus, the glucose records derived from206

the subcutaneous space present a time lag, from 2 to 45 min207

with a mean time 6.7 min, compared to the blood glucose val-208

ues. For this reason, the CGMS must be calibrated frequently209

using the finger-stick procedure. Aiming at improving the reli-210

ability of the CGMS, the concept of the smart CGM (sCGM)211

sensor has been recently proposed, which consists of a cascade212

of a commercial CGM sensor and three software modules for213

denoising, enhancement, and prediction of upcoming glucose214

excursions, able to work in real time [19]. In addition, subcu-215

taneous sensors have limited life time and must be replaced216

after a few days of use. Table I presents commercial CGMS217

along with information related to the technology adopted, the218

sensors lifespan, the sensors warm up period, the calibration fre-219

quency, the records frequency, and the accuracy [20] assessed220

in terms of numerical and clinical evaluation criteria. Numer-221

ical criteria provide a measure of the difference between the222

measured and a reference glucose profile. These include mean223

absolute deviation (MAD), mean absolute relative difference224

(MARD), and median absolute relative difference (MedARD),225

defined as226

MAD =
1
N

·
N∑

i=1

∣∣∣Ĝi − Gi

∣∣∣ (1)

MARD =
1
N

·
N∑

i=1

∣∣∣Ĝi − Gi

∣∣∣
Gi

(2)

MedARD = mediani

⎧
⎨

⎩

∣∣∣Ĝi − Gi

∣∣∣
Gi

⎫
⎬

⎭ (3)

where N is the number of glucose measurements, Ĝi and Gi 227

represent the measured and the reference glucose levels, respec- 228

tively. The reference glucose levels are usually measured by 229

means of Yellow Springs Instrument (YSI) blood glucose an- 230

alyzers and blood glucose meters. Clinical evaluation criteria, 231

such as the Clarke error grid analysis (EGA) [21], assess the 232

clinical accuracy of the glucose measurements in terms of af- 233

fecting decisions for regulating blood glucose levels. The EGA 234

provides the scatter plot of a reference glucose meter and the 235

glucose meter under evaluation, broken down into five zones 236

(A–E) representing different levels of hazard. The clinically 237

accepted zones are considered to be zones A and B. 238

The latest technological advances are focused on less invasive 239

techniques (e.g., microneedles), noninvasive techniques based 240

on optical methods (e.g., kromoscopy, Raman Spectroscopy, 241

NIR Spectroscopy, and Photoacoustic Spectroscopy) and trans- 242

dermal methods (e.g., reverse iontophoresis and sonophoresis) 243

[22]. GlucoTrack by Integrity Applications utilizes an ear clip 244

and measures glucose levels using ultrasonic, electromagnetic, 245

and thermal technologies [23]. Abbott developed Freestyle Li- 246

bre that can take glucose readings as many times a day as needed 247

through a patch worn on the back of the upper arm and does not 248

require finger-prick calibration [24]. MediWise’s Glucowise is 249

a pain free glucose sensor that squeezes the skin between the 250

thumb and the forefinger and displays the reading in real time 251

on the screen [25]. Symphony by Echo Therapeutics uses a 252

transdermal sensor and a wireless transceiver in order to display 253

real-time glucose data [26]. CNoga Medical has developed a 254

device that uses skin color to diagnose high blood pressure and 255

measure glucose levels without the need to puncture the skin 256

[27]. Quick LLC introduced the iQuicklt Saliva Analyzer that 257

can measure glucose levels and transfer the results wirelessly us- 258

ing saliva samples [28]. Google has announced the development 259

of smart contact lenses able to constantly measure glucose lev- 260

els in tears, a release date has not yet been announced [29]. The 261

evolution over time of technologies applied for the development 262

of sensors and devices for glucose monitoring is shown in Fig. 1. 263
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Fig. 1. Evolution of devices for glucose monitoring.

Other approaches are directed to the implementation of fully264

implantable glucose sensors that are completely unobtrusive265

to the patient’s daily life and can be implanted in the human266

body with a brief outpatient procedure. The majority of these267

approaches are based on the use of the glucose oxidase enzyme268

in order to calculate the glucose concentration. An important269

barrier in this technology is the decreased sensitivity of the270

sensors due to the degradation of the enzyme. To address this271

problem, a second enzyme has been added to eliminate one of the272

toxic byproducts of the reaction. Most preclinical results have273

shown a lifetime of about 10–12 months. Preclinical studies274

with the GlySens’ fully implantable sensor, an oxygen-based275

sensor with a dual-enzyme electrode technology, have shown276

accurate readings for a period up to 18 months. The system277

developed by Sensors for Medicine and Science, Inc., consists of278

a miniaturized sensor implanted into the subcutaneous space in279

the wrist and operates on induced fluorescence changes. A very280

important attribute of this device is that neither the indicator nor281

the analyte are consumed. The fluorescent indicator molecule282

and the analyte interact directly and reversibly. A human pilot283

study showed 77.6% in the A zone and 19.2% in the B zone of284

the EGA [21].285

The CGMS are usually integrated with insulin infusion286

pumps. The latest technology insulin pumps come with the bo-287

lus wizard feature, which provides suggestions of the premeal288

insulin boluses taking into account the current blood glucose289

record, the carb-insulin ratio and other information such as in-290

sulin sensitivity [20].291

Lifestyle behavior especially in terms of diet and physical ac-292

tivity strongly affects the glucose metabolism. On-body sensors293

such as pedometers (measure footsteps), accelerometers (mea-294

sure acceleration along a given axis), and heart rate monitors295

are used to detect and quantify physical activity. These devices296

can compute indirectly the energy expenditure based on their297

records (number of steps, movements, heart rate) and their ac-298

curacy depends on the kind of the activity and the sensor type.299

Moreover, devices such as Garmin Vivofit 2, Jawbone Up 24,300

Fitbit Flex, Basis Peak, BodyMedia LINK Armband, and With-301

ings Pulse O2 incorporate multiple sensors [30]–[35], which are302

worn on the arm and are able to track steps, movement, sleep,303

and calories burned. Misfit’s Shine, on the other hand, can be304

Fig. 2. Upper panel: Progress from healthy state to prediabetic state and
T2DM. Types of models that apply in each state. Lower panel: Types of models
for the management of T1DM.

