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Abstract

Background: The COVID-19 pandemic has highlighted the need for robust and adaptable diagnostic tools capable of detecting
the disease from diverse and continuously evolving data sources. Machine learning models, particularly convolutional neural
networks, are promising in this regard. However, the dynamic nature of real-world data can lead to model drift, where the model’s
performance degrades over time, as the underlying data distribution changes due to evolving disease characteristics, demographic
shifts, and variations in recording conditions. Addressing this challenge is crucial to maintaining the accuracy and reliability of
these models in ongoing diagnostic applications.

Objective: This study aims to develop a comprehensive framework that not only monitors model drift over time but also uses
adaptation mechanisms to mitigate performance fluctuations in COVID-19 detection models trained on dynamic cough audio
data.

Methods: Two crowdsourced COVID-19 audio datasets, namely COVID-19 Sounds and Coswara, were used for development
and evaluation purposes. Each dataset was divided into 2 distinct periods, namely the development period and postdevelopment
period. A baseline convolutional neural network model was initially trained and evaluated using data (ie, coughs from COVID-19
Sounds and shallow coughs from Coswara dataset) from the development period. To detect changes in data distributions and the
model’s performance between these periods, the maximum mean discrepancy distance was used. Upon detecting significant drift,
a retraining procedure was triggered to update the baseline model. The study explored 2 model adaptation approaches, unsupervised
domain adaptation and active learning, both of which were comparatively assessed.

Results: The baseline model achieved an area under the receiver operating characteristic curve of 69.13% and a balanced
accuracy of 63.38% on the development test set of the COVID-19 Sounds dataset, while for the Coswara dataset, the corresponding
values were 66.8% and 61.64%. A decline in performance was observed when the model was evaluated on data from the
postdevelopment period, indicating the presence of model drift. The application of the unsupervised domain adaptation approach
led to performance improvement in terms of balanced accuracy by up to 22% and 24% for the COVID-19 Sounds and Coswara
datasets, respectively. The active learning approach yielded even greater improvement, corresponding to a balanced accuracy
increase of up to 30% and 60% for the 2 datasets, respectively.

Conclusions: The proposed framework successfully addresses the challenge of model drift in COVID-19 detection by enabling
continuous adaptation to evolving data distributions. This approach ensures sustained model performance over time, contributing
to the development of robust and adaptable diagnostic tools for COVID-19 and potentially other infectious diseases.
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Introduction

Background
The rapid spread of SARS-CoV-2 and its associated disease,
COVID-19, has created a pressing need for accurate and timely
diagnostic tools. Traditional diagnostic methods, such as
polymerase chain reaction tests, while reliable, often involve
invasive procedures and can be time consuming. Consequently,
there is a growing interest in developing additional diagnostic
approaches that are noninvasive, affordable, scalable, and
capable of delivering swift results [1].

Deep learning models have demonstrated exceptional
capabilities across various domains, including medical
diagnostics [2-8] and epidemiological surveillance [9]. Studies
have illuminated the potential of harnessing deep learning
techniques for analyzing diverse data sources, such as clinical
and biological biomarkers, computed tomography scan imagery,
and clinical characteristics, to predict the severity and
progression of COVID-19 [10-13]. In recent studies, the analysis
of cough sounds has shown potential as a noninvasive modality
for COVID-19 detection [14-16]. Leveraging the power of deep
learning, these models can extract crucial information from
acoustic characteristics, aiding in the early identification of
individuals who are infected.

However, in practice, the performance of deep learning models
tends to decline during deployment and shows further
deterioration over time. This phenomenon, commonly known
as model degradation, can be attributed to various factors [17].
One contributing factor is the limited representation of the
training data, which fails to capture the complexity of the
problem space adequately. Consequently, the model exhibits
unexpected behavior when confronted with input samples lying
outside the distribution of training examples [18,19]. Another
significant factor is the dynamic nature of the system’s
environment, which undergoes continuous changes over time
[18], posing challenges for a single model to maintain accurate
predictions consistently. This factor is particularly critical in
the context of COVID-19, given the rapid and unpredictable
changes due to several reasons, including the emergence of new
viral strains.

The literature refers to these 2 aforementioned factors as concept
drift, which is the phenomenon where the input data and their
relationship to the labels undergo changes over time. Numerous
attempts have been made in the past decade to precisely define
concept drift [17,20-23]. In this paper, the definition from the
study by Lu et al [22] is adopted, which states that concept drift
occurs when either the data distribution changes, the underlying
relationship between the input and output changes, or both
change.

In the context of respiratory diseases, several previous studies
have acknowledged the limitations posed by concept drift in

crowdsourced respiratory datasets, highlighting the variability
introduced by self-reported ground truth labels, the lack of
clinical validation, and the evolving symptomatology of different
variants of SARS-CoV-2 [24]. These factors contribute to
performance degradation and uncertainty in the extracted
features. In addition, dataset biases due to demographic
imbalances and variations in symptom severity further
complicate model reliability over time [25].

