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Abstract—In this paper, a multiresolution approach is sug-
gested for texture classification of atherosclerotic tissue from
B-mode ultrasound. Four decomposition schemes, namely, the dis-
crete wavelet transform, the stationary wavelet transform, wavelet
packets (WP), and Gabor transform (GT), as well as several basis
functions, were investigated in terms of their ability to discrim-
inate between symptomatic and asymptomatic cases. The mean
and standard deviation of the detail subimages produced for each
decomposition scheme were used as texture features. Feature selec-
tion included 1) ranking the features in terms of their divergence
values and 2) appropriately thresholding by a nonlinear correlation
coefficient. The selected features were subsequently input into two
classifiers using support vector machines (SVM) and probabilistic
neural networks. WP analysis and the coiflet 1 produced the high-
est overall classification performance (90% for diastole and 75%
for systole) using SVM. This might reflect WP’s ability to reveal dif-
ferences in different frequency bands, and therefore, characterize
efficiently the atheromatous tissue. An interesting finding was that
the dominant texture features exhibited horizontal directionality,
suggesting that texture analysis may be affected by biomechanical
factors (plaque strains).

Index Terms—Carotid, texture, ultrasound, wavelet transforms.

I. INTRODUCTION

HE instability of the carotid atheromatous plaque has been
T shown to be associated not only with the degree of stenosis
but also with plaque echogenicity estimated from B-mode ultra-
sound images [1]. Plaque echogenicity through image texture
analysis has been analyzed with a number of mostly statisti-
cal methods ([2] and [3]), among which the gray scale median
(GSM) has been extensively used in the study of various aspects
of vascular disease ( [4] and [5]). The fractal dimension, a model-
based technique, was also used in two studies ([3] and [6]) to
differentiate between symptomatic and asymptomatic cases. For
a comprehensive review on texture analysis and classification
of carotid atheromatous plaque from B-mode ultrasound see
also [7].
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The spatial distribution of gray levels in a plaque ultrasound
image, estimated using texture, is determined by the distribu-
tion of echogenic (fibrous and calcified tissue) and anechoic
(blood and lipids) materials within the plaque. Such distribu-
tions may be characterized by 1) low frequencies, i.e., slow
changes in gray levels; these may correspond to large areas oc-
cupied by a specific type material; or 2) high frequencies, i.e.,
rapid changes in gray levels; these may correspond to differ-
ent materials randomly scattered within the plaque. In reality,
however, texture measures describe not only the underlying ma-
terial distribution but also the effect of speckle that is due to the
coherent formation of the echo from many scatterers randomly
distributed within the resolution cell. Although speckle is con-
sidered as noise, it is not typical random noise and may carry
useful image information [8]. It is believed that speckle is a
high-frequency component of the image. Consequently, the use
of a scale/frequency approach, based, for example, on wavelet
transforms, which decompose appropriately the frequency con-
tent of the image, may reveal plaque texture characteristics free
from the effect of speckle noise.

Wavelet models have been used in a number of texture clas-
sification tasks not only in reference (e.g., Brodatz) but also
in real medical images. The discrete wavelet transform (DWT)
has been used to characterize myocardial [9] and breast [10] tis-
sue from ultrasound images. The stationary wavelet transform
(SWT), a modified time-invariant version of DWT, has been
suggested for texture classification tasks [11]. Wavelet packets
(WP), amodification of the DWT consisting of more detailed de-
composition steps, are also commonly encountered in wavelet-
based texture classification studies [12]. In ultrasound imaging
tasks, WP decomposition has been applied to discriminate be-
tween benign and malignant liver tumors [13]. Finally, Gabor
transform (GT), a family of linear, frequency-, and orientation-
selective filters particularly appropriate for texture representa-
tion and discrimination, have been used to characterize carotid
atheromatous plaque tissue from B-mode ultrasound [14].

The purpose of this paper was to investigate the possibility of
the wavelet transform to characterize and classify the texture of
ultrasound images of carotid atheromatous plaque. To this end,
four different wavelet decomposition schemes, the DWT, SWT,
WP, and GT as well as a number of basis functions derived from
different wavelet families, were benchmarked, in terms of their
ability to discriminate between symptomatic and asymptomatic
cases. Probabilistic neural networks (PNN) and support vector
machines (SVM), both recently used for the classification of
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morphological features of carotid atherosclerotic plaque [15],
were used as classifiers.

