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Abstract. This work addressed a major clinical challenge, namely valid
treatment planning for carotid atherosclerosis (CA). To this end, it in-
troduced a novel computer-aided-diagnosis (CAD) scheme, which relies
on the analysis of ultrasound videos to stratify patient risk. Based on
Hidden Markov Models (HMM), it is guided by spatiotemporal patterns
representing motion and strain activity in the arterial wall and it acts as
a voice-recognition analogue. The designed CAD scheme was optimized
and evaluated on a dataset of 96 high- and low-risk patients with CA, by
investigating patterns with the strongest discrimination power and the
optimal HMM parameterization. It was concluded that the optimized
CAD scheme provides a CAD response with accuracy between 76% and
79%. The introduced CAD scheme may serve as a valuable tool in the
routine clinical practice for CA toward personalized and valid therapeu-
tic decision for the disease.
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1 Introduction

Carotid atherosclerosis (CA) is a chronic degenerative disease, gradually re-
sulting in the formation of lesions (plaques) in the inner lining of the carotid
artery. The fact that (a) CA is the main cause for stroke, (b) the morbidity,
disability and mortality rates associated with stroke are increased, and (c) the
current clinical practice for treatment selection (TR1: carotid revascularization
or TR2: conservative therapy) has proved insufficient, poses the development
of computer-aided-diagnosis (CAD) schemes for CA among the current major
clinical needs [1].

Traditionally, vascular physicians select ultrasound (US) examination in di-
agnosis and follow-up for patients with CA. Moreover, the use of affordable
imaging techniques, such as US, in CAD is a crucial factor. Therefore, US image
analysis allows to upgrade the potential of a low-cost routine examination into a
powerful tool for objective and personalized clinical assessment, i.e. risk stratifi-
cation in atherosclerotic lesions. As a result, the development of CAD schemes,



which are based on US image analysis, is considered a grand challenge by the
scientific community [2].

Although arterial wall dynamics constitute the direct mechanism for neu-
rological disorders of CA, the role of motion features in CAD remains almost
unexplored [2]. A few studies have investigated potential motion-based risk in-
dices [3], while the incorporation of such indices in CAD schemes was recently
attempted for the first time [4]. However, none of the related studies has investi-
gated the role of motion patterns of the arterial wall in discriminating vulnerable
atherosclerotic lesions.

This study focuses on arterial-wall spatiotemporal patterns, rather than mere
motion indices, in an attempt to further elucidate the potential of arterial wall
dynamics in CAD for CA toward enhancing validity in treatment planning. To
this end, it designs a novel CAD scheme, which combines the analysis of US
image sequences (videos) with Hidden Markov Models (HMM) and it is guided
by spatiotemporal patterns representing kinematic and strain activity in the
arterial wall. The designed CAD scheme is applied to US video recordings of 96
high- and low-risk patients with CA to identify the optimal parameterization for
HMM and the spatiotemporal patterns with the strongest discrimination power.

2 Material & Methods

The proposed CAD scheme relies on ultrasound-video-based spatiotemporal pat-
terns of the arterial wall to characterize a patient as high- or low-risk, and ac-
cordingly advise on the most suitable therapy (Fig. 1). In correspondence with a
voice-recognition system, the arterial wall dynamics which account for stable or
vulnerable atherosclerotic lesions vary among patients, in the same way as iden-
tical words can be pronounced in different ways by humans with different voices.
The spatiotemporal patterns correspond to the words (sets of phonemes) and
a lexicon attributes the label "high-risk” or ”low-risk” patient (or equivalently
"TR1” or "TR2”) to each word. The design principles of the CAD scheme, as
well as the optimization and evaluation procedures which were followed to in-
vestigate its potential, are hereafter presented in detail.

2.1 Design Issues

Motion analysis is performed for five regions of interest (ROIs) on a B-mode US
video of a longitudinal section of the arterial wall (Fig. 1). The particular imag-
ing modality allows the estimation of tissue motion in two dimensions, namely
longitudinal, i.e. along the vessel axis, and radial, i.e. along the vessel radius. The
five ROIs are the posterior (PWL) and anterior wall-lumen (AWL) interfaces,
the plaque top (PTS) and bottom surfaces (PBS), and the plaque region which
is contoured by PTS and PBS.