worn anywhere on the body as it features a magnetic grip that 305

can be attached on the clothes [36] and detect movement of body 306

parts other than the arm. 307

III. CDSS FOR DIABETES MANAGEMENT 308

The onset and progress of DM are strongly affected by a 309

multitude of data including lifestyle, clinical, molecular, and 310

genetic data. Various modeling approaches along with different 311

combinations of data acquired from heterogeneous sources can 312

be used to provide clinically meaningful output. Taking into 313

account that the onset of T2DM can be delayed or even prevented 314

by applying effective lifestyle changes, risk prediction models 315

for the incidence of T2DM can raise awareness in individuals 316

at high risk. Models for the early diagnosis of T2DM are also 317

of paramount importance since usually there is a large delay 318

between the onset and the diagnosis of the disease. Prevention 319

in T1DM is not feasible but glucose prediction models and 320

closed-loop glucose controllers can be used to achieve optimal 321

glycemic control and improve the participation of the patient in 322

the care process. Risk prediction models for the incidence of 323

long-term diabetes complications enable patients’ stratification, 324

thus provoking personalized treatment. Fig. 2 shows the various 325

types of models that apply to healthy, prediabetic, and T2DM 326

state. Models applied to T1DM management are also shown. 327
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Fig. 3. Overview of the DM data management flow.

Heterogeneous data sources may be used to provide input328

to the aforementioned models and controllers (see Fig. 3).329

The input space consists of data related to the patient’s EHR,330

lifestyle, glucose records, and molecular profile (e.g., genetic331

and omics data). Lifestyle data usually include subjective dietary332

and smoking information reported by the patient, while physical333

activity is either recorded by a sensor or subjectively reported by334

the patient. Daily glucose profiles are recorded through CGMS335

or measured by finger sticks. Genetic data include a set of genes336

related with the onset of T2DM [4], [37], [38]. An overview of337

the input data and the methodologies used toward the develop-338

ment of the aforementioned models and controllers, is presented339

in Fig. 3 and discussed in the following sections in more detail.340

A. Models for T2DM Risk Prediction and Early Diagnosis341

Primary prevention of T2DM aims at preventing the onset342

of the disease via reducing the risk of an individual to develop343

T2DM, while secondary prevention focuses on the early detec-344

tion of the disease and optimization of diabetes treatment plan345

in order to control disease progression. Traditionally, the diag-346

nosis of T2DM and prediabetes relies on clinical tests such as347

the glycosylated hemoglobin test, fasting plasma glucose test,348

and oral glucose tolerance test [39]. However, due to the asymp-349

tomatic nature of the disease in its early stages, there is a large350

delay between the onset and the diagnosis of T2DM (more than351

ten years), which usually occurs after the incidence of compli-352

cations [40]. This poses a great need to develop computational353

tools and services with the ability to estimate the risk of the onset354

and to early detect T2DM by applying multifactorial analysis.355

Within this context, several attempts have focused on the de-356

velopment and the evaluation of risk prediction models [41].357

The most commonly identified risk predictors, which have been 358

found as strongly correlated with the onset of T2DM and pro- 359

vide input to this type of models, are: age, family history of 360

diabetes, body mass index, hypertension, waist circumference, 361

sex, ethnicity, fasting glucose level, glycosylated hemoglobin, 362

lipids, uric acid, or γ-glutamyltransferases, smoking status, and 363

physical activity [41], [48]. Logistic regression [49], Cox pro- 364

portional hazards model [50], recursive partitioning [51], and 365

Weibull parametric survival model [52] are the most commonly 366

used methodologies for building these models. The predic- 367

tion horizon varies from 5 to 15 years, while the reported c- 368

statistics range from approximately 71–86%, with the latter be- 369

ing achieved by applying the full Framingham seven-year risk 370

calculator, which is based on regression models [53]. 371

Since daily activity and health behavior are important fac- 372

tors to predict the development of T2DM, inclusion of such 373

information acquired from a variety of sensors can improve the 374

performance of T2DM risk prediction models. Temporal asso- 375

ciation rule mining is a new powerful methodology, which can 376

generate predictive rule-based models using the patient trajec- 377

tories created from applying the association rule mining (ARM) 378

[54]–[56]. In the prediction of T2DM-related symptoms, a rule 379

indicates that, if a set of observed health-related events X has 380

occurred in the past Tx time period, then another set of T2DM 381

or indicators Y has a possibility p to occur in the following Ty 382

time span. 383

Moreover, taking into account that T2DM has genetic predis- 384

position, genotype risk scores, which are presented in Section 385

IV, can provide powerful tools toward T2DM risk prediction. 386

In the area of models aiming at early diagnosis of T2DM, 387

the Finnish Diabetes Risk Score [57] has gained wide accep- 388

tance. However, this method is sensitive to human errors since 389
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TABLE II
CLASSIFICATION PERFORMANCE OF AI-BASED MODELS

FOR T2DM DIAGNOSIS [42]

Model Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Reference

Modified FNN 80.07 84.38 74.00 [43]
Adaptive neurofuzzy
inference system

98.14 98.58 96.97 [44]