Researchers have recognized the importance of addressing these
challenges and have focused on learning in nonstationary
environments [26] and mitigating the impact of concept drift
[27-30]. Research studies have stressed the importance of
integrating a model degradation detector within the learning
framework [31] that assesses and tracks the system’s
performance after deployment to effectively manage the
degradation in prediction accuracy. The level of degradation in
the model performance serves as an indicator for detecting
concept drift within the system. By incorporating these detection
components, deep learning systems develop resilience against
environmental changes, thereby mitigating the performance
degradation of predictive models in this ever-changing setting.

Because the presence of concept drift between training data and
real postdevelopment data impedes the performance of deep
learning models on out-of-distribution samples [27], applying
the model on new data may necessitate adaptation. Automatic
methods have emerged to tackle these challenges; however,
collecting large-scale labeled datasets for different populations,
emerging virus variants, or new pandemics is an arduous task.
When working with limited data, it is often necessary to use
more cost-efficient deep learning methodologies, such as
unsupervised domain adaptation (UDA) and active learning
(AL).

Domain adaptation is a technique used to address the limited
generalization ability of predictive models when the training
and testing data come from different distributions [32]. The
goal is to adapt a model trained on a source domain to perform
well on a target domain. This involves minimizing the
distribution gap between the domains through learning
domain-invariant features [33,34], weighing samples based on
similarities [35], or using model-based techniques such as
domain adversarial networks [36,37]. These approaches can
improve model generalization in real-world scenarios with
varying data distributions, as they enable learning from labeled
data in the development set, which refers to the past, and
applying this knowledge to solve tasks on postdevelopment
unlabeled data.

AL, by contrast, is a machine learning approach where
informative samples from a large, unlabeled dataset are selected
and labeled iteratively to train a model. The objective is to
minimize the amount of labeled data needed while maximizing
the model’s performance [38-40]. A query strategy is selected
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to determine which unlabeled samples should be labeled.
Various strategies exist, such as uncertainty sampling [41,42]
or diversity sampling [43]. On the basis of the initially trained
model, the chosen query strategy is applied to the unlabeled
dataset, identifying the most informative samples based on the
selected criterion. These selected samples are labeled either
manually by domain experts or through an automated process.
The newly labeled samples are incorporated into the labeled
dataset, which is used for retraining the model.

Most recent studies focusing on COVID-19 detection based on
the use of audio recordings have primarily used supervised deep
learning techniques [15,16,44-50]. It is noteworthy that in most
of these studies, aspects related to the existence of concept drift
and the challenges of model generalization have not been
addressed. In the study by Han et al [16], a rather complex
model architecture has been presented with a deeper fully
connected part, enhancing performance when multiple
modalities (cough, voice, and breathing) are used but leading
to reduced accuracy when relying solely on cough recordings.
While the study by Han et al [16] acknowledges potential biases
and dataset limitations, its analysis does not explicitly consider
temporal aspects, such as how biases or drifts emerge over time
as new data are collected.

Earlier attempts to address data drift issues in the context of
respiratory diseases, including COVID-19, have primarily relied
on transfer learning techniques to mitigate performance
degradation [51,52]. However, these methods often assume that
the source and target domains share a strong underlying
similarity, which may not hold when data distributions drift
significantly, potentially leading to poor performance. In
general, the exploration of methods relying on concept drift
detection, model degradation detection, UDA, and AL has been
limited [29,53]. A few recent approaches have investigated
adversarial domain adaptation to enhance model generalizability
across datasets. For instance, in the study by Nguyen et al [37],
a domain adaptation framework for respiratory symptom
detection has been proposed, concentrating on static
cross-dataset generalization. AL has also been explored as an
efficient strategy for improving model performance while
minimizing the labeling burden, particularly in
resource-constrained scenarios such as pandemic response. In
the study by Wu et al [40], a deep AL framework has been
developed for COVID-19 diagnosis from computed tomography
scans, using a hybrid sampling strategy to optimize labeling
efforts. Thus, UDA and AL approaches appear to be highly
promising and well-suited for addressing the continuously
evolving nature of pandemics, as they enable the development
of reliable models with the potential to address even the
emergence of novel virus variants.

This Study
In this paper, a comprehensive framework is introduced for the
diagnosis of infectious diseases, focusing on COVID-19
detection from cough sounds. The framework leverages deep
learning models combined with UDA- and AL-based
methodologies to monitor and mitigate model degradation and

concept drift. The development and evaluation of the proposed
framework is demonstrated on the COVID-19 data due to their
continuously evolving epidemiological and virological
characteristics, arising from the complex interplay among the
virus, humans, vaccines, and environments. The maximum mean
discrepancy (MMD) [54] distance is first used as a metric to
quantify the dissimilarity between temporal data distributions.
By monitoring the MMD distance between batches of
postdevelopment data and data from the initial development
period, the framework detects changes in both the data and the
model’s performance while also providing insights into the
impact of the pandemic’s evolution on the trained models’
diagnostic accuracy. If concept drift is detected, a retraining
process is initiated, including two adaptation methods: (1) a
UDA process, which leverages labeled development data along
with unlabeled postdevelopment data to align their distributions
and adapt the model to novel data instances and (2) an AL
strategy, aimed at selecting informative data to include them
with their labels in the retraining process. To the best of our
knowledge, this is the first work leveraging UDA and AL
approaches toward mitigating the impact of evolving data
dynamics on model performance for COVID-19 detection, with
the ultimate goal of enhancing reliability in COVID-19 detection
and potentially across various diverse epidemiological contexts.

