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Amethod based on the combination of Local Binary Pattern
(LBP ) operator and radial lengths (RL) is presented aiming
at the identification of Architectural Distortions (ADs ) in
mammograms. LBP operator, a number of its variants and
RL are combined together producing a high-dimensional
feature space. A process, based on the combination of Prin-
cipal Component Analysis (PCA) and t − t est , is used to
effectively transform feature space and reveal themost de-
scriptive features. The classification step is performed using
a Support Vector Machine (SVM ) classifier. Open access
databases (Mammographic Image Analysis Society-MIAS
and Digital Database for ScreeningMammography-DDSM )
are used through an exhaustive evaluation framework that
aims at eliminating bothmammogram selection bias and lim-
ited subtlety variation, thus enabling a fair and complete
comparison procedure. Furthermore, in order to provide a
testbed for future comparisons, a dataset is constructed
from all the available AD Regions Of Interest (ROI s ) in
DDSM (163 AD vs 375 ROI s from specific normal cases)
and is used to further evaluate the performance of the pro-
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posedmethod. Themethod performed flawlessly and classi-
fied correctly all cases.
K E YWORD S
Local Binary Pattern (LBP), Principal Component Analysis (PCA),
t-test, texture classification, architectural distortion (AD),
mammogram

1 | INTRODUCTION

Mammography is themain imaging technique for the detection and diagnosis of breast cancer, however about 10% of
all cancerous lesions aremissed by radiologists due to false interpretation of mammographic images (Sundaram et al.,
2011). Readingmammograms is known to be a very demanding job for radiologists since judgments depend on training,
experience, and subjective criteria (Cheng et al., 2006).

Architectural distortion (AD ) is definedas a focal defect offibroglandular distributionwhich results in amodification
of the architecture of breast parenchyma (radiating-out spicules) without being accompanied by an increased density
or mass (Lavoue et al., 2016). Unfortunately, due to its subtlety and variability in presentation, it is often missed
during screening (Burrell et al., 1996). Evenmodern imaging techniques, like digital mammography, have failed to alter
this fact. More specifically, a recent study (Suleiman et al., 2016) has shown that despite the availability of improved
post-processing tools for digital mammography, AD detection remains a difficult task for readers.

The basic characteristic ofADs that most methods try to exploit is the existence of radiating spicules. Amethod
based on line extraction has been presented (Nemoto et al., 2009), where a likelihood of AD association is based on
density and geometric measures on the lines extracted. Furthermore, a number of methods based on the analysis
of oriented structures, derived mainly through Gabor filters, have been reported (Karssemeijer and te Brake, 1996;
Ayres and Rangayyan, 2007; Banik et al., 2013; Rangayyan et al., 2013). More specifically, approaches based on the
combination of orientation fields with phase portraits (Ayres and Rangayyan, 2007), (Banik et al., 2013) or the deviation
of oriented structures from the expected orientation of breast tissue (Rangayyan et al., 2013) have been proposed.

However, methods based on multi-scale analysis suffer from the fact that AD spicules have variable size and
contrast. Additionally, phase portrait analysis often fails since spicules usually present an incomplete “star” shape
(Biswas andMukherjee, 2011). As a result, different approaches have been proposed that ignore the specific shape
properties of ADs and focus mainly on texture analysis. One such approach has been based on fractal dimension
(Tourassi et al., 2006; Beheshti et al., 2016; Guo et al., 2009). In another case, a number of texture characteristics have
been defined using a set of multi-scale oriented filter bank responses. GaussianMixtureModels have then been used in
order to define a set of texture primitives (textons) (Biswas andMukherjee, 2011). Recently, a method to discriminate
between various breast lesion types based on local energy-based shape histograms has been presented (Wajid and
Hussain, 2015). The authors reported 100%accuracy in discriminatingADs (22AD cases) from other lesion types but
no evaluation was presented against normal ROI s . A different approach is based on the empirical mode decomposition
of the image followed by a model-based approach (Zyout and Togneri, 2015). The method uses a large number of
image ROI s fromDDSM database but performance analysis is limited only to the Area Under the receiver operating
characteristic Curve (AUC ). Although, appropriate performance metrics are reported in most studies, their direct
comparison is not feasible, since, in themajority of cases, either restricted access datasets are used or, even in the case
of public databases, the exact image subset considered is not adequately defined. Thus, the reported performance is
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highly dependent on the dataset used.
Themethods described so far, can be categorized as either performing AD detection (Tourassi et al., 2006; Guo

et al., 2009;Wajid andHussain, 2015) orAD identification (Karssemeijer and te Brake, 1996; Nemoto et al., 2009; Ayres
and Rangayyan, 2007; Banik et al., 2013; Rangayyan et al., 2013; Biswas andMukherjee, 2011; Beheshti et al., 2016). In
the detection case, methods receive whole mammograms as inputs and attempt to define the existence ofADs . In the
identification case, methods receive various ROI s as input and try to categorize them either as normal tissue orAD . In
the current work, we attempt to performAD identification.