SVM 94.00 94.00 93.00 [45]
Linear discriminant
analysis and adaptive
network-based fuzzy
inference system

84.61 85.18 83.33 [46]

Multilayer FNN 91.53 91.19 92.42 [47]
ME 97.93 98.01 97.73 [47]
MME 99.17 99.43 98.48 [47]

it requires human intervention in deciding criteria and score.390

In order to overcome this problem, several attempts have been391

reported focusing on the application of statistic pattern recog-392

nition analysis and machine learning. Age, gender, body mass393

index, waist-to-hip ratio, waist circumference, random blood394

sugar test results, fasting blood sugar test results, postplasma395

blood, sugar tests, race/ethnicity, occupation, blood pressure396

medication, cholesterol medication, gestational diabetes, high397

blood pressure, high cholesterol, parental history of diabetes,398

and exercise, have been identified as risk factors for the inci-399

dence of T2DM [40], and subsets of these constitute the input400

space to various models. Recent efforts based on artificial intel-401

ligence (AI) have produced promising results.402

In particular, clustering techniques that make use of k-means,403

mixture-of-Gaussians, self-organizing maps (SOM) and neural404

gas (NG) have been applied for the diagnosis of T2DM, while405

support vector machines (SVM) and several types of neural net-406

works (NNs), such as multilayer, back-propagated, radial basis407

function (RBF), general regression NNs, and neurofuzzy infer-408

ence systems have been used for classifying subjects in diabetics409

and nondiabetics [40]. Moreover, methods based on mixture of410

experts (ME), which combine the outputs of several classifiers411

for the calculation of the final decision, have been proposed in412

order to enhance the performance achieved by a single classifier.413

Modified ME (MME), which incorporate an assembly of expert414

networks and a gate-ban, have proven to further increase the415

classification performance [40]. Table II summarizes the clas-416

sification performance of each of the aforementioned AI-based417

models.418

B. Risk Engines for Long-Term T1DM and T2DM419

Complications420

Severe long-term mortality-related complications of DM such421

as CVD, retinopathy, kidney disease, and neuropathy can be422

delayed or even prevented by early initiation of appropriate423

treatment. Risk score calculators have great potential to provide424

valuable support in clinical decision making by facilitating pa-425

tients’ stratification. Diabetes risk engines are fed with medical426

history data, clinical measurements, and environmental data and427

provide the probability of a patient to develop specific long-term428

diabetes complications. CVD and diabetic retinopathy constitute429

the most commonly target complications. Typical examples of 430

risk engines for diabetes complications include the United King- 431

dom Prospective Diabetes Study (UKPDS) Risk Engine [7], the 432

CDC/RTI Diabetes Cost Effective Model [8] and the Global Di- 433

abetes Model (GDM) [9]. The most widely used diabetes risk 434

engines are those whose development is based on data collected 435

within the framework of large clinical trials with minimum dura- 436

tion of 5 years, such as the Diabetes Control and Complications 437

Trial (DCCT) [68], the Epidemiology of Diabetes Interventions 438

and Complications (EDIC) study [69], the QRisk study [62], 439

the UKPDS study [7], and the EuroDiab study [70]. Table III 440

summarizes available risk engines, along with adopted method- 441

ologies and datasets used for their development, as well as the 442

specific patient target group and complications. The diabetes 443

complications risk prediction models are usually based on sur- 444

vival analysis, regression equations and Markov modeling [71]. 445

A different methodological framework, which is based on AI 446

techniques, has been utilized in [67] toward personalized risk 447

prediction of diabetic retinopathy development in patients with 448

T1DM. In particular, an FNN, a Classification and Regression 449

Tree (CART), and a wavelet NN have been comparatively as- 450

sessed using data from the medical records of 55 T1DM patients. 451

The performance achieved by each model has been evaluated 452

in terms of sensitivity , False Positive Rate (FPR), accuracy, 453

specificity, Positive Predictive Value (PPV), Negative Predictive 454

Value (NPV), and False Discovery Rate (FDR) (see Fig. 4).The 455

increased discriminative ability of the wavelet NN along with 456

its superiority over the FNN and CART, which are less parame- 457

terized, justifies the need to investigate the application of more 458

sophisticated techniques in order to obtain reliable risk scores. 459

C. Glucose Prediction Models for Patients With T1DM 460

Glucose metabolism in T1DM patients is strongly affected 461

by several exogenous and endogenous factors. In particular, en- 462

vironmental factors such as nutrition, physical activity, patient’s 463

psychological status, and overall lifestyle along with endoge- 464

nous processes, such as circadian rhythms, play a crucial role in 465

glucose metabolism. Furthermore, intra- and interpatient vari- 466

ability in response to therapy, makes the regulation of glucose 467

levels a very challenging task. Computational models able to 468

produce accurate and reliable estimations of future glucose pro- 469

file in response to various stimuli can provide valuable tools 470

within the context of achieving tight glycemic control. Predicted 471

glucose profile is mainly used for producing early warnings of 472

the upcoming hypoglycemic/hyperglycemic episodes or for ad- 473

justing insulin injections and insulin infusion rate in insulin- 474

treated patients. Several efforts have been reported toward the 475

development of glucose prediction models, which are usually 476

based on either compartmental models (CMs) or data-driven 477

approaches. CMs represent fundamental glucoregulatory pro- 478

cesses, taking advantage of the knowledge of the physiological 479

paths involved in the human metabolic process [72]. However, 480

their acceptance has been limited because they take into account 481

only a confined number of factors affecting glucose metabolism, 482

while the identification of their parameters requires clinical mea- 483

surements, which are not typically available in clinical settings. 484
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TABLE III
RISK PREDICTION MODELS FOR LONG-TERM DIABETES COMPLICATIONS [58]