Methods

Datasets
The COVID-19 Sounds dataset is a collection of respiratory
sound recordings associated with COVID-19 infections, which
were acquired through a crowdsourcing platform launched in
April 2020 [16]. It includes demographic characteristics (ie, age
and gender), along with participant-reported information about
medical history and symptoms. It also comprises audio clips of
voluntary cough, breathing, and voice captured from healthy
individuals and individuals with COVID-19. A total of 36,364
participants contributed 75,201 samples to the project. Quality
checks were performed on the audio samples to filter out
incomplete or noisy recordings [16]. The data were collected
in multiple languages, but for this study, the part of the dataset
acquired from English-speaking participants [16] was solely
considered to avoid language bias, corresponding to 1461
samples, as shown in Table 1.

The Coswara dataset is another crowdsourced database recorded
between April 2020 and February 2022, which consists of 9
types of recordings, such as shallow and deep breaths, shallow
and heavy coughs, sustained vowel phonation (ie, <ey> as in
made, <i> as in beet, and <u:> as in cool), and number counting
from 1 to 20 (normal and fast paced) [55]. Alongside this,
information on the participants’ COVID-19 infection status,
symptoms, comorbidities (if any), gender, age, and broad
geographical location is included. In this study, shallow cough
recordings were used as the models’ input space. After the
exclusion of any missing, corrupted, or silent samples, a total
of 72.69% (1996/2746) of samples from the initial set remained
for analysis, as shown in Table 1.
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Table 1. Partition of the used datasets into development and postdevelopment sets.

Coswara dataset samples, nCOVID-19 Sounds dataset samples, n

13951040Development set

165452COVID-19–positive samples of the development set

601421Postdevelopment set

482270COVID-19–positive samples of the postdevelopment set

aNot applicable.

Following the preprocessing approach described in the study
by Han et al [16], the cough recordings were normalized, and
leading and trailing silence was removed. Mel spectrograms
were calculated using a 25-millisecond window size, a
10-millisecond window hop, and 64 mel bins, encompassing
frequencies ranging from 125 Hz to 7500 Hz. In addition, within
the framework of this study, in order to handle the varying size
of the mel spectrograms’ time axis, the 0.9 quantile across all
spectrograms was calculated. Subsequently, the spectrograms
were either cropped or padded with repeated sections of the
spectrogram accordingly. Finally, a sliding window approach
was used to extract segments from the spectrogram. The width
of the window used was 0.96 seconds, while the window stride
length was equal to half of the window’s width (0.48 s). This
setting resulted in a mel spectrogram segment with a size of 64
mel bins × 96 frames.

To facilitate model training, the COVID-19 Sounds and Coswara
datasets were partitioned based on chronological order into a

development set and a postdevelopment set by applying a 70:30
ratio. The development set was further divided into training,
validation, and testing subsets, using a 60:20:20 split ratio,
respectively. This division ensured that the model was trained
on a representative portion of the data and validated and tested
on separate subsets, promoting robustness and generalization.

Proposed Methodological Framework

Overview
The abstract architecture of the proposed framework is depicted
in Figure 1. It comprises 3 distinct modules, combining a deep
neural network with a drift detection mechanism and appropriate
adaptation modules with the aim of addressing differences
between data distributions of the development and
postdevelopment periods. These modules are explained
subsequently.

Figure 1. Overview of the proposed framework. The data are split into a labeled development set for training the baseline model and an unlabeled
postdevelopment set for evaluation. The framework includes three modules: (1) a baseline model trained for binary classification, (2) a drift detection
mechanism that monitors model performance in postdevelopment data, and (3) an adaptation module that retrains the model using unsupervised domain
adaptation (UDA) or active learning (AL) when drift is detected. CUSUM: cumulative sum; MMD: maximum mean discrepancy.

The first module, called a baseline model, is based on a
convolutional neural network, which processes input data
instances and estimates the probability of COVID-19 presence.

The second module is the drift detection mechanism that is
responsible for the identification of drifts in the data, implying
changes in COVID-19 detection patterns. It monitors the
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performance of the baseline model through the detection of
significant discrepancies between the development data and the
postdevelopment data. To this end, a modified version of the
cumulative sum (CUSUM) algorithm is used, with the MMD
distance being used to measure the distance between data
distributions from the development and postdevelopment
periods. A set of hyperparameters, which are appropriately
adjusted, is included in the CUSUM algorithm (ie, drift and
threshold) and the MMD distance (ie, reference distribution and
kernel).

The third module is the adaptation module. It facilitates the
adaptation process within the system. It enables the model to
dynamically adjust and learn from postdevelopment data,
ensuring continuous improvement and robustness against
evolving COVID-19 characteristics. Two different approaches
using divergence-based UDA and AL were investigated for
harnessing postdevelopment, unlabeled data for model

retraining, with the aim of enhancing the performance and
improving the generalization abilities of the baseline model.