Local Binary Pattern (LBP ) has become quite popular lately as one very efficient texture operator (Ojala et al.,
2002). Themain idea of LBP is to represent local patterns by calculating the difference of a central image pixel from its
surrounding pixels in a small neighborhood around it. LBP , despite its simplicity, has been proven to be very effective in
describing local image patterns, and has achieved impressive classification results on representative texture databases
(Hong et al., 2014). LBP has recently been used formass detection onmammographic images. Texture features from
gray level co-occurrencematrix (GLCM ) and a variation of LBP called completed local binary pattern (CLBP ) along
with geometry features have been combined in order to discriminate masses from normal breast tissue (Guo et al.,
2010). Furthermore, non-uniform patterns, that in normal LBP procedures are ignored, have been used towards the
discrimination between benign andmalignant mass lesions (Liu and Zeng, 2015).

To the best of authors’ knowledge, LBP has not been previously used for the identification ofADs inmammographic
images. Moreover, in an earlier work, we have highlighted the potential of radial lengths (RL) to enhance the contrast
onmammograms, achieving promising results (Chatzistergos et al., 2014). Motivated by the simplicity and efficacy of
LBP in texture analysis and the ability of RL to reveal diagnostically critical information, we propose the combination of
these twomethodologies, in the process of discrimination betweenAD and normal tissue or other lesion types (masses,
calcifications). Furthermore, in an attempt to reduce the dimensionality of the feature set, a feature selection process
based on the combination of Principal Component Analysis (PCA) and t − t est is proposed. The final classification step
is performed using Support VectorMachines (SVM ).

In order to enable fair comparisons with the results reported in previous studies, as well as with future studies,
we exploit two well established open access mammogram databases (MIAS , DDSM ) and we propose a complete
evaluation framework based on the creation ofmultiple, randomly assembled datasets. Thus, we attempt to avoid image
selection bias and limited subtlety variation, which are inherent in most published studies reporting results based on
fixed, manually selected datasets. We also provide performancemetrics on a dataset constructed from all the available
AD Regions of Interest (ROI s ) in theDDSM (163AD vs 375 ROI s from specific normal cases), whichmay be used as
a representative testbed for the task ofAD identification, given its large size.

The rest of this work is organized as follows: Section 2 briefly reviews LBP and its variations. The classification
process and the proposed evaluation framework are presented in Section 3, followed by information regarding the
construction of a benchmarking dataset from public databases in Section 4. In Section 5, the classification performance
of the proposedmethod is evaluated and discussed.

2 | LBP BASED SCHEMES
2.1 | Classical LBP
Given an image I and a point gc at (xc , yc ), LBP is computed by first subtracting I (xc , yc ) from the gray values of image
points in a narrow neighborhood around the original point gc . If the result of the subtraction is greater or equal to
zero, the certain neighborhood point is assigned the value 1, otherwise 0 is assigned. The assigned values from all
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4 CHATZISTERGOS ET AL.

neighborhood locations are then summed up

LBPP ,R =
P−1∑
p=0

s
(
gp − gc

)
· 2p (1)

where, s(x ) =

1, x ≥ 0

0, x < 0
, gc is the gray value of the central pixel (xc , yc ), gp is the gray value of its neighbors and P is

the total number of involved neighbors.

Another important parameter for LBP is the size of the local neighborhoodwhich is defined through the radius R .
Given that a central pixel is located at (xc , yc ), the coordinates of gp are (xc +R ·cos(2 ·π ·p/P ), yc +R · sin(2 ·π ·p/P )). If
the coordinates are different from the exact pixel locations, interpolation is used to infer the gray value of the particular
points.