Risk Assessment Model Data from
Reference Study

Number of Patients and
Type of Diabetes

Target Complications Reference

Cox regression model DCCT/EDIC 1441 T1DM patients CVD [59]
Cox regression model DCCT/EDIC 1441 T1DM patients Atherosclerotic occlusion in

peripheral vascular disease
[60]

Tobit survival regression model DCCT/EDIC 1441 T1DM patients CAC [61]
Cox proportional hazard model
and fractional polynomials

QRisk 1280000 T2DM patients CVD [62]

Multivariate logistic regression UKPDS 5102 T2DM patients Fatal and nonfatal MI and stroke [63]
Survival analysis UKPDS 5.102 T2DM patients Stroke [64]
Weibull proportional hazard
regression model

UKPDS 5102 T2DM patients Death, MI, stroke, heart failure,
amputation, renal failure, diabetic

eye disease

[65]

Markov modeling UKPDS 5102 T2DM patients Nephropathy, neuropathy,
retinopathy, CHD, and stroke

[8]

Logistic regression EuroDiab 1115 T1DM patients Microalbuminuria [66]
CART, FNN, wavelet NN EuroDiab 55 T1DM patients Retinopathy [67]

Fig. 4 Performance evaluation of the FNN, CART, and wavelet NN-based
risk prediction models for the incidence of diabetic retinopathy [67].

Moreover, the lack of personalization capabilities constitutes a485

major drawback [58].486

In order to overcome the aforementioned limitations, the use487

of data-driven techniques that apply pattern recognition meth-488

ods to capture the metabolic behavior of a patient with T1DM489

has been proposed. Several glucose prediction models have490

been developed based on Volterra series models, time-series491

analysis, and machine learning. Particularly, the application of492

Volterra models for the simulation of glucose–insulin dynam-493

ics has demonstrated good performance in the absence of noise494

[73], [74]. Moreover, Autoregressive (ARX) and Box–Jenkins495

models of various orders, identified based on data generated496

from a simulated physiological model, have achieved good pre-497

diction performance [75]. In addition, the potential of utilizing498

ARX models with time-varying parameters has been investi-499

gated [76]. Several types of Artificial NNs such as MLP [77],500

RNN [78], RBF [79], Wavelet NNs [80], and neurofuzzy tech-501

niques [81] have been successfully applied for the simulation502

of glucose metabolism. Furthermore, hybrid glucose prediction
Q1

503

models based on the combined use of CM and data driven ap-504

proaches such as RNN [78], support vector regression (SVR)505

[82], and SOM [83] have produced promising results. Table IV506

summarizes glucose prediction models of the literature, based507

on AI and autoregressive methods along with their input space,508

and reported accuracy. CGMS data, blood glucose readings,509

insulin dosages, and lifestyle data in terms of ingested carbo- 510

hydrates, physical activity and stress, are the most commonly 511

usedinput factors. 512

Although a direct and fair comparison of models’ predic- 513

tive performance is not possible due to the different testing 514

dataset, input space, and evaluation methodology used, several 515

important conclusions can be drawn. In particular, as it is ex- 516

pected, the application of a more informative input space results 517

in better predictive performance. In addition, as the prediction 518

horizon (PH) increases, the models’ predictive performance de- 519

teriorates. Moreover, the use of hybrid models for the simulation 520

of glucose–insulin metabolism has achieved the lowest RMSE 521

values justifying, thus, their superiority over other approaches. 522

When only CGMS data are used to feed the models (shown in 523

bold in Table IV), AI-based models achieve higher performance 524

than autoregressive models (RMSE equal to 12.29 mg/dL- 525

achieved by SOM- against 18.78 mg/dL), demonstrating thus, 526

the need of applying more sophisticated techniques in order to 527

capture the metabolic behavior of a patient with T1DM. 528

D. Closed-Loop Glucose Controllers 529

Closing the loop between a CGMS and an insulin infusion 530

pump through reliable, accurate, and effective glucose control 531

algorithms, has become one of the most important research 532

challenges in T1DM management. The problem of maintain- 533

ing blood glucose levels within an acceptable range is particu- 534

larly complex in patients with T1DM, since various exogenous 535

parameters strongly affect the glucose metabolism, while the 536

ever-changing and unpredictable nature of glucose metabolism 537

leads to intra- and interpatient variability. Therefore, the glucose 538

controller should be able to provide personalized and adaptive 539

treatment recommendations. The majority of approaches ap- 540

plied toward the development of glucose controllers [6] are 541

based on either proportional integral derivative (PID) control 542

[84], [85] or model predictive control (MPC) [86]–[96]. MPC- 543

based glucose controllers have gained wider acceptance due to 544

the MPC’s ability to handle 1) high nonlinearities in glucose– 545

insulin metabolism, caused by saturation and inhibition effects 546
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TABLE IV
GLUCOSE PREDICTION MODELS BASED ON AI AND AUTOREGRESSIVE MODELS WITH TIME VARYING PARAMETERS [97]

Model Input Space No. of T1DM Patients
(Monitoring Period)

Evaluation Results

Multilayer FNN [77] CGMS data, blood glucose readings, insulin dosage,
carbohydrate intake, hyperglycemic and hypoglycemic
symptoms, lifestyle (activities and events), emotional

states

18 (3–9 days) PH (min)/ MAD (%): 50/6.7, 120/14.5, 180/18.9

FNN with two hidden layers
[98]

CGMS data 9 (12 days) 6 (2 days) PH (min)/RMSE(mg/dl): 15/10, 30/18,45/27

RBF NN [79] Blood glucose readings, insulin dosage, food intake,
stress, level of exercise

1 (77 days) Interval/RMSE (mg/dl): morning/1.49, afternoon/0.92,
evening/0.67, night/0.21