All pixels composing the five ROIs are selected as motion targets. From
the target-wise radial and longitudinal motion waveforms which are produced
using ABMk p_ k2 [3], 146 spatiotemporal patterns (120 kinematic and 26 strain
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Fig. 1: Workflow for generating a CAD response (CADr) using ultrasound-video-
based spatiotemporal patterns of the arterial wall. CM: classification model.

waveforms) are estimated according to the schematic representation in Fig. 2.
Specifically, 24 kinematic waveforms are produced for each ROI by estimating
target-wise velocity and displacement waveforms and then computing the mean
and median waveforms over space (Fig. 2(a)). Based on similar steps and recently
published mathematical formulas [5], strain waveforms are produced to express
relative movements between (a) PWL and AWL, (b) PBS and PTS, (c) PBS and
PWL or AWL, and (d) PTS and PWL or AWL (if the plaque was located at
the posterior or the anterior wall, respectively), and local deformations in PWL,
AWL, and PTS (Fig. 2(b)).

The stage of patient characterization as ”high-risk” or ”low-risk” is imple-
mented with two majority voting schemes, each of which is fed with a subset of n
spatiotemporal patterns (with n < 146) and is based on n classification models
(one for each spatiotemporal pattern). Each classification model is an implemen-
tation of an HMM, a stochastic state automaton, which, if properly trained, can
decode an observation sequence (word) and hence recognize its underlying pat-
terns [6]. Due to the periodic nature of arterial wall motion, the spatiotemporal
patterns are periodically reproduced. Therefore, a left-to-right HMM, consisting
of five states, was considered a suitable choice [7].

The first voting scheme generates the probability of the patient belonging
in the "high-risk” group (V;), while the second one estimates the probability
to be in ”low-risk” (V2). The vote of each scheme (Vj, with j € {1,2}) is es-
timated using the classification outputs, p € {0 : false,1 : true}, and some
weights, w € [0, 1], of the classification models (eq. (1)). The final CAD response
(CADr) is produced using eq. (2), with ”-1”7, 70", and ”1” representing ”low-
risk”, "not sure”, and "high-risk” potential results, respectively. The values of
the parameters n and w were defined based on the optimization and evaluation
results (for more details, see sections 2.2 and 3).
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Fig.2: Schematic representation of the production of (a) 120 kinematic and (b)
26 strain waveforms. PWL, AWL, PBS, and PTS are defined in text.
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2.2 Optimization & Evaluation

The optimization and evaluation of the designed scheme relied on spatiotemporal
patterns for 96 patients (aged 50—90 years) with established CA (stenosis >50%)
[4]. For each patient, the carotid artery was scanned in the longitudinal direction
according to a standardized protocol (transducer, linear array 12 MHz; dynamic
range, 60 dB; persistence, low) and a B-mode US video was recorded at a rate
higher than 25 frames/s for at least 3 (2 — 3 consecutive cardiac cycles). Among
those patients, 20 had experienced an ischemic cerebrovascular event (stroke
or transient ischemic attack) associated with the carotid stenosis (”high-risk”



group), while 76 had no neurological symptoms (”low-risk” group) within a 6-
month time period from the time of examination.

HMMs were implemented using the HTK Speech Recognition Toolkit, in
which input signals are first sampled and converted to Mel-frequency cepstral
coefficients; training is achieved through the Baum-Welch method, which has
been employed successfully in cardiovascular applications [7,8]. In this study,
a separate HMM model was implemented for each type of spatiotemporal pat-
tern and it was fed with the corresponding waveforms for all patients. Each
HMM was parameterized in terms of (a) the implementation with monophones
or triphones, where each word consists of three or nine phonemes, respectively,
and (b) the preprocessing stage. The latter parameter involved two scenarios,
in which the spatiotemporal patterns were (1) scaled and (2) not scaled in time
to the maximum video duration among all patients. The optimization of each
HMM lied in the maximization of the classification accuracy (i.e. percentage of
correctly classified cases) for the corresponding spatiotemporal pattern, which
was measured using leave-one-out cross validation [9]. In leave-one-out, a single
observation (patient) is used as the testing sample, and the remaining observa-
tions compose the training dataset; this is repeated (round robin) such that each
observation is used once as the testing sample.