LBP as defined in (1) is not rotation invariant. Tomake it rotation invariant the number of spatial transitions (bitwise
changes 1/0) of LBP needs to be defined

U (LBPP ,R ) = |s(gP−1 − gc ) − s(g0 − gc ) |

+
P−1∑
p=1

|s(gp − gc ) − s(gp−1 − gc ) |. (2)

LBP patternswhoseU value is 0or 2 (U ≤ 2) are calleduniform, since theyhave limited transitions or else discontinuities
in their binary representation. By definition, exactly P + 1 uniform binary patterns can occur in a circularly symmetric
neighborhood set of P pixels. LBP can now be expressed in a rotation invariant way (LBP r iu2

P ,R
) if only uniform patterns

are considered

LBP r iu2P ,R =


∑P−1
p=0 s(gp − gc ), ifU (LBPP ,R ) ≤ 2

P + 1, otherwise
. (3)

LBP r iu2
P ,R

, which has P + 2 distinct output values can now be used to create an image histogram to represent image
texture

H (k ) =
H∑
i=1

W∑
j=1

f (LBP r iu2P ,R (i , j ), k ), k ∈ [0, P + 1],

f (x , y ) =

1, x = y

0, otherwise
(4)

where (H,W) refer to image height andwidth, respectively.
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CHATZISTERGOS ET AL. 5

2.2 | Completed LBP
As presented in the previous section, LBP is exclusively based on the sign of the calculated differences, discarding all
information found in themagnitude of the differences. However, this has the disadvantage that LBP is unaware of how
“strong” or else important a local structure is. To address this issue and integratemagnitude information into classic
LBP amodification of LBP called Completed LBP (CLBP ) is proposed (Guo et al., 2010).

InCLBP a local region is represented by its central pixel gray value and a local difference sign-magnitude transform
(LDSMT )

dp = gp − gc = sp · mp , (5)

sp = sign(dp ), (6)

mp =
��dp �� . (7)

LDSMT decomposes the image local structure into two complementary components, difference signs and differ-
encemagnitudes, which are then coded in a binary format using the following operators:

CLBP _SP ,R =
P−1∑
p=0

t (sp , 0) · 2p , (8)

CLBP _MP ,R =
P−1∑
p=0

t (mp , c) · 2p , (9)

t (x , c) =

1, x ≥ c

0, x < c
. (10)

where c is a threshold that is defined adaptively and usually set equal to themean value ofmp from thewhole image.
The central pixel is simply coded by a binary code after global thresholding

CLBP _CP ,R = t (gc , cI ) (11)

where cI is themean gray level of the whole image.
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6 CHATZISTERGOS ET AL.

2.3 | Thresholded CLBP (TCLBP)
Another disadvantage of LBP is that it tends to be sensitive to noise, particularly in near-uniform image regions
and smooth weak illumination gradients. To address exactly this issue, a work presented in (Tan and Triggs, 2010)
incorporated a threshold around the value of the central pixel introducing the notion of thresholded LBP .

Specifically, given a local neighborhood defined around a central pixel (xc , yc )with gray value gc , a thresholded
version ofCLBP can be defined using a parameter Ec which is either added (12) or subtracted (13) from the central
pixel value (gc )

g+c = gc + Ec , (12)

g−c = gc − Ec . (13)

Using the new values for the central pixel, (5), (8), (9) are transformed to

d+p = gp − g+c = s+p · m+
p , (14)

T CLBP _S+P ,R =
P−1∑
p=0

t (s+p , 0) · 2p , (15)

T CLBP _M +
P ,R =

P−1∑
p=0

t (m+
p , c) · 2p , (16)

d−p = gp − g−c = s−p · m−p , (17)

T CLBP _S−P ,R =
P−1∑
p=0

t (s−p , 0) · 2p , (18)

T CLBP _M −P ,R =
P−1∑
p=0

t (m−p , c) · 2p . (19)

For Ec = 0,T CLBP becomes identical toCLBP .
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F IGURE 1 Original image (left), 3D image representation after treating gray level values as z-axis values (center),
demonstration of Radial LengthsMethod on an image slice (right). Radial lines start propagating at each image point
after a value KP is subtracted from the image gray value at the corresponding point. Propagation will stop if the image
boundaries aremet. Points located at a suspected lesion region with high gray level values and close to strong edges
(Point A) will present smaller radial length values (rA1, rA2).On the other hand, points at low intensity regions away from
strong edges (Point B), which are commonly considered as normal tissue regions, will present larger radial length values
(rB1, rB2).