II. IMAGE MULTIRESOLUTION ANALYSIS

Images usually contain information at multiple resolutions.
Multiresolution image analysis, including wavelet-based meth-
ods, has emerged as a useful framework for many image analysis
tasks and consists in representing image details of different sizes
at appropriate resolution scales.

A. Discrete Wavelet Transform

The DWT of a signal x[n] is defined as its inner product
with a family of functions, ¢, ; (t) and ; ; (), which form an
orthonormal set of vectors, a combination of which can com-
pletely define the signal, and hence, allow its analysis in many
resolution levels j [16]

0in(t) =212t — k) i (t) =272 (27t — k). (1)

The functions ; j, (t) and 1, ; (t) consist of versions of the
prototype scaling ¢ (t) and wavelet ¢ (¢) functions, discretized
at level j and at translation k. However, for the implementation
of the DWT, only the coefficients of two half-band filters: a
low-pass h (k) and a high-pass g (k) = (—1) h (1 — k) filter,
are required, which satisfy the following conditions:

Piv10 () =Y hlk]-in P10 (t Zg ) k-
k
(2)
Hence, the DWT is defined as follows:
Aj+1,n = ZAj’k . h [:ZC — Qn]
k
Djii1n ZAJ’“ - g; [k — 2n] 3)

where A; ,, and D; ,, are known as the approximation and detail
coefficients, respectively, at level j and location n. According to
(3), the outputs A; ,, and D; ,, of the convolution are downsam-
pled by two for every level of analysis, where the time resolution
is halved and the frequency resolution is doubled.

For images, i.e., 2-D signals, the 2-D DWT can be used. This
consists of a DWT on the rows of the image and a DWT on
the columns of the resulting image. The result of each DWT is
followed by downsampling on the columns and rows, respec-
tively. The decomposition of the image yields four subimages
for every level.

Fig. 1(a) shows a schematic diagram of the 2-D DWT for a
given level of analysis. Each approximation subimage (A;) is
decomposed into four subimages [A;+1, Dhj.1, Dv;;1, and
Dd; in Fig. 1(a)], according to the previously described
scheme. Each detail subimage is the result of a convolution with
two half-band filters: a low-pass and a high-pass for DA, a high-
pass and a low-pass for Dv;, and two high-pass filters for Dd;.

B. Stationary Wavelet Transform

The 2-D SWT is similar to the 2-D DWT, but no downsam-
pling is performed. Instead, upsampling of the low-pass and

Aj
Hr/2|1
Hc/uz Gc/uz
AJ+1 } { Dh1+1 ]
(@)
A ) [Dw v ]

(G (A}, Dhy, Dv;, Dd), j>1 |
[
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©)

Fig. 1. Schematic diagram of the (a) 2-D DWT, (b) SWT, and (c) WP de-
composition schemes for a given level of analysis. Note that, for j = 0, Ag is
the original image, whereas for j = 1, C is omitted from the abbreviation of
WP subimages. Hr, He, Gr, and Gc are the low-pass and high-pass filters on the
rows and columns of each subimage. The symbols “2|1” and “1|2” denote the
downsampling procedure on the columns and rows, respectively, which is valid
for DWT and WP only.

high-pass filters is carried out [see Fig. 1(b)]. The main advan-
tage of SWT over DWT is its shift invariance property. However,
it is nonorthogonal and highly redundant, and hence, computa-
tionally expensive.

C. Wavelet Packet Decomposition

The 2-D WP decomposition is a simple modification of the
2-D DWT, which offers a richer space-frequency representation.
The first level of analysis is the same as that of the 2-D DWT.
The second, as well as all subsequent levels of analysis consist
of decomposing every subimage, rather than only the approxi-
mation subimage, into four new subimages [see Fig. 1(c)].

D. Gabor Transform

The GT of an image consists in convolving that image with
the Gabor function, i.e., a sinusoidal plane wave of a certain
frequency and orientation modulated by a Gaussian envelope.
Frequency and orientation representations of Gabor filters are
similar to those of the human visual system, rendering them
appropriate for texture segmentation and classification.