The proposed framework’s operation is based on the adoption
of a batch-based approach for the processing of data instances
and the application of a fixed time window (with parametrized
overlap between successive windows) to monitor the data stream
for changes. The time window length, overlap between
successive time windows, and minimum batch size, along with
the hyperparameters of the drift detection mechanism, are
appropriately validated to ensure optimal performance for each
dataset.

The development and evaluation of the proposed framework
were based on the use of cough recordings from the COVID-19
Sounds [44] and Coswara [55] datasets. Both datasets were
partitioned into development and postdevelopment sets based
on chronological order. Figure 2 illustrates the partition of data,
while Table 1 summarizes the distribution of COVID-19 positive
samples for both datasets.

Figure 2. COVID-19 Sounds (A) and Coswara (B) data streams over time. A 70:30 partition of the data into development and postdevelopment sets
is applied, marked by the red line. The development set was divided into training, validation, and test subsets (60:20:20). Care was taken to avoid
participant overlap across all subsets and between development and postdevelopment periods.

Baseline Model
The baseline model of the proposed framework was built upon
the widely used VGGish pretrained model [56,57], which was
selected due to its remarkable performance on audio
classification tasks [16,58]. The VGGish model is a deep
convolutional neural network model trained on a large-scale
audio dataset to learn hierarchical representations of audio
signals. In the framework of this study, the VGGish model was
used to extract discriminative features from segments of mel
spectrograms with the aim of capturing relevant acoustic patterns
and distinguishing COVID-19 coughs sounds from
non–COVID-19 coughs sounds. Figure 3 shows the general
architecture of the baseline model used.

To adapt the VGGish model to the specific task of this study,
a time-distributed approach was used. To this end, the VGGish
feature extractor was applied on each segment of the mel
spectrogram, resulting in a sequence of feature vectors that
represented the temporal evolution of acoustic characteristics
within the cough signal. In order to summarize the temporal
dynamics captured by the model, the mean value for each feature
across the entire sequence was calculated. Following the

temporal aggregation, a dense layer with a single node based
on the nonlinear sigmoid activation function was used to process
the aggregated feature vectors and calculate the final output of
the model.

In order to address the imbalanced nature of the datasets, the
binary focal cross-entropy loss function was used for training
the baseline model due to its ability to focus on rare examples
[59]. This loss function effectively assigned higher weights to
misclassified samples, thereby alleviating the impact of class
imbalance and improving overall performance. For optimization,
the adaptive moment estimation optimizer was used due to its

efficient and adaptive nature [60]. A learning rate equal to 10–4

was used, while the exponential decay rate for the first and
second moment estimates was 0.9 and 0.999, respectively.

During training, the labeled samples of the development set
were considered to minimize the chosen loss function. A batch
size of 32 and 100 epochs was used, which is a commonly used
default training scheme used in multiple studies [61,62]. The
validation score was used for monitoring the model’s
convergence, and an early stopping regularization technique
was applied. After convergence, the performance of the trained
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model was evaluated on a test subset sampled from the development period and on the entire postdevelopment set.

Figure 3. Baseline model architecture.

Drift Detection Mechanism

Overview

The proposed drift detection mechanism entailed divergence
monitoring using the MMD distance and the implementation

of the CUSUM algorithm [63,64] for generating drift alerts.
The data were used in a chronological order to monitor the
performance of the model. A batch-based approach was adopted
for monitoring and processing data instances. An overview of
the proposed drift detection mechanism is provided in Figure
4.
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Figure 4. Proposed drift detection mechanism. Data are processed in chronological order based on their acquisition time point (t).

Monitoring Divergence With MMD Distance

To effectively track the dissimilarity between the development
and postdevelopment data, the MMD distance was adopted,
which was computed by comparing the corresponding
embeddings extracted by the VGGish feature extractor, as
described in the earlier subsection. These embeddings served
as a representation of the data distribution and were used for
calculating the MMD distances between batches of the
postdevelopment and the development data, with the
embeddings of the latter constituting the reference distribution.
The MMD distance value between 2 batches of data is given
by the following equation:

where X represents the distribution of the embeddings of the
development data xi (reference distribution), with nx embeddings
in total; Y represents the distribution of the embeddings of
postdevelopment data yi, with ny embeddings in total; φ(.)
represents the feature mapping function used to transform the
embeddings into a high-dimensional space (VGGish model);
k(.,.) is a kernel function that computes the similarity between
two inputs; and〈.,.〉H denotes the inner product in the Hilbert
space induced by the kernel function.

In this study, the use of 3 different kernels (linear, polynomial
of degree 2, and Gaussian) was investigated.

CUSUM Algorithm

After calculating the divergence between the development and
postdevelopment data, an implementation of the CUSUM

algorithm was deployed for detecting points of significant
increase in the divergence measure. CUSUM is a change
detection algorithm that is widely used to identify drifts or
changes in time series data [65-67], particularly when the exact
nature of the change is unknown or when there is a need to
continuously monitor data for detecting changes. CUSUM is
widely adopted for real-time monitoring and surveillance
applications in various fields, including quality control, signal
processing, and anomaly detection.