Two ways to define Ec are evaluated. At first, all differences between gc and gp are calculated (DI F Fi ) for the
entire image ROI and then Emeanc and E st dc are defined using (20) and (21) respectively

Emeanc =
1

TN

∑
i

|DI F Fi |, (20)

E st dc =

√
1

TN

∑
i

(DI F Fi − Emeanc )2, (21)

whereTN is the total number of differences for the particular image ROI .

2.4 | Radial Lengths and CLBP
In our previouswork (Chatzistergos et al., 2014)we demonstrated the ability to reveal diagnostically critical information
inmammograms by improving the local contrast, using a series of equally rotated radials that propagate until theymeet a
certain limit. The basic idea is to treat gray level values at each image point (x0, y0) as values in the z-axis (z0) and create
this way a 3D surface from the original image (Fig.1). Given the surface point (x0, y0, z0), a new point (x0, y0, z0 − Kp )
is defined by subtracting a certain value Kp from z0. From this point, a fixed number of lines can start propagate until
theymeet the surface limit. The lines must be equally rotated between each other and remain parallel to the surface
specified by axes x , y . The line lengths produced this way, comprise the radial lengths of image I at point (x0, y0). The
method described, is termed Radial LengthsMethod (RLM ).
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8 CHATZISTERGOS ET AL.

In this work, we investigate the potential of RLM to reveal strong local edges, which are of great importance in
most image classification tasks. More specifically, diagnostically critical information usually lies in high intensity image
regions (e.g. masses, calcifications) and therefore these regions are expected to contain a large number of strong edges
(Fig.1). On the other hand, regions with normal tissue are expected to present low intensity values and contain large
number of weak edges. The radial lengths from an image point located at a high intensity region and close to a strong
edge (Fig.1, Point A) will present lower values (rA1, rA2) as compared to the radial length values (rB1,rB2) from an image
point (Fig.1, Point B) located at a low intensity region away from strong edges.

At each image point a total number ofQ equally rotated radial lengths are defined. Furthermore, parameter KP is
defined using themaximum gray level value of each image using

KP = a · max (I ). (22)

Parameter a is user defined and takes values in (0, 1). Smaller values of a force radial lengths to propagate closer to
the image surface and therefore small gray level fluctuations have strong impact on the radial lengths. In other words,
smaller values of a introduce noise, while larger values reduce the sensitivity to important local edges. It was visually
determined that clinically important information is better revealed when a values lie between 0.05 and 0.15. Therefore,
in the current work a is set equal to {0.05, 0.10, 0.15}.

Once radial lengths (rq , where q ∈ [0,Q − 1]) at each image point (x , y ) are calculated, the radial differences (Rq )
are determined

Rq = rq − c, (23)

where

c =
1

H ·W · Q

H∑
x=1

W∑
y=1

Q−1∑
q=0

rq (x , y ). (24)

This subtraction of c from rq is performed as an equivalent to the subtraction of gc from gp used in classical LBP .
Furthermore, based on the notion ofCLBP equations (5), (8), (9) are transformed to

Rq = sq · mq , (25)

RL–LBP _SQ ,a =
Q−1∑
q=0

t
(
sq , 0

)
· 2q , (26)
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CHATZISTERGOS ET AL. 9

RL–LBP _MQ ,a =

Q−1∑
q=0

t
(
mq , cM

)
· 2q , (27)

where

cM =
1

H ·W · Q

H∑
x=1

W∑
y=1

Q−1∑
q=0

Rq (x , y ). (28)

A large number of radial lengths is desired so as not to omit useful information from the image. However, as Q
becomes larger, so does the computational cost. Q values, multiples of 2, between 4 and 32 have been evaluated.
Preliminary results have indicated small correlation betweenQ value and performance, forQ >= 8. In the following
steps,Q is set equal to 16, so as to ensure good performance without overly increasing computational cost.

One of the reasons why LBP has been proven to be so effective in characterizing various texture types is the fact
that by imposing the use of uniform patterns it actually distinguishes between strong andweak local edges, rejecting
the latter as noise. This characteristic of LBP is what wewant to further enhance by definingCLBP on rq instead of
the actual image values. The ability of RLM to reveal important local edges is demonstrated in Fig. 2 (e) to (h), where
themean radial length value, at each image point, is provided. One can notice that the various lesions are becoming
more obvious. Fig. 2 (i) to (l) and (m) to (p) present respectively, the LBP _S8,1 and RL–LBP _S16,0.05 histograms of
the corresponding lesion types. It can be seen that both methods provide differentiating histograms for different
lesion types, supporting the hypothesis that the combination of those twomethods can lead to improved classification
performance.More specifically and as far as RL–LBP _S16,0.05 is concerned, it can be seen that in Fig. 2 (r) at bin 9, ARCH,
CALC and the pair CIRC, NORMhave clearly separable values. Furthermore, at bins 1 and 2, CIRC clearly differs from
the rest.