III. MATERIAL AND METHODS

A. Subjects and Ultrasound Image Data

A total of 20 atheromatous plaques were investigated, of
which 11 were symptomatic and 9 asymptomatic. Symptoms
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Symptomatic plaques

-

Fig. 2. Examples of plaque ROIs manually segmented from B-mode ultra-

sound images for symptomatic and asymptomatic plaques. Examples corre-
spond to a systolic (left) and diastolic (right) phase of the cardiac cycle.

included stroke, hemispheric transient ischemic attack, and
amaurosis fugax. There was no significant difference in the
degrees of stenosis between the two groups of plaques (67.7%
=+ 15.1% in symptomatic and 67.2% =+ 13.2% in asymptomatic
plaques, Wilcoxon test, p-value = 0.93).

For each subject, a sequence of longitudinal images was
recorded with an Advanced Technology Laboratory (ATL)
Ultramark 4 Duplex scanner and a high resolution 7.5 MHz
linear scan head. Scanner settings (dynamic range 60 dB, 2-D
gray map, persistence low, and frame rate high) were set at the
beginning of the recording and not altered during the proce-
dure. The sequences were recorded at a rate of 25 frames/s for
approximately 3 s (2-3 cardiac cycles) during breath holding.

From each sequence, two static images were isolated corre-
sponding to specific instants of the cardiac cycle, namely, systole
and diastole. Static images at selected instants of the cardiac cy-
cle were isolated from the recorded image sequences using the
motion analysis methodology described in [17]. Specifically,
the radial motion of a region on the anterior and of one on the
posterior wall-lumen interface was estimated and the differ-
ence between the two provided the radial separation of opposite
arterial walls throughout the sequence. Because no ECG was
recorded, the assumption was subsequently made that the peak
of the carotid pressure pulse (loosely referred to as systole)
coincided with the maximal radial wall separation. Similarly
diastolic images corresponded to the minimal radial separation
of the anterior and posterior walls.

The boundary of the atheromatous plaque was outlined on the
images by an expert clinician. Fig. 2 shows examples of plaque
regions-of-interest (ROIs) manually segmented from images of
a symptomatic and an asymptomatic plaque.

B. Selection of Basis Functions

Careful selection of the basis function is a critical issue in
a wavelet-transform-based methodology for texture analysis.
Such a selection should be based on the desired function prop-
erties, including support in time and frequency domain, orthog-
onality or biorthogonality, symmetry, and shift invariance. The
support of a wavelet quantifies its localization in time and fre-
quency domain. It has been shown that, in general, orthogonal
filters should be used because they conserve energy and main-
tain the same amount of energy noise at each level [18]. The

symmetry of the filter or, as often referred to in signal analysis,
its linear phase is also important for avoiding dephasing. A non-
symmetric filter will result in shift variance of the outputs and
this should be avoided in texture analysis.

In this study, a number of basis functions from different
wavelet families were used, including Haar (haar), Daubechies
(db), symlets (sym), coiflets (coif), and biorthogonal (bior).
They have compact support but differ in other properties. The
Haar wavelet is orthogonal, symmetric, allows for invariant
translations, but has poor frequency localization. Daubechies
wavelets are orthogonal but not symmetric. Symlets and coiflets
are orthogonal and near symmetric. Biorthogonal wavelets com-
bine many of the properties of the other families. They are sym-
metric with optimum time/frequency localization; however, they
are not shift invariant.

The wavelet functions selected are of small support width
because the size of the investigated images was small. Using
higher support widths would lead to unreasonably increased
values beyond the third level of analysis.

C. Texture Feature Extraction and Selection

The level of decomposition for each scheme was determined
according to the best level of decomposition for WP. The best
level algorithm based on an entropy criterion among the com-
plete subimages was applied, which indicated three levels of
decomposition.

The detail subimages contain the textural information in hor-
izontal, vertical, and diagonal orientations. The approximation
subimages were not used for texture analysis because they are
the rough estimate of the original image and capture the intensity
variations induced by lighting. The total number of subimages
for three levels of decomposition, including only the detail im-
ages, was 9 in the case of DWT and SWT, 63 in the case of WP,
and 12 in the case of GT. For the GT, the lowest and the highest
center frequencies were set to 0.05 and 0.4, respectively. The
size of the Gabor filter used for texture feature extraction was
13 x 13. Gabor texture information was obtained at 0°, 90°,
45°, and 135°.