In this study, the CUSUM algorithm was tailored to match the
specific characteristics of the deep learning model and the
monitored MMD distance. The proposed implementation
introduced the calculation of relative differences between
successive values instead of their corresponding absolute values,
thus enabling the original CUSUM algorithm to effectively
align with the behavior of the MMD distance and the desired
level of sensitivity to changes. Therefore, the drift and threshold
values represented the tolerance range of relative change in
successive values and the minimum cumulative relative change
required to trigger a change detection event, respectively.

Adaptation Mechanism

Overview

Upon the triggering of an alert by the drift detection mechanism,
an adaptation mechanism based on model retraining was
activated to update the baseline model. The proposed adaptation
mechanism aimed at enhancing the performance and improving
the generalization abilities of the baseline model. Two different
approaches based on UDA and AL were explored for the
development of the adaptation mechanism.
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UDA Approach

The UDA approach involved feeding the model with a batch of
postdevelopment data samples, along with a batch of samples
from the development set. The model was then trained jointly
on two tasks: (1) correctly classifying the labeled development
data and (2) minimizing the MMD distance between the
embeddings of the development and postdevelopment batches.
In this way, the model was trained to solve task 1 using
domain-invariant features (development and postdevelopment
data), aiming at the minimization of 2 loss functions. The first
loss function considered the model’s output on samples of the
development dataset, essentially using supervised learning. The
second loss function was based on the divergence between the
distributions of the postdevelopment data and development data
batches using the MMD distance. The Gaussian kernel is
represented as follows:

It was selected to be used for the MMD distance calculation
due to its ability to distinguish between distributions with
differences in any order of moments [36,68], as demonstrated
by its Maclaurin series representation as follows:

In contrast, the linear kernel cannot distinguish between
distributions with the same mean but different higher-order
moments, while the polynomial kernel of degree 2 is unable to
differentiate between distributions that have the same mean and
variance but differ in higher-order moments.

During retraining, both loss functions were minimized
simultaneously to enhance the model’s adaptability to the
postdevelopment data while preserving its previous knowledge.
Figure 5 shows an overview of the UDA method.

Figure 5. Unsupervised domain adaptation (UDA) process. The model was fed with a batch of postdevelopment data samples, along with a batch of
samples from the development set and was then trained jointly (1) to correctly classify the labeled development data and (2) to minimize the maximum
mean discrepancy distance between the embeddings of the development and postdevelopment batches.

AL Approach

The second adaptation approach incorporated AL principles
into the retraining process. Building upon the drift detection
mechanism, a methodology was developed that was able to
identify informative data points, incorporating both diversity
and uncertainty estimation [41,42]. Once a period of divergence
was detected by the drift detection mechanism, uncertain
instances were selected from the divergent batch of data. To
achieve this, the z scores of the model’s outputs on the divergent
data were calculated, and the data samples whose output fell
within 1 SD around the mean value of the model’s predictions

were defined as uncertain. Samples within this uncertainty range
were selected, thus prioritizing the inclusion of challenging and
informative instances during retraining, with the ultimate goal
of enhancing the model’s generalization capabilities.

Considering that this adaptation method involved selecting
informative unlabeled data and using them as labeled data, it
was essential to compare the results of AL with those obtained
through random sampling. The number of randomly sampled
data samples was equal to the number of data points used in the
adaptation phases of the AL approach.
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Ethical Considerations
No ethics approval was required for this study as it was not
human participant research and did not include experiments on
humans and the use of human tissue samples. As indicated in
the data availability statement, the development of the presented
methods was based on the use of a publicly available dataset
and a dataset which was granted by a third party following the
submission of relevant request. The Coswara data collection
procedure was approved by the Institutional Human Ethics
Committee, at the Indian Institute of Science, Bangalore. The
informed consent was obtained from all participants who
uploaded their data records. All the data collected was
anonymized, and excluded any participant identity information.
The COVID-19 sounds study was approved by the ethics
committee of the Department of Computer Science at the
University of Cambridge. Informed consent was given by the
users through the mobile app.

Results

Baseline Model
The baseline model was assessed in terms of its ability to
accurately detect COVID-19 cases in the presence of variations
or shifts in the data. Particularly, the performance evaluation
on the 2 datasets considered for the development and
postdevelopment periods is reported in Figure 6.

On the basis of the results obtained for the COVID-19 Sounds
dataset, it was observed that the baseline model achieved
superior performance on the test subset of the development
period in terms of the area under the receiver operating

characteristic curve (AUC-ROC; 69.13%) and sensitivity
(67.89%) compared to the best model performance reported in
the literature [16] (AUC-ROC: 66%; sensitivity: 59%;
specificity: 66%), despite considering a smaller amount of
labeled data for training and validation (619 vs 1062 instances).
The baseline model achieved a satisfactory F1-score (65.2%)
but demonstrated quite low specificity, correctly classifying
58.9% (63/107) of instances from the negative class. The
performance of the baseline model on the postdevelopment data
demonstrated a significant decline in the AUC-ROC, the
F1-score, sensitivity, and specificity, as reported in Figure 6.