3 Results

Fig. 3 is a graphical presentation of the maximum classification accuracy, which
was achieved for each spatiotemporal pattern by the corresponding optimized
HMM. The classification performance ranged between 57% and 81%, and the
average performance (over the 146 spatiotemporal patterns) was 70%.
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Fig. 3: Maximum classification accuracy for each type of spatiotemporal pattern
of the arterial wall, using the corresponding optimized HMM.



Among all spatiotemporal patterns, we identified those with the strongest
discrimination power (fig. 4), i.e. those which yielded a high (> 756%) average
value of specificity (i.e. correctly classified ”low-risk” cases) and sensitivity (i.e.
correctly classified "high-risk” cases). For those n = 24 spatiotemporal patterns,
Table 1 includes a short description, the most suitable HMM parameterization
according to the optimization procedures, and the corresponding sensitivity and
specificity results.

Based on the above results, the majority voting schemes of the final CAD
scheme are fed with the spatiotemporal patterns of Table 1, they consist of the
corresponding optimized HMMs, and the weights w in V7 and V; (eq. (1)) equal
the corresponding sensitivity and specificity values, respectively.
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Fig. 4: Zoom in the (a) sensitivity and (b) specificity values for the spatiotem-
poral patterns with the strongest discrimination power.

4 Discussion

This work addressed a major clinical challenge, namely valid treatment planning
for CA. In this direction, it introduced a novel image-driven CAD scheme, which



Table 1: 24 spatiotemporal patterns with the strongest discrimination power. For
each case, the encoding of the pattern according to Fig. 2, a short description, and
the specificity and sensitivity values which were achieved by the corresponding
HMM (together with the corresponding parameterization) are presented.

Spatiotemporal pattern Performance HMM

# Description Specificity Sensitivity parameterization
K1 PWL [mean)] LV 80.30% 70.00% ntl
K18 PWL [median] abs. RV 71.21% 85.00% tsl
K20 PWL [median] RD 74.24% 75.00% tsl
K21 PWL [median] TD 68.18% 85.00% tsl
K24 PWL [median] abs. RD 69.70% 85.00% tsl
K36 AWL [mean] abs. RD 87.88% 75.00% tsl
K57 PBS [mean] TD 80.30% 75.00% tsl
K60 PBS [mean] abs. RD 83.33% 70.00% tsl
K64 PBS [median] VA 72.73% 80.00% tsl
K68 PBS [median] RD 72.73% 80.00% ts1
K69 PBS [median] TD 77.27% 75.00% tsl
K76 PTS [mean)] VA  81.82% 80.00% tsl
K88 PTS [median] VA  84.85% 70.00% tsl
K90 PTS [median] abs. RV 81.82% 70.00% tsl
K91 PTS [median] LD 80.30% 75.00% tsl
K94 PTS [median] TD 80.30% 70.00% tsl
K95 PTS [median] abs. LD 71.21% 80.00% tsl
K100 plaque [mean] VA 78.79% 80.00% nt1
K104 plaque [mean] RD 71.21%  80.00% ts1
K105 plaque [mean] TD 74.24% 80.00% tsl
K112 plaque [median] VA 74.24% 80.00% ntl
K115 plaque [median] LD 56.06% 100.0% tsl
S1 PWL & AWL [mean] RS 65.15% 85.00% tsl
S18 PTS & PWL [median] LS 175.76% 85.00% ntl
Average value 76% 79%

L: longitudinal; R: radial; T: total; (for x={L,R,T}) xS: x strain; xD: x displacement; xV: x velocity; DA: dis-
placement angle; VA: velocity angle; HMM {(ts1): monophones, time-scaling; (nt1): monophones, no time-scaling;};

incorporates spatiotemporal patterns of the arterial wall, in a framework of a
voice-recognition analogue. This implementation allowed for elucidating the role
of motion features, and in particular kinematic and strain patterns rather than
mere mobility indices, in risk stratification in CA. To the best of the authors’
knowledge, no similar attempts have been reported in the literature.