1) Multiresolution feature extraction: The texture features
that were estimated from each detail subimage were the
mean and standard deviation of the absolute value of detail
subimages, both commonly used as texture descriptors
[13]

1 N M
;= D, 4
1 N M
UjZN_MZZWj(%y)—MﬂQ ®)
r=1y=1

where D; (x,y) are the detail subimages of dimension
N x M in every orientation at level j = 1, 2, and 3.

2) Statistical and fractal feature extraction: The performance
of multiresolution features was compared to that of more
“traditional” texture features used in previous similar stud-
ies. Specifically, a vector was constructed, consisting of
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15 features, which were found dominant in discriminat-
ing symptomatic and asymptomatic plaques in a previous
study [3]. The features included the GSM, the mean and
range values of angular second moment and entropy, the
inverse difference moment, the sum average and entropy,
the difference variance, the information measure of corre-
lation, the coarseness, the periodicity, the roughness, and
the Hurst coefficient (H*) for k = 1, 2.

3) Feature selection: Feature selection techniques provide
an optimal subset of the original feature representation,
which preserves the properties of the data tested and lead to
an improved classification performance. In this study, the
extracted feature vectors were first sorted in descending
order according to the features’ divergence value

DV(fi) = —041,) (14 0af, +041,)/200,1,0s. 1,

(6)

where o, y, and o, are the standard deviations of the fea-
ture vector f; for asymptomatic and symptomatic plaques,
respectively. The DV was used to separate the features
because no assumption of the distribution’s condition is
needed. Then, the nonlinear correlation coefficient (NCC)
of two feature vectors of length N = 20 (the size of the
dataset), based on the normalized mutual information, was
used to eliminate not only the linear but also the general
dependencies among them [19]

b b
HES R o

where n;; is the number of samples distributed in the ij
class of the b classes of the variables. Its value lies in
the closed interval [0, 1], where O indicates the minimum
and 1 indicates the maximum general correlation of the
two vector features. Features were only retained if they
produced a NCC value lower than a set threshold. In this
study, the threshold used was set to 0.6 after having exper-
imented with a number of different values. NCC values
equal to zero were also discarded because they could be
attributed to noise.

(a-a-,fl

NCC (favfs =

D. Classification

To address the drawback of the small-sized sample in this
study, the resampling method of leave-one-out was used. Leave-
one-out is popular among other resampling techniques and has
been shown to provide unbiased performance evaluation results
[20].

1) Probabilistic neural networks: PNN, a type of artificial
neural networks, consist of three layers: one input layer
with number of neurons equal to the number of used fea-
tures, a hidden layer also known as summation layer, and
an output layer. In order to classify a subject, the corre-
sponding feature vector f; is applied to the input layer,
which computes distances of the feature vector f; from
the feature vectors of all cases in the training set. In the
summation layer, a probabilistic density function p(f; /C),

where C is the class for symptomatic and asymptomatic
cases, is estimated taking into account the classes to which
a number of training examples of the training set belong
to. The output neuron classifies the input feature vector
into the class with the highest probabilistic density func-
tion. Several values for the spread function S, defining
the number of training examples taken into account for
the classification of a new feature vector, were used S =
{0.005, 0.0075, 0.01, 0.05, 0.1, 0.5} and the best values
were selected on a trial-and-error basis. Additional infor-
mation about the PNN approach may be found in [15].

2) Support vector machines: SVM are learning machines
based on intuitive geometric principles, aiming to the def-
inition of an optimal hyperplane, which separates the train-
ing data so that a minimum expected risk is achieved. Us-
ing the SVM approach, a decision function df{s) that can
correctly classify an input pattern s is constructed after
the training phase of the classifier. The training method is
based on a nonlinear mapping of the dataset, using ker-
nels that have to satisfy Mercer’s theorem. In this study, the
performance of the Gaussian radial basis function (RBF)
kernel has been investigated. This kernel seemed to pro-
vide better results than other considered kernels (such as
the sigmoid and the polynomial kernel). Additional infor-
mation about the SVM approach may be found in [21].
The LIBSVM library [22] was used along with the leave-
one-out method for performance evaluation. To apply the
SVM training algorithm, two parameters have to be ad-
justed, the regularization parameter P and the parameter
g for the Gaussian kernel. Parameterization was applied
for the following values of parameters: P e {273, 272,

L 215) g e {2712, 271 . 21} using tenfold cross
validation.