In the case of the Coswara dataset, the baseline model displayed
moderate discriminative ability on the development data,
achieving an AUC-ROC value of 66.8%, while the accuracy,
sensitivity, and specificity scores were 60.57%, 62.96%, and
60.32%, respectively. The highly imbalanced distribution of
the 2 classes in the development data (165/1395, 11.82%
positive vs 1230/1395, 88.18% negative) posed a significant
challenge for the model, as highlighted by the notably low
F1-score, a metric that exclusively focuses on positive instances.
The model’s discriminative power on the postdevelopment data
presented a decline, as indicated by the AUC-ROC, specificity,
and sensitivity (Figure 6). The high value obtained for the
F1-score metric was related to the presence of class imbalance
with reversed minority (negative) and majority (positive) classes
in the postdevelopment data with respect to the class distribution
of the development data, which led to a misleading perception
that the model’s performance had significantly improved. A
more thorough analysis of this issue is provided in the
Discussion section.

Figure 6. Performance evaluation of the baseline model on the development and postdevelopment data from the COVID-19 Sounds and Coswara
datasets. The model’s performance was assessed using the area under the receiver operating characteristic curve (AUC-ROC), accuracy, balanced
accuracy, sensitivity, specificity, and F1-score. The test subset from development data is referenced as Dev, while Post refers to the entire postdevelopment
period.
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Hyperparameters’ Tuning
The hyperparameters of the drift detection mechanism were
fine-tuned across both datasets to maximize detection accuracy.
For the COVID-19 Sounds dataset, the best-performing
configuration incorporated a 7-day window, 3-day overlap, a
minimum batch size of 40 samples, a polynomial kernel for the
MMD calculation, and CUSUM drift and threshold values of
0.2 and 0.5, respectively, and achieved an accuracy score of
91.3%, sensitivity of 88.5%, and specificity of 93.2%. For the
Coswara dataset, the optimal setup included a 10-day window,
no overlap, a minimum batch size of 20 samples, and CUSUM
drift and threshold values of 0.2 and 0.7, respectively, leading
to an accuracy score of 89.7%, sensitivity of 85.2%, and
specificity of 92.1%. Further details on the tuning procedure
and hyperparameter selection are provided in Multimedia
Appendix 1.

UDA Approach
A comparative assessment of the model’s performance, before
and after each UDA adaptation phase, was carried out, with
balanced accuracy on the test subset of the development period
serving as a benchmark. For the COVID-19 Sounds dataset,
considerable improvement was achieved after each adaptation
phase, particularly following the fourth (up to 15%) and fifth
(up to 24%) adaptations (Figure 7). The model consistently
outperformed the baseline model, demonstrating the
effectiveness of the proposed approach in mitigating concept
drift. It is noteworthy that by correctly identifying periods of
drift, the drift detection mechanism efficiently prevented the
degradation of the model’s performance in a timely manner
while also contributing to sustaining the model’s performance
closer to the development period benchmark.

Figure 7. The obtained balanced accuracy score across the data batches of the entire postdevelopment period of the COVID-19 Sounds dataset using
unsupervised domain adaptation. The orange dashed line is used to indicate the performance on the test subset of the development period (benchmark).
Vertical red and blue dotted lines indicate the start and end of each alert period.

The results obtained for the Coswara dataset are depicted in
Figure 8. It was observed that while some adaptations (eg,
fourth) exhibited up to 15% improvement, others initially led
to a significant yet short-lasting decline in the model’s
performance, before ultimately demonstrating the ability to
recover. Despite these fluctuations, the drift detection
mechanism effectively generated timely alerts, preventing
prolonged performance degradation.

A detailed study of each adaptation’s impact on various
performance metrics (AUC-ROC, accuracy, balanced accuracy,

sensitivity, specificity, and F1-score) for both datasets was also
carried out. The results of the COVID-19 Sounds dataset showed
that the UDA approach significantly enhanced the model’s
performance in terms of all evaluation metrics. However, the
application of the UDA approach on the Coswara dataset
produced less consistent results. Overall, the performed
adaptations exhibited varying effects on the model’s
performance across the considered evaluation metrics. The
complete results of this analysis are presented in Multimedia
Appendix 2.
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Figure 8. Balanced accuracy score through the entire postdevelopment period on Coswara dataset using unsupervised domain adaptation. The orange
dashed line is used to indicate the performance on the test subset of the development period. Vertical red and blue dotted lines indicate the start and end
of each alert period.

AL Approach
The proposed AL approach was evaluated by comparing the
performance of the model after each AL-based retraining phase
with that of the baseline model, as well as the model following
retraining, using random sampling. Considering the COVID-19
Sounds dataset, Figure 9 demonstrates the observed balanced
accuracy score across the entire data stream, indicating a
substantial and lasting improvement with respect to the baseline
model following each adaptation. Overall, each AL-driven
adaptation significantly enhanced balanced accuracy, with the
third adaptation improving performance by up to 30% over a
broad period of 15 batches, and the fourth adaptation surpassing
a 95% balanced accuracy score while achieving an improvement
of up to 25% compared to the baseline model. The superiority
of the proposed AL approach over random sampling was evident
across 90% (36/40) of the data batches.

In the case of the Coswara dataset, Figure 10 shows that model
adaptations led to improved performance during most postalert

periods, particularly after the third (up to 40%) and fifth (up to
60%) adaptations. Occasional fluctuations of limited duration
were observed, mostly in the early batches of the postalert
periods, where the baseline model outperformed the AL-based
model. As compared to random sampling, AL remained superior
in most cases, further confirming its effectiveness in selecting
informative data.