Wavelet NN [80] Blood glucose readings, insulin dosage, food intake,
stress, level of exercise

1 (77 days) Interval / RMSE (mg/dl): morning/0.81 afternoon/0.63,
evening/0.60, night/0.30

Neurofuzzy (applying
wavelets as activation
functions) [81]

CGMS data, physical activity data from sensor 6 (7–15 days) PH (min)/ RMSE (mg/dl): 15/14.42, 30/20.20,
45/24.79, 60/28.49

SOM [83] CGMS data, physical activity data from sensor 10 (6 days) PH (min)/ RMSE(mg/dl):30/11.42, 60/19.58 120/31.00
SOM [83] CGMS data 10 (6 days) PH (min)/ RMSE(mg/dl): 30/12.29, 60/21.06 120/33.68
SVR [82] CGMS data 15 (5–22 days) PH (min)/ RMSE(mg/dl):30/15.29, 60/24.19, 120/33.04
Hybrid model based on the
combined use of CMs and
RNN [78]

CGMS data, insulin infusion rates, carbohydrates
ingested

9 (10 days) PH (min)/ RMSE (mg/dl): 30/18.34

Hybrid model based on the
combined use of CMs and
SVR [82]

CGMS data, insulin dosages, carbohydrates ingested,
physical activity data from sensor, time

15 (5–22 days) PH (min)/ RMSE (mg/dl): 15/5.21, 30/6.03, 60/7.14,
120/7.62

Hybrid model based on the
combined use of CMs and
SOM [83]

CGMS data, insulin infusion rates, carbohydrates
ingested

12 (10 days) PH (min)/ RMSE (mg/dl): 30/14.10, 60/23.19

Autoregressive models with
time varying parameters [76]

CGMS data 28 (2 days) PH (min)/ RMSE (mg/dl): 30/18.78

evidenced by chemical substrates and hormones involved in en-547

zyme dynamics and hormonal control effects, 2) time delays548

in subcutaneous–subcutaneous (sc-sc) route due to the delayed549

effect of infused subcutaneous insulin and the glucose diffusion550

from the blood to the subcutaneous space, and 3) inaccura-551

cies in subcutaneous glucose measurements. MPC incorporates552

glucose prediction models, described in Section III-C, which553

produce estimations of the future glucose profile. The estimated554

glucose profile is compared with the desired one and the ob-555

tained deviations are inserted into a cost function in order for556

the latter to be minimized toward producing advice on insulin557

infusion rates. The efficiency of the MPC controllers is strongly558

dependent upon the used glucose prediction model, the cost559

function and its tuning. Several attempts have been made to-560

ward the development of glucose controllers based on nonlinear561

model-predictive control (NMPC), and the effectiveness of the562

NMPC over the linear MPC has been studied and justified [92],563

[96], [98]. Moreover, the mathematical formulation of the cost564

function is of particular importance. Traditionally the cost func-565

tion includes the sum of the squared differences of the glucose566

predictions from the desired glucose values and of the estimated567

insulin changes568

J = Γe

Np∑

i=1

(y(t + i) − r)2 + Γu

Nc∑

j=0

∆u2(t + j) (4)

where y and r represent the estimated and the desired glucose569

values, respectively, while u is the insulin infusion rate, Np is570

the prediction horizon, Nc is the control horizon, and Γe and Γu571

are the prediction and control weighting coefficients, re-572

spectively. However, taking into account that the goal of a573

closed-loop glucose controller is to maintain glucose levels 574

within an acceptable range, the addition of appropriate terms 575

penalizing the cost function whenever future glucose predic- 576

tions are outside a predefined range [98], [99], can improve 577

control performance. Another important issue toward the im- 578

plementation of MPC is its tuning. A set of parameters in the 579

cost function influence the controller’s performance and stabil- 580

ity and their values are usually adjusted either via trial and error 581

procedures or by following general tuning guidelines [72]. How- 582

ever, trial and error is a rather cumbersome task while systematic 583

approaches cannot be implemented online because the glucose 584

metabolism is subject to severe disturbances and changing op- 585

erating conditions. In order to overcome this problem, online 586

tuning has been proposed [98]. 587

An exemplar adaptive glucose control algorithm (Insulin In- 588

fusion Advisory System—IIAS) addressing the aforementioned 589

issues is presented in [98]. The system is able to adapt over 590

time through continuously updating the parameters of both the 591

glucose–insulin metabolism model and the cost function. In par- 592

ticular, the IIAS incorporates a hybrid personalized glucose– 593

insulin metabolism model, which is based on the combined 594

use of CMs for the simulation of glucose absorption from the 595

gut and the subcutaneous insulin kinetics, respectively, and an 596

RNN for the simulation of glucose kinetics. The ability of 597

the RNN to be trained on line provides high personalization 598

and adaptation capabilities. Moreover, online tuning of the cost 599

function’s parameters—prediction horizon (Np ), control hori- 600

zon (Nc ), and control weighting coefficient (Γ-u )—is achieved 601

through a fuzzy-based logic strategy. The IIAS has been 602

in silico evaluated using the UVa T1DM simulator [100] and its 603

performance has been compared against both the adaptive basal 604
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TABLE V
COMPARISON OF A GLUCOSE CONTROLLER (IIAS) BASED ON NONLINEAR
MODEL-PREDICTIVE CONTROL WITH THE ADAPTIVE BASAL THERAPY [42]