3) Classification performance: In addition to classification
accuracy, the sensitivity (SN) and the specificity (SP) were
also estimated. SN (SP) is the ratio of the number of cases
correctly classified as symptomatic (asymptomatic) over
the total number of actually symptomatic (asymptomatic)
cases.

IV. RESULTS

Table I shows the classification results for the two classifiers
and all feature sets. The highest accuracy scores in the SVM
case for each decomposition scheme (indicated by bold type in
the table) were as follows. For DWT, the bior3.3 in systole and
haar in diastole yielded the highest value (80%). For SWT, the
bior3.1 in systole and bior3.1, bior3.3 and db6 in diastole all
scored 75%. For WP, coifl, and coif2 in systole and coifl in
diastole produced 75% and 90% performance, respectively. GT
yielded an accuracy of 85% for systole and 65% for diastole.
The statistical features set (STATS) achieved an accuracy of
70% for systole and 65% for diastole.

The highest accuracy scores in the PNN case for each de-
composition scheme (indicated by bold type in the table) were
as follows. For DWT, the db4 in systole and sym3 in diastole
produced 65% and 70% performance, respectively. For SWT,
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TABLE I
CLASSIFICATION RESULTS FOR DIFFERENT WAVELET FAMILIES AND MULTIRESOLUTION SCHEMES
Multiresolution Features Classification performance (%)
Scheme Extracted Selected Probabilistic neural networks Support vector machi
ACC SN SP ACC SN SP
DWT (bior3.1, L=3) 18 7(9) 60 (65) 63.6 (712.7) 55.6 (55.6) 75 (75) 90.9 (90.9) 55.6 (55.6)
DWT (bior3.3, L=3) 18 7(10) 55 (60) 54.5 (72.7) 55.6 (44.4) 80 (60) 81.8 (81.8) 77.8 (33.3)
DWT (bior4.4, L=3) 18 6(10) 60 (50) 72.7 (54.5) 44.4 (44.4) 70 (65) 81.8 (81.8) 55.6 (44.4)
DWT (haar, L=3) 18 505 40 (60) 45.5 (63.6) 33.3(55.6) 65 (80) 63.6 (81.8) 66.7 (77.8)
DWT (db4, L=3) 18 6(12) 65 (65) 81.8 (72.7) 44.4 (55.6) 75 (55) 81.8 (72.7) 66.7 (33.3)
DWT (db6, L=3) 18 9(8) 55 (55) 63.6 (63.6) 44.4 (44.49) 70 (60) 72.7 (54.5) 66.7 (66.7)
DWT (sym3, L=3) 18 9(9) 60 (70) 72.7 (63.6) 44.4(77.8) 75 (70) 72.7 (63.6) 77.8 (77.8)
DWT (symS5, L=3) 18 9 (11) 60 (55) 63.6 (63.6) 55.6 (44.4) 75 (70) 72.7 (72.7) 77.8 (66.7)
DWT (coifl, L=3) 18 8 (6) 50 (60) 63.6 (63.6) 33.3(55.6) 75 (65) 81.8 (63.6) 66.7 (66.7)
DWT (coif2, L=3) 18 8 (13) 45 (55) 45.5 (63.6) 44.4 (44.4) 60 (55) 72.7 (63.6) 44.4 (44.4)
SWT (bior3.1, L=3) 18 3(4) 40 (70) 36.4 (81.8) 44.4 (55.6) 75 (75) 81.8 (81.8) 66.7 (66.7)
SWT (bior3.3, L=3) 18 54) 45 (75) 45.5 (72.7) 44.4 (77.8) 65 (75) 72.7(72.7) 55.6 (77.8)