Further insights were derived through per-metric performance
comparisons, including AUC-ROC, accuracy, sensitivity,
specificity, and F1-score, across adaptations for the 2 studied
datasets. Most AL-based adaptations for the COVID-19 Sounds
dataset yielded improved performance in all the considered
evaluation metrics with respect to the baseline model and the
random sampling approach. In the case of the Coswara dataset,
the AL approach led to an overall improvement in the model’s
performance over the baseline model and the random sampling
approach, except for certain metrics and adaptations. The results
obtained are presented in detail in Multimedia Appendix 2.
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Figure 9. Balanced accuracy score through the entire postdevelopment period on the COVID-19 Sounds dataset using active learning. The orange
dashed line indicates the performance on the test subset of the development period. Vertical red and blue dotted lines indicate the start and end of each
alert period.

Figure 10. Balanced accuracy score through the entire postdevelopment period on the Coswara dataset using active learning. The orange dashed line
indicates the performance on the test subset of the development period. Vertical red and blue dotted lines indicate the start and the end of each alert
period.

Discussion

Principal Findings
This study proposed a drift-adaptive framework for COVID-19
detection using crowdsourced cough audio recordings and

evaluated its effectiveness in addressing temporal data drifts,
confirming its ability to sustain model performance over time.

The proposed framework addressed challenges imposed by
dynamic, nonstationary environments caused by a pandemic by
incorporating a drift detection mechanism and appropriate
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adaptation strategies. The proposed approach focused on the
temporal evolution of data distributions in a real-world scenario,
unlike previous studies that did not explicitly consider temporal
aspects [15,16,46-50]. The evaluation of the introduced
framework provided evidence regarding its ability to maintain
model performance, thus highlighting its potential to facilitate
the identification of new cases in the evolving context of a
pandemic.

A baseline model that was able to detect COVID-19 positive
cases using cough recordings was trained and evaluated. During
the development period, the model achieved an AUC-ROC of
69.1% and 66.8% on the COVID-19 Sounds and Coswara
datasets, respectively. However, in the postdevelopment period,
there was a notable decline in the baseline model’s performance,
reflected in an AUC-ROC of 60.7% and 59.7%, respectively,
thus suggesting the potential presence of concept drift. These
findings motivated the development of the proposed approach,
which leveraged robust drift detection and efficient adaptation
mechanisms to maintain the model’s performance in the face
of evolving data distributions.

The results obtained indicated the efficacy of the proposed drift
detection mechanism and provided evidence regarding its ability
to enhance the robustness and adaptability of deep learning
models in dynamic environments. The combination of the MMD
distance monitoring and the use of the CUSUM algorithm for
adaptive detection of abrupt changes, which reflect a growing
divergence between the reference distribution (development
data) and the postdevelopment data, enabled the timely and
robust detection of performance degradation. The use of the
CUSUM algorithm, tailored to the characteristics of each
dataset, ensured the generation of accurate alerts for significant
changes in the monitored MMD distance, thus minimizing false
alerts and preventing unnecessary interventions.

Two distinct retraining strategies based on UDA and AL were
used to mitigate performance degradation in this study. Notably,
the use of UDA in this study focused on achieving continuous
adaptation in the presence of real-world data drift, unlike
previous studies [37] where UDA was used to address static
cross-dataset generalization. Similarly, this study incorporated
AL as an adaptation mechanism, ensuring continuous model
refinement in response to data distribution shifts, in contrast to
previous studies [40] where AL was used for reducing
annotation costs by selecting the most informative samples for
initial model training.

Regarding the use of UDA, the results obtained from the analysis
of the COVID-19 Sounds dataset showed significant
improvement in the model’s discriminative ability. The
comprehensive examination of the adaptation phases based on
multiple evaluation metrics mostly revealed improvements in
the balanced accuracy with respect to the baseline model’s
performance, ranging from 10% to 20%.

The aforementioned findings align with UDA’s core advantages,
which include cost-effectiveness and adaptability to dynamic
environments through the model’s adaptation to the target
domain’s data distribution without requiring labeled target
domain samples. This approach is particularly valuable when

labeled data from the target domain are scarce or expensive to
obtain, as is often the case in emerging pandemic scenarios.

The application of the UDA approach on the Coswara dataset
yielded less consistent results. The overall comparison between
the adapted models and the baseline model revealed that the
adaptation had diverse effects on the model’s performance in
terms of the evaluation metrics considered.

The difference in the effectiveness of the UDA approach on the
COVID-19 Sounds and Coswara datasets may be attributed to
differences in the datasets’ characteristics. Figures 11 and 12
illustrate selected descriptive statistics of the development and
postdevelopment data of the COVID-19 Sounds and Coswara
datasets. As per Han et al [16], the COVID-19 Sounds dataset
used in this study had undergone meticulous curation to
eliminate biases as a result of methodological decisions, thus
enabling the development of unbiased models. In the case of
the Coswara dataset, significant differences were observed in
terms of COVID-19 prevalence and the frequency of related
symptoms between the development and postdevelopment data,
which may be attributed to the presence of age and gender biases
[69]. In this study, handling the data in chronological order
implicated different levels of data biases present across the
various adaptation periods, which may arise in emerging
pandemic scenarios.