2.5 | Feature histograms assembly
For each image ROI a number of binary codes using the operators determined so far, are defined. In all cases the
rotation invariant version of the operators is used. For the sign andmagnitude components, the relating binary codes
are defined using a series of variations. More specifically, seven thresholds (ET hr es = +E st dc ,−E st dc ,+Emeanc ,−Emeanc , 0)
as well as two {P , R } pairs ({P , R } = {1, 8} , {2, 16} , {3, 24}) are used. The computations are performed on average
values of block subregions rather than individual pixels (Jia et al., 2013), with block sizes (WL ) ranging from1 to 20 pixels
(WL = 0, 5, 10, 15, 20). Furthermore, sign andmagnitude components are calculated for the radial lengths defined for
three a parameters (a = 0.05, 0.10, 0.15). Following the notion ofCLBP , a binary code for the central grey level is also
defined. The produced codes are then used to produce one dimensional histograms or combined together to produce
two dimensional (2D ) or three dimensional (3D ) histograms. The multidimensional histograms are created by using
different binary code sequences at each dimension. Thesemultidimensional histograms are then converted back to 1D
by rearranging their values. This conversion is performed for the sake of simplicity and uniformity in the classification
step. The overview of the histogram (feature vector) creation process is given in Fig. 3.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r)

F IGURE 2 Various image ROI s ((a) to (d) ) received fromMIAS database, along with themean value of radial
lengths at each ROI point ((e) to (h)). Plots at (i) to (l) and (m) to (p) demonstrate LBP _S8 and RL − LBP _S16,0.05
histograms, respectively. An envelop line is included for each histogram to better highlight its fluctuations. A
comparison of the various envelop lines for LBP _S8 and RL − LBP _S16,0.05 histograms is given at (q) and (r) respectively.
ROI s include: (a) normal tissue (NORM), (b)AD (ARCH), (c) calcifications (CALC) and (d) circumscribedmass (CIRC).

3 | CLASSIFICATION
3.1 | Feature selection
The number of the produced histograms for each image ROI is very high (1320 histograms), therefore there is a need
to reduce the dimensionality of the feature set and reveal features with strong discrimination ability. To this end, a
framework based on the combination of PCA and t − t est is used (Fig. 4). From the original set of ROI s , a specific
dataset is randomly assembled. Then, based on the 10-fold cross validation procedure a training and a testing set is
properly defined. Test and training sets in this stage (Fig. 4.A) consist of 1320 histograms each of which contains from
10 until up to 1,000 bins.

Next, PCA on both training and testing sets is used to transform histograms into linearly uncorrelated variables
called principal components (Martinez and Kak, 2001). Each component is associatedwith a valueVP that expresses
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Image ROI

CLBP_S

CLBP_M

Center Gray Level CLBP_C

RL-LBP_S

RL-LBP_M

Histograms 
(Feature Vectors)

EC ∈ { EC
Mean, EC

Std}

Local Differences
(P,R= {1,8}, {2,16}, {3,24}) 

TCLBP_S+

TCLBP_M+

TCLBP_S-

TCLBP_M-

+EC

-EC

Radial DifferencesRLM 
(a={0.05, 0.10, 0.15})

Sub-region Averaging 
(WL={0,5,10,15,20})

F IGURE 3 Overview of feature histograms creation process. Feature histograms are created following routes A,B
and C. Route A: Subregion averaging for different window lengths (WL ) is followed by Local Differences calculation for
different pairs of neighborhood size (R ) and number of involving neighbors (P ). Either a positive (+) or negative (−)
threshold Ec is then used and results are given as inputs to appropriate sign (_S ) ormagnitude (_M ) CLBP or
thresholdedCLBP (T CLBP ) operators. Route B: Center gray level is given as input toCLBPC operator. Route C:
Radial lengthmethod (RLM ) for different a values is performed, followed by Radial Differences calculation and given as
input to appropriate sign (_S ) ormagnitude (_M ) RL − LBP operator.

the percentage of the total variance for the particular component. Components withVP < 1 are rejected. Principal
components from all different histograms of a single case (ROI ) are aligned together and form a new feature vector
(Fig. 4.B). Feature vectors from the training set are then used to perform a statistical test (t − t est ). The purpose is to
define the features for which there is significant statistical difference between cases that belong to different categories
(likeAD or normal). All other features from training and testing sets are rejected (Fig. 4.C). The statistical test used is
the two-sided t − t est with significance level 5%. In order to further reduce the number of features, PCA is used once
more. Again, components withVP < 1 are rejected. The resulting features from the original training and testing sets
(Fig. 4.D) are used for the final classification step.