SWT (bior4.4, L=3) 18 5(6) 45 (70) 45.5 (81.8) 44.4 (55.6) 70 (70) 72.7 (63.6) 66.7 (77.8)
SWT (haar, L=3) 18 3(5) 35 (55) 27.3 (54.5) 44.4 (55.6) 65 (55) 54.5 (72.7) 77.8 (33.3)
SWT (db4, L.=3) 18 6(4) 50 (70) 45.5 (81.8) 55.6 (55.6) 70 (60) 72.7 (63.6) 66.7 (55.6)
SWT (db6, L=3) 18 6(5) 45 (75) 36.4 (81.8) 55.6 (66.7) 55 (75) 45.5 (12.7) 66.7 (77.8)
SWT (sym3, L=3) 18 54 45 (80) 45.5 (90.9) 44.4 (66.7) 70 (65) 72.7 (72.7) 66.7 (55.6)
SWT (symS5, L=3) 18 5(5) 55 (70) 54.5 (81.8) 55.6 (55.6) 70 (60) 63.6 (63.6) 77.8 (55.6)
SWT (coifl, L=3) 18 3(6) 35 (80) 36.4 (90.9) 33.3 (66.7) 70 (70) 63.6 (63.6) 77.8 (77.8)
SWT (coif2, L=3) 18 5(4) 50 (65) 54.5(72.7) 44.4 (55.6) 70 (65) 72.7 (63.6) 66.7 (66.7)
WP (bior3.1, L=3) 126 7(14) 50 (65) 45.5 (54.5) 55.6 (77.8) 70 (55) 63.6 (72.7) 77.8 (33.3)
WP (bior3.3, L=3) 126 13 (20) 55 (65) 54.5 (72.7) 55.6 (55.6) 70 (65) 72.7 (63.6) 66.7 (66.7)
WP (bior4.4, L=3) 126 13 (20) 50 (65) 45.5 (72.7) 55.6 (55.6) 65 (65) 72.7 (63.6) 55.6 (66.7)
WP (haar, L=3) 126 4(10) 70 (60) 72.7 (54.5) 66.7 (66.7) 70 (85) 72.7 (90.9) 66.7 (77.8)
WP (db4, L=3) 126 14 (23) 60 (60) 45.5 (63.6) 77.8 (55.6) 65 (55) 81.8 (54.5) 44.4 (55.6)
WP (db6, L.=3) 126 14 (18) 55 (55) 54.5 (63.6) 55.6 (44.4) 45 (70) 45.5(72.7) 44.4 (66.7)
WP (sym3, L=3) 126 15 (17) 60 (60) 54.5 (72.7) 66.7 (44.4) 70 (70) 63.6 (63.6) 77.8 (77.8)
WP (sym3, L=3) 126 12 (17) 45 (55) 45.5 (45.5) 44.4 (66.7) 70 (75) 63.6 (81.8) 77.8 (66.7)
WP (coifl, L=3) 126 11(10) 65 (70) 72.7 (81.8) 55.6 (55.6) 75 (90) 31.8 (90.9) 66.7 (88.9)
WP (coif2, L=3) 126 10 (18) 60 (60) 63.6 (63.6) 55.6 (55.6) 75 (70) 63.6 (100) 88.9 (33.3)
GT 24 139 [ 75655 | 7127345 | 778(556) || 85(65 | 81.8(546) | 88.9(77.8)
STATS 15 78) [ 55500 | 636727y | 444222 [ 7065 [ 727(127) | 55.6(66.7)
ACC: Accuracy, SN: Sensitivity, SP: Specificity, and L: number of decomposition levels. bior: biorthogonal, db: daubechies, sym: symlet,
coif: coiflet, and STATS: statistical and fractal feature set. Values in parentheses correspond to diastole; the others to systole.

Bold characters correspond to the highest accuracy scores in each decomposition scheme.

the sym5 in systole (55%) and sym3 and coif1 in diastole scored TABLE II
80%. For WP, haar in systole and coif1 in diastole all produced EXAMPLES OlﬁgﬁiﬁéﬁgﬁggSéﬁgﬁgiifg&:?w“ OF THE
70%. GT yielded an accuracy of 75% for systole and 55% for

diastole. STATS achieved an accuracy of 55% for systole and Subimage’s DV
50% for diastole. Fetre : :

Overall, for both classifiers, WP combined with coifl pro- Systale Asymptomatic || Symptomatic
duced the highest overall accuracy for systole and diastole Mean (1)