Controller Hypoglycemia
Percentage

Hyperglycemia
Percentage

Safe Percentage Risk Index

IIAS 0.00 ± 0.00 0.60 ± 1.52 99.40 ± 1.52 0.99 ± 0.43
Adaptive Basal
Therapy

0.50 ± 0.01 1.3 ± 0.03 98.20 ± 0.03 1.7 ± 0.59

TABLE VI
COMPARISON OF A GLUCOSE CONTROLLER (IIAS) BASED ON NONLINEAR

MODEL-PREDICTIVE CONTROL WITH THE ARTIFICIAL PANCREATIC
B-CELL [42]

Controller Average Glucose
Value

Percentage of
Hyperglycemic Episodes

IIAS 117.61 ± 7.11 0.81 ± 2.05
Zone-MPC (bounds:
80–140 mg/dl) (Experiment 5 in
study [99])

152.00 ± 28.00 27.99 ± 20.51

Zone-MPC (bounds:
100–120 mg/dl) (Experiment 6 in
study [99])

141.00 ± 29.00 20.75 ± 19.45

MPC (set-point 110 mg/dl)
(Experiment 7 in study [99])

136.00 ± 29.00 17.54 ± 18.58

therapy presented in [41] and the artificial pancreatic b-cell,605

which is based on zone-MPC and is adjusted automatically by606

linear difference personalized models [99]. The obtained results607

are presented in Tables V and VI. The IIAS has achieved the608

lowest risk associated with extreme glucose deviations (Risk609

Index) in the former case and the lowest percentage of glucose610

excursions in both cases. The superiority of the IIAS over the611

adaptive basal therapy and the linear MPC justifies the need of612

applying more sophisticated control strategies to regulate glu-613

cose levels in T1DM.614

Several clinical studies have been conducted in recent years,615

in order to test and compare the performance of closed-loop616

glucose controllers against conventional therapies [101]–[105].617

Overnight closed-loop experiments using different MPC con-618

trollers have demonstrated the superiority of the closed-loop619

control over the conventional pump treatment [101], [104].620

Similar conclusions have been drawn from closed-loop clinical621

studies lasting more than 24 hours [101], [107].622

Recent technological advances have led to the development623

of systems supporting outpatient clinical trials over extended624

time periods in order to evaluate the performance of closed-loop625

glucose controllers under free living conditions. The Diabetes626

Assistant (DiAs), an experimental smartphone-based mobile627

system, is the first portable platform facilitating outpatient clin-628

ical trials [108]. In the same context, a three-layer modular629

architecture for closed-loop control of T1DM has been devel-630

oped, consisting of a sensor/pump interface module, a continu-631

ous safety module, and a real-time control module [109].632

Although great progress has been made toward the develop-633

ment of safe and accurate automated insulin delivery systems,634

the risk of hypoglycemia caused by overestimated insulin in-635

fusion rates is not completely eliminated. In order to prevent636

and treat hypoglycemia, latest research directions focus on 637

the administration of both insulin and glucagon, the insulin- 638

counteracting hormone. The feasibility of achieving safe and 639

good glycemic control by applying bihormonal closed-loop glu- 640

cose controllers has been investigated [106], and their superi- 641

ority over insulin-only controllers has been proven [110]. The 642

most common approach combines MPC for the estimation of 643

insulin infusion rates in order to handle the time lags and de- 644

lays imposed from the subcutaneous insulin delivery, and PID 645

control for the calculation of glucagon infusion rates, since the 646

subcutaneous glucagon absorption is rapid [106]. 647

Although significant efforts have been reported toward the 648

development of closed-loop glucose controllers, there are still 649

severe limitations in terms of reliability, safety, and accuracy 650

[111]. Considering the short duration (up to one week) of the 651

inpatient and outpatient clinical trials along with the fact that 652

closed-loop glucose controllers are intended for chronic use, 653

there is a lack of clinical evidence for proving their effective- 654

ness and safety. Moreover, the occasional inaccuracies in glu- 655

cose records from the CGMS and the delays caused from the 656

subcutaneous insulin administration makes the estimation of 657

optimal insulin infusion rates a challenging task. Although the 658

usage of more than one glucose sensors has been proposed, 659

improvement of the existing or development of novel control 660

strategies with various levels of safety is needed in order to 661

enhance robustness. Bihormonal closed-loop systems seem to 662

be very promising in achieving optimal glycemic control [106]. 663

However, more stable glucagon preparations are needed in or- 664

der for the glucagon to remain in a wearable pump for at least 665

3–7 days, and therefore, to enable long-lasting clinical trials for 666

obtaining reliable evaluation results. 667

IV. TOWARD T2DM PREDICTIVE MODELING USING 668

MOLECULAR DATA 669

Although clinical data encompass phenotypic information, 670

insulin secretion and resistance actually involve with multiscale 671

biological processes affected by gene, protein, and metabolite 672

factors [5], [112], [113]. A patient’s comprehensive biological 673

state can be inferred by combining several omic data types, in- 674

cluding genomic, transcriptomic, epigenomic, proteomic, and 675

metabolomic. The omic profile is useful for investigating or 676

predicting the underlying interactions, associations, and mecha- 677

nisms in acquired samples. Recent advances in high-throughput 678

technologies such as microarrays, NGS, and mass spectrome- 679

try have enabled the identification of molecular biomarkers for 680

T2DM. For example, the population-level genome-wide asso- 681

ciation study (GWAS) [4] helps discover novel genetic variants 682

associated with T2DM that can be incorporated into T2DM risk 683

prediction models. To be more specific, GWAS has identified 684

putative causal genes for T2DM such as CDKAL1, CDKN2A, 685

IGF2BP2, and MTNR1B, each of which corresponds to 15– 686

20% increase in the T2DM risk. Because a tremendous amount 687

of GWAS data has become publicly available, several stud- 688

ies have focused on the metaanalysis of these data and have 689

resulted in the identification of 59 genetic loci that are associ- 690

ated with T2DM susceptibility [37], [38]. Moreover, multiple 691
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Fig. 5. Molecular biomarkers for prediabetes and T2DM.