The proposed CAD scheme is able to assist treatment selection with accuracy
between 76% and 79% (Table 1). Given the results presented by related studies
in the field [2] and the CAD performance of the existing clinical practice on
the same dataset [4], the aforementioned results are very encouraging for the
potential of arterial-wall-motion patterns in CAD for CA. The final CAD scheme
relies on 22 kinematic and 2 strain patterns which are related with the mobility
of all the selected ROIs. This conclusion further reinforces the argument that
the motion activity of the atherosclerotic lesion itself and healthy parts of the
wall close to the lesion are equally important in risk stratification in the disease
(3], [4].

A significant contribution of this study with respect to the related literature
is that it suggested that the phenotype of high- and low-risk CA differs in terms
of not only mobility indices describing motion properties, but also in motion tra-
jectories and strain patterns. This conclusion remains to be further investigated
in future studies on larger datasets, which will reveal the full potential of the



presented approach. In the same line of work, the effect of input variability (ex.
frequency and frame rate in US image recordings) on HMM performance will be
examined, as well.

In conclusion, the introduced CAD scheme may serve as a valuable tool in
the routine clinical practice for CA, while it could be further enriched with other
temporal features, such as the arterial pressure and heart rate. Both the design
principles and the results of this study are expected to motivate the incorpo-
ration of motion analysis and spatiotemporal patterns in future related studies
designing CAD tools for CA toward valid discrimination of patients in high-risk
for stroke, which need to undergo carotid revascularization to prevent neurolog-
ical disorders, from low-risk ones, who shoud avoid unnecessary interventions.

Acknowledgements. This work was supported in part by the Operational
Program ”Competitiveness and Entrepreneurship” and Regional Operational
Programmes of the National Strategic Reference Framework 2007-2013 and ”SYN-
ERGASIA: Collaborative projects of small and medium scale”. The work of A.
Gastounioti was supported in part by a scholarship from the Hellenic State
Scholarships Foundation.

References

1. A. Ross Naylor, “Time to rethink management strategies in asymptomatic carotid
artery disease,” Nat Rev Cardiol, vol. 9, pp. 116-124, 2012.

2. S. Golemati, A. Gastounioti, and K. S. Nikita, “Toward novel noninvasive and low-
cost markers for predicting strokes in asymptomatic carotid atherosclerosis: the role
of ultrasound image analysis,” IEEE Trans Biomed Eng, vol. 60, no. 3, pp. 652-658,
2013.

3. A. Gastounioti, S. Golemati, J. S. Stoitsis, and K. S. Nikita, “Adaptive block match-
ing methods for carotid artery wall motion estimation from b-mode ultrasound: in
silico evaluation and in vivo application,” Phys Med Biol, vol. 58, no. 24, pp. 8647—
8661, 2013.

4. A. Gastounioti, V. Kolias, S. Golemati, and et al., “Carotid - a web-based platform
for optimal personalized management of atherosclerotic patients,” Comput Meth
Programs Biomed, vol. 114, no. 2, pp. 183-193, 2014.

5. S. Golemati, J. S. Stoitsis, A. Gastounioti, A. C. Dimopoulos, V. Koropouli, and
K. S. Nikita, “Comparison of block-matching and differential methods for motion
analysis of the carotid artery wall from ultrasound images,” IEEE Trans Inf Technol
Biomed, vol. 16, no. 5, pp. 852-858, 2012.

6. R. O. Duda, P. E. Hart, and D. H. Stork, Pattern Classification. Wiley Interscience,
2000.

7. R. V. Andreyo, B. Dorizzi, and J. Boudy, “Ecg signal analysis through hidden
markov models,” IEEE Trans Biomed Eng, vol. 53, no. 8, pp. 1541-1549, 2006.

8. V. Baier, M. Baumert, P. Caminal, M. Vallverdu, R. Faber, and A. Voss, “Hidden
markov models based on symbolic dynamics for statistical modeling of cardiovascu-
lar control in hypertensive pregnancy disorders,” IEFEE Trans Biomed Eng, vol. 53,
no. 1, pp. 140-143, 2006.

9. P. Refaeilzadeh, L. Tang, and H. Liu, Cross-Validation. Encyclopedia of Database
Systems. Springer US, 2009.



	Using spatiotemporal patterns of the arterial wall to assist treatment selection for carotid atherosclerosis
	Introduction
	Material & Methods
	Design Issues
	Optimization & Evaluation

	Results
	Discussion