(82.5% and 67.5%, respectively, for SVM and PNN), followed Dh3A,Dh; 1.989+0.502 3.732+1.911 12.73
by WP combined with haar (77.5% and 65%, respectively, for Dh;DhoDhy 0.002+0.001 0.003+0.002 6.81
SVM and PNN). Dh,Dh; 0.005+0.003 0.011+0.008 6.75

Fo'r SVM, if thF: average accuracy over all investigated basis gﬁ?DhZAl 1()'5;?255110:)71735 2(5)3312(1)10?1 g;g
functions is considered, the GT was best (75%), followed by Sid (o)

DWT together with WP (68.8%), and SWT together with STATS Dh3A;Dh; 0.003+0.002 0.009+0.006 13.76

by 67.5%. For PNN, the GT was also best (65%) followed by WP Dh;Dv,A; 0.003+0.001 0.0050.003 4.89

(59.3%), SWT (57.8%), DWT (57.3%), and STATS (52.3%). Dh3Dh,Dhy 0.001+0.000 0.001x0.000 4.83

With respect to the other investigated classification perfor- DhsDhyAy 0.003+0.002 0.005+0.003 444

. . Dh3AxA; 0.001+0.001 0.002+0.001 4.43

mance parameters, i.e., SN and SP, the aforementioned de- DhoA,; 5. 42620.755 3.23820.910 YD)
composition scheme-wavelet combinations generally produced Diastole
highest values in these parameters as well. Mean ()

Table IT shows the average (+std) values of the selected fea- Dh3Dh,Dh; 2.493+0.701 4.124+1.320 7.59
tures for WP with coifl and SVM, for systole and diastole, Dh3A,Dh, 0.025+0.014 0.044+0.028 5.80
the combination that produced the highest overall accuracy. As ~ _Dh2Dhi 0.678+0.266 0.944+0.195 4.87
we can see, most of these correspond to horizontal subimages. Dhahody A L 003801002 410
Also, the DV values in systole were significantly higher than in DhsDhay 000520009 0.008:0.004 333

’ Dh; 0.001+0.001 0.002+0.001 3.25
diastole (p-value < 0.05). DhyA, 0.547+0.297 0.6370.153 3.01
Dh3A,Dh; 0.438+0.226 0.519+0.139 291

Std (o,
V. DISCUSSION Dhg,fséAl 0.001£0.001 0.0020.001 2.93

In this study, an in-depth investigation was attempted of the Dd;Dd,Dh; 0.001:0.001 0.001+0.001 2.89

possibility of wavelet transforms to characterize the texture of
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carotid atheromatous plaque tissue from B-mode ultrasound
images. To this end, 1) four decomposition schemes, namely,
DWT, SWT, WP, and GT and 2) a number of basis functions
from different wavelet families were investigated. The numeri-
cal results produced using combinations of the aforementioned
point to some interesting observations. Given that this is one
of the first attempts to characterize carotid artery tissue using
a scale/frequency approach, the findings of the study may be
useful in wavelet-based texture analysis of ultrasound images
of arterial tissue.

A recently presented multiresolution approach for the charac-
terization of carotid plaque included the AM—FM representation
of the plaque ultrasound image [23]. In this case, the nonstation-
ary image content was modeled in terms of a series expansion
of AM-FM component images.

In this study, the performance of SVM was superior to that
of PNN for the great majority of the investigated feature sets.
A similar finding was also reported in [15]. SVM is an efficient
classification method, which compared to other classifiers, is
less affected by the so-called “curse of dimensionality” [24].
Thus, the large number of features provided by the multireso-
lution methods investigated here, allow SVM to yield relatively
high classification rates.

A crucial issue that should be clarified in the context of this
study is which wavelet transform would be more appropriate
for the application under interrogation. According to our ex-
perimental results, although drawn from a limited dataset, WP
combined with the coifl outperformed the other investigated
combinations in terms of the overall accuracy. By definition,
WP provide a richer spatial/frequency representation, including
high-, medium-, and low-frequency information, which is de-
sirable for ultrasound images of the carotid artery. On the other
hand, the other decomposition schemes are usually constrained
to low-frequency information, which might not be adequate
for classification [25]. Based on the earlier analysis, it is sug-
gested that WP would be more appropriate for wavelet-based
texture analysis of ultrasound images of the carotid atheroma-
tous plaque.