single nucleotide polymorphisms (SNPs) on CAPN10 have been692

found to collectively increase the risk of T2DM by 2.8 folds693

[114], while SNP on DACH1 gene is associated with famil-694

ial young-onset diabetes, prediabetes, and CVD in the Chinese695

population [115]. Gene-expression patterns may also assist in696

predicting prediabetic states or uncovering underlying biologi-697

cal mechanisms of T2DM. Transcript expression levels among698

patients with T2DM, subjects with impaired glucose tolerance,699

and subjects with normal glucose tolerance have been studied.700

The authors have reported that TNF-alpha, TXNIP, and SOCS-701

3 genes are accurate indicators for various clinical conditions702

[116]. Furthermore, expression profiles of microRNA and their703

effects on regulating insulin sensitivity have been widely exam-704

ined in recent years [117], [118].705

Other than genetic factors, the environmental modification of706

DNA sequences (e.g., DNA methylation and histone modifica-707

tion) substantially contributes to the risk of T2DM. Epigenetic708

mechanisms such as chromatin remodeling and oxidative stress,709

epigenetic regulation of gene expression, and histone modifica-710

tion in vascular epithelium exposed to hyperglycemia are related711

to T2DM [119], [120]. More specifically, the epigenetic regu-712

lation of the DLK1-MEG3 microRNA cluster by DNA methy-713

lation is associated with Type 2 diabetic islets [121]. Scaling714

up the biological scales, protein and metabolite markers, caused715

by genomic and transcriptomic variations, represent disease sta-716

tus with more directness and immediacy [122], [123]. Protein717

markers such as specific cytokines and chemokines are predic-718

tive for T2DM since inflammatory response is significant in the719

disease [124]. Five classes of protein markers in T2DM have720

been identified: hormones (e.g., amylin), protease inhibitors721

(e.g., cystatin), secretory vesicle proteins (e.g., chromogranin),722

cell adhesion (e.g., protocadherin), and secreted enzymes723

(e.g., phospholipase) [125]. Compared to other omic technolo-724

gies, metabolomics is an emerging due to the complexity of725

the biochemical targets [122], which is caused by the vari-726

ety of biological sample types being examined, the number727

of metabolites, and the large magnitude of variation in metabo-728

lite concentrations. Alterations in fatty acid, tryptophan, and729

lysophosphatidylcholine metabolism and in other metabolic730

pathways may constitute a metabolic signature for T2DM [126]–731

[128]. In Fig. 5, the aforementioned molecular biomarkers as-732

sociated with prediabetes and T2DM are summarized under the733

corresponding omic category.734

To take advantage of emerging genomic knowledge and to735

translate it into clinically useful tools/services, genotype scores736

have been developed with the ability to assess the risk of T2DM 737

incidence taking into account these genetic variations [129]. 738

Within this context, several prospective cohort studies have been 739

conducted aiming at assessing the impact of introducing the ge- 740

netic profile into the T2DM risk prediction models. In particular, 741

in these studies, the models have been fed with different input 742

space consisting of, either only the genetic factors, or only the 743

conventional risk factors or both, and their predictive perfor- 744

mance has been comparatively assessed. The models’ discrimi- 745

native ability has been evaluated in terms of the area under the 746

receiver operating characteristic curve (AUC), which is created 747

by plotting the true positive rate against the false positive rate 748

at various threshold settings. In the case of the genetic input 749

space, the AUC ranges from 55% to 68% with a median of 60% 750

achieving lower performance than that achieved by applying 751

only conventional risk factors (AUC range: 63%–90%, median: 752

78%) [129]. The highest performance has been achieved by tak- 753

ing into account both genetic and conventional risk factors (AUC 754

range: 63%–91%, median: 79%). The inclusion of the genetic 755

profile into the models’ input space has resulted in slight im- 756

provement in their predictive performance, irrespectively of the 757

study design, participants’ race/ethnicity and number of genetic 758

markers included. Although in theory, it could be speculated that 759

the genetic profile can be useful in the case of the youngest pop- 760

ulation, because the phenotypic symptoms have not occurred, 761

yet, there are no studies to justify this notion. The most impor- 762

tant reason for not obtaining a significantly higher predictive 763

performance by taking into account the genetic variants is the 764

limited number of the identified genetic markers with the ma- 765

jority of them not strongly correlated with T2DM (odds ratios 766

of heterozygous genotypes are less than 1.15) [129]. In order to 767

achieve AUC up to 80% and even higher, based on the genetic 768

profile, 400 genetic variants with minor allele frequencies of 769

10% and odds ratios of the heterozygous genotypes for each 770

variant greater than 1.25 are needed [129], [130]. 771

V. FUTURE RESEARCH DIRECTIONS AND CHALLENGES 772

Although great progress has been made in the recent years 773

toward the development of the CDSS for diabetes management, 774

these systems have not yet been fully adopted in the clinical 775

practice. This is mainly due to the biased data analysis and the 776

lack of reliable and comprehensive evaluation studies, since the 777

criteria for selecting patients and controls and the approaches for 778

the treatment of controls vary greatly among published studies 779

[131]. Moreover, although it is widely known that CDSS have 780

great potential to provide with cost-effective solutions, substan- 781

tial economic analysis for proving this has not been conducted. 782

Apart from the need for a systematic evaluation framework, 783

current research challenges focus on the development of new 784

CGMS and sensor networks able to monitor in an unobtrusive 785

and seamless manner a wide range of physiological and lifestyle 786

related parameters. Advanced data analytics and modeling ap- 787

proaches are needed to extract clinically meaningful knowledge 788

from the multitude of collected raw data. User-centered ap- 789

proaches, taking advantage of the sensor networks and the per- 790

sonalized CDSS, can significantly contribute in reshaping and 791

improving the clinical workflow for the management of DM. 792
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A. Unobtrusive Sensing793