The AL approach resulted in a more prominent improvement
in the models’performance compared to UDA. This underscored
the power of actively selecting informative samples for labeling,
which aids in refining the model’s understanding of the target
domain. Thus, by optimizing both adaptation to the target data
and the use of labeling resources, AL is considered promising
for ensuring model performance in data-scarce scenarios, such
as during a pandemic.

Given that both UDA and AL achieved varying levels of
performance improvement on the COVID-19 Sounds and
Coswara datasets, it is essential to consider their limitations and
potential challenges. UDA relies on the assumption that the
source and target domains share some underlying similarity. In
the presence of significant differences, adaptation might not
yield substantial improvements. By contrast, AL’s performance
is determined by human labeling expertise, which is associated
with the rise of the related costs and depends on the reliability
of the existing diagnostic tests. If the chosen samples are
mislabeled, the model’s performance could suffer. Moreover,
AL’s performance is sensitive to the selection of labeled
samples, which might introduce biases.

The aforementioned observations suggest that the proposed
adaptation mechanisms effectively addressed the individual
challenges linked to the special characteristics of each dataset
and mitigated the effects of concept drift during critical periods
corresponding to batches in proximity to the alert periods. Figure
13 summarizes the model’s performance obtained by applying
each adaptation approach on the postdevelopment period of the
2 datasets and shows that both approaches succeeded in
maintaining the models’performance closer to the development
period’s benchmark.
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Further evidence regarding the proposed framework’s ability
to detect concept drift and maintain model performance was
provided through a detailed analysis of stratified heterogeneity
(SH) using the Q statistic [70-73]. The findings obtained
indicated that COVID-19 presence was stratified across time,
age, and gender, with a strong correlation to performance
fluctuations. Notably, detected input drift alerts aligned with
statistically significant differences of SH across strata (P values
for all pairwise comparisons are reported in Multimedia
Appendix 3), indicating the presence of drifts in the ground
truth label, which provided further evidence on the effectiveness
of the proposed drift detection mechanism. Moreover, the

superiority of the UDA- and AL-based adapted models’
performance over that of the baseline model and the adapted
model using random sampling was observed for most batches,
presenting statistically significant differences in SH. The
detailed SH analysis that was conducted is provided in
Multimedia Appendix 3.

These results highlight the importance of combining effective
drift detection mechanisms and intelligent adaptation modules
in addressing concept drift. Together, these components form
a robust framework that enables the model to continuously adapt
to changing data conditions, thereby maintaining its
discriminative power and overall performance over time.

Figure 11. Descriptive statistics for COVID-19 Sounds development and postdevelopment data reveal moderate changes. The disease exhibited moderate
shifts in both its prevalence and the frequency of related symptoms. The 2 data subsets shared similar characteristics in terms of age, gender, and medical
history of individuals. COPD: chronic obstructive pulmonary disease.
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Figure 12. Descriptive statistics for Coswara development and postdevelopment data reveal profound differences in demographic characteristics,
symptoms, and preexisting medical conditions between the development and postdevelopment periods. The representation of positive and negative
classes in the development data is reversed in the postdevelopment data.

Figure 13. Box plots of the balanced accuracy scores across the entire postdevelopment period using the baseline model, the unsupervised domain
adaptation (UDA) approach, the active learning (AL) approach, and the random sampling approach for the COVID-19 Sounds (A) and Coswara (B)
datasets. The orange dashed line indicates the performance of the baseline model on the test subset of the development period (benchmark).
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Limitations
Certain potential limitations of the proposed study should be
acknowledged. First, although the proposed framework
successfully detects and responds to performance degradation
based on the MMD distance, it does not explicitly interpret the
underlying causes of the drift. Understanding the sources of the
drift could enhance trust in the detected drifts and enable
efficient targeted interventions toward sustaining model
performance. Moreover, by design, this study isolates and
investigates temporal drift as the primary source of distributional
change. While this focused approach allows for detailed
analysis, it limits exploration of other drift types, such as
cross-dataset drifts or interdemographic variability, which may
arise in broader deployment scenarios. Finally, the framework
was applied for COVID-19 detection from cough data; the
integration of multimodal inputs, including breathing and voice
data, is straightforward and could further improve the model’s
performance.

Conclusions
The significance of the proposed approach lies in its reliance
on data-efficient techniques. By minimizing the dependence on
labeled data, the proposed framework enables the accurate
detection of COVID-19 cases even in the absence of
comprehensive labeling resources. This aspect becomes
particularly crucial when considering the value of a deep
learning–based detection model during the early stages of a new
pandemic or when dealing with emerging viral variants that
may not be adequately detected by existing diagnostic tools.
Thus, the proposed framework is able to contribute toward a
more generalizable approach that can be applied to future
pandemics or novel variants. By collecting knowledge and
formulating a well-defined framework, a basis for rapid
adaptation and deployment of disease detection tools is
established, ensuring timely and accurate identification of
infectious diseases.
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