Appropriate choice of the basis function is another key is-
sue for efficient wavelet-based texture analysis. In the WP case,
coifl followed by haar yielded the highest overall performance
values, 82.5% and 77.5%, respectively (see Table I). In addition
to this, according to recommendations in a previous study [18],
the desired properties of basis functions for texture analysis
should include orthogonality (all interrogated wavelets were or-
thogonal), symmetry (haar and bior), and shift invariance (only
haar in the case of DWT and WP, whereas SWT allows for
invariant properties because downsampling is avoided). Based
on the earlier analysis, it is suggested that the near symmetric
orthogonal coifl could be used for WP analysis of ultrasound
images of carotid atherosclerotic plaque.

Previous studies on texture-based classification of carotid
atherosclerotic plaque from B-mode ultrasound yielded vari-
ous performances. Christodoulou et al. [3] reported a classi-
fication performance of 73.1% using a variety of texture fea-
tures and self-organizing maps. Mougiakakou ef al. [26] reached
99.1% classification using statistical and laws’ texture features

and genetic algorithms. The more recent multiscale studies,
including AM-FM representation [23] and multilevel morpho-
logical analysis [15], reached 71.5% and 73.7% accuracy, re-
spectively. Because the datasets, image analysis methods and
classifiers used in these studies are different, a direct compar-
ison cannot be attempted. However, it could be argued that
WP analysis in combination with SVM can be considered effi-
cient for texture classification of carotid plaque from B-mode
ultrasound.

According to [27], compared to DWT, the SWT multiresolu-
tion scheme is less dependent on the wavelet filter and a reason-
able choice could only be resorted to application considerations.
In our study, compared to the other decomposition schemes, the
SWT produced less variability in terms of the accuracy values
both for systole and diastole, especially when SVM was used.
This, in combination with the fair performance of SWT (67.5%
accuracy on average in the SVM case), might be an accept-
able choice if one is unsure about which decomposition scheme
and/or basis function to select.

The somewhat different findings produced for different
phases of the cardiac cycle, namely, systole and diastole, might
be due to slight differences in the allocation of material within
the plaque, which may be reflected in the analysis of texture.
Related to this, is the fact that the DV values were significantly
higher in the systolic images (see Table II), which may suggest
greater discriminative ability in this phase of the cardiac cycle.
At this point, one should note that for systole, the highest clas-
sification accuracy was achieved by the GT using SVM (85%,
Table I), suggesting that for systolic images, the GT might be
a reasonable choice. Accordingly, it is advisable that texture
analysis should be made for the same cardiac cycle phase for all
images of the investigated population.

The selected features for WP using coif1 corresponded mostly
to the horizontal direction (see Table II). It is possible that the
strains experienced by the arterial tissue during the cardiac cy-
cle, due mostly to blood pressure and blood flow, affect the
distribution of material within the plaque, which in turn affects
the image appearance and the estimated texture. It would, there-
fore, be interesting to attempt to investigate the strain field of
plaques with different texture values using an established motion
analysis methodology [17].

The performance of the more “traditional,” i.e., statistical and
fractal, features was inferior to that of the multiresolution fea-
tures, yielding an accuracy of 67.5% using SVM. This value
is similar to that reported in a previous study [3], using the
same feature set along with self-organizing map (68%) and the
k-nearest neighbor (66.9%) as classifiers. When used alone, the
performance of GSM, a common measure of ultrasound image
echogenicity, yielded 62.5% overall accuracy using SVM. Given
the higher classification accuracy (82%) of WP with coifl, this
technique may be considered a better alternative for character-
izing atheromatous plaque tissue. The superiority of multireso-
lution techniques over more “traditional” ones might be due to
their ability to capture both the frequency and spatial content
of the image by filtering in specific directions and providing
features that contain directional information; such information
is not captured by “traditional” features.
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VI. CONCLUSION

This study demonstrated that wavelet-based texture analysis
may be promising for characterizing atheromatous tissue. As
an initial approach, we suggest using WP decomposition with
coiflet] and SVM for such applications. An interesting collateral
finding was that biomechanical factors, namely, plaque strains
during the cardiac cycle, may be important in the analysis of tex-
ture. Additional studies, systematically applying the proposed
methodology to larger populations, are expected to corroborate
our findings.
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