The key challenges for the development of next-generation794

CGMS refer to decreasing the operational cost, reducing the795

number of calibrations and warm up periods, and improving ac-796

curacy. Furthermore, the current trends point to the development797

of noninvasive techniques for accurate glucose monitoring. Al-798

though considerable efforts have been made in this direction,799

there are still issues related to precision, robustness, stability,800

long response time for glucose determination, which require801

considerable improvements [20].802

Moreover, the development of sensors for automatically de-803

tecting meal consumption constitutes a major challenge in di-804

etary monitoring. Within this context, the usage of wearable805

body sensors, for detecting intake gestures (e.g., intentional arm806

movements to bring food into mouth), chewing sounds during807

food intake, and swallowing have been recently investigated808

[132]. Intake gestures can be detected by inertial sensors inte-809

grated into clothing [133], chewing sounds can be recorded by810

ear microphones [134], and swallowing can be assessed using811

Electromyography at the hyoid or a textile capacitive sensor812

[135]. The signals from these sensors can be analyzed in order813

to recognize the time, type, and amount of a meal.814

Taking into account that the DM pathophysiology is a con-815

tinuing process, transient critical abnormalities should be early816

detected. Sensor networks able to provide with continuous phys-817

iological (e.g., glucose, blood pressure, pulse, cardiac rhythm)818

and lifestyle (e.g., diet, physical activity) monitoring data have819

great potential to detect such transitions and track the progress of820

the disease. The emerging technology of Internet of Things can821

significantly contribute toward this direction by providing global822

connectivity among sensors and devices that contain appropri-823

ate embedded technology, thus enabling seamless integration824

of more factors in clinical decision making related to diabetes825

management.826

B. Emerging Methodologies for Modeling the Onset and the827

Progress of DM828

Considering the multifactorial nature of DM, multilevel and829

multiscale modeling approaches should be applied in order to830

take into consideration all the different types of factors that831

are strongly associated with the disease onset and evolution.832

New powerful data analysis methods, such as undirected and833

directed networks, can be used to capture correlated and causal834

relationships among the variables. Undirected networks can835

represent correlations but no causal effects. For example, the836

weighted correlation network builds upon the pairwise correla-837

tion between features determining the significance of each link838

[136]. The regression-based network can use various regression839

models (e.g., linear regression, Poisson regression, and logistic840

regression) depending on the distribution of targeted response841

features [137], [138]. In directed networks, causal relationships842

may be inferred from the direction of each link. ARM-based843

and Bayesian are two examples of this kind of network. The844

Bayesian network applies Bayes rules to link features, wherein845

the occurrence of a feature depends on the occurrence of the846

other feature. The strength of each link depends on the posterior847

conditional probabilities [139], [140]. Such methods can be ap- 848

plied in order to identify novel biomarkers, which are strongly 849

related with the onset of T2DM and the evolution of T1DM and 850

T2DM. 851

An emerging methodology for discovering patterns in mul- 852

tiscale data is deep learning, which is applied for both unsu- 853

pervised and supervised analysis [141], [142]. Deep learning 854

methods are inspired by the hierarchical structure of the brain, 855

and use multiple levels of abstraction in order to identify rel- 856

evant patterns. Such methods have been, recently, applied in 857

order to predict patient phenotypes from clinical data [143] and 858

biomolecular properties [144], [145]. In the case of DM, deep 859

learning techniques can be used to search for patterns across 860

clinical and multiple types of omic data. 861

C. User Centered Approaches 862

The development of user centered approaches, through body 863

sensor networks, context awareness, and personalized model- 864

ing, can significantly contribute to empower citizens and pa- 865

tients toward the self-management of their own health and 866

disease outside institutions, improving, thus, health outcomes 867

in terms of both quality of life and health expenditures. A 868

holistic user-centered approach, supported by computer-based 869

predictive models, providing personalization capabilities and 870

integrating heterogeneous sources of data (patient, clinical, bi- 871

ological, therapeutic, behavioral, physical training and perfor- 872

mance, lifestyle and diet, environmental data, social data) has 873

great potential to raise individual awareness, promote behavioral 874

lifestyle changes, support treatment, and monitor the disease. 875

Increased emphasis should also be given on the develop- 876

ment of the CDSS in order to improve interactions between 877

patients and health professionals within the context of codeci- 878

sion making. Furthermore, the creation of ecosystems for DM 879

management, involving multiple stakeholders such as patients, 880

families, diabetologists, general practitioners, case managers, 881

who undertake activities related to the coordination of services 882

(assessment, planning, facilitation, evaluation, monitoring the 883

patient’s progress, and promoting cost-effective care) on be- 884

half of an individual patient, and health care policy makers is 885

particularly challenging. 886

VI. CONCLUSION 887

Optimal management of DM requires redesigning the current 888

system of healthcare delivery by shifting the focus from reactive 889

to proactive care. Predictive and preventive medicine for DM 890

must rely on the capacity to capitalize on information from a 891

diverse range of data (lifestyle, social, clinical, treatment, and 892

molecular) in order to early detect pathophysiological changes 893

and to better tailor intervention and treatment. Recent ad- 894

vances in sensing technologies for monitoring physiological and 895

lifestyle parameters coupled with advanced data analytics and 896

modeling approaches for the prediction, diagnosis, and manage- 897

ment of DM can play a key role. Enhanced integration of patient 898

data through the development of multiscale and multilevel phys- 899

iological models can generate new clinical knowledge and con- 900

tribute to a more effective personalized diabetes care approach. 901
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