3.2 | Evaluation framework
In order to perform the final classification step, a SVM classifier with linear kernel is used. This classifier is selected
mainly due to the fact that it is a well-established and effective classifier, used successfully in many classification
tasks (Wei et al., 2005; Liu and Tang, 2014; Andreadis et al., 2011). The feature selection framework, described so far,
effectively defines a reduced number of features but experimentation showed that there is strong relation between the
actual number of features used and the classification performance.

Therefore, a procedure based on 10 − f ol d cross validation andmisclassification rate is implemented in order to
define the number of features that maximize classification performance. Specifically, from each training set, a certain
number of features is considered and the set is segmented into ten partitions, nine ofwhich are used to train the classifier.
The trained classifier is used to classify the remaining partition. This step is repeated ten times in total, until all partitions
are used for testing. By calculating the percentage of misclassified cases for each test segment themisclassification rate
for the particular number of features is determined. Fig. 5 presents an example plot of misclassification rate in relation
to the number of features used. The final number of features to be used is the one that minimizes themisclassification
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Specific 
dataset

PCA

Training 
set

Testing 
set

t-test

1320 Histograms 
with 10 to 1000 bins 

each

About 50.000 
features

About 5.000 
features

About 40 
features

A. B. C. D.

10-fold cross-validation

About 10 
features

E.

Original 
set of 
ROIs

10 times

Classification 
on testing set

Train 
classifier

Misclassification 
rate

PCA

F IGURE 4 Feature selection and evaluation framework. From the original set of ROI s a specific dataset is defined
and separated into training and testing sets in order to perform 10-fold-validation (point A). Principal component
analysis (PCA) is then performed on the entire set (point B), followed by t − t est on just the train set. After this step all
statistical insignificant features from both training and testing set are rejected (point C). PCA is performed again (point
D) and followed bymisclassification rate process on train set to define the optimal features number (point E). These
features are then used to train the classifier and perform the final classification step on the testing set.

rate (Fig. 4.E). The order of features is not considered since they are actually sorted in descending order, based on the
percentage of the total variance defined in the lastly performed PCA.

4 | DATASETS

In order to enable proper comparisons with the results reported in previous studies of the literature, the data selection
process used in (Biswas and Mukherjee, 2011) is utilized. More specifically, four datasets (M1,M2, SM1, SM2) are
constructed fromMIAS Suckling et al. (1994) database and two (H,L) fromDDSM (Heath et al., 2001). Additionally,
a larger dataset (F ) is constructed and proposed, including all the available AD ROI s from DDSM database, in an
attempt to provide a representative testbed for the task ofAD identification

4.1 | MIAS
The first dataset fromMIAS (M 1) consists of 19AD ROI s and 45 normal ROI s , the second (M 2) consists of 19AD
ROI s and 28 ROI s with other abnormalities like calcifications and circumscribed masses. The third dataset (SM 1)
contains 18 spiculatedmasses with 45 normal ROI s and the fourth (SM 2) contains 18 spiculated ROI s and 28 ROI s
with other abnormalities. In imageswith lesions, ROI s are defined using the smallest bounding rectangle to the supplied
ground truth, while in normal cases, ROI s are randomly selected. More specifically, on each case a point belonging to
the actual breast region is randomly selected and used as the ROI ′s center, while an edge is randomly selected from a
pool consisted of allAD ROI edges. If the defined rectangle region is found to contain less than 90%of breast tissue it is
rejected and the procedure is repeated. The reasonwe use edge values from the pool of lesion ROI edges is to avoid
any possible bias of either fixed or completely random edge values.

Table 1 shows the distribution of the various lesion types in theMIAS database. It can be seen that there are 209
normal cases of which 45 need to be selected, furthermore there are 46 cases with calcifications or circumscribed
masses fromwhich 28 need to be selected. In order to avoid a possible bias in the case images aremanually selected, we
randomly select the required number of images from each lesion category. Therefore, all available ROI s are used to
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F IGURE 5 Misclassification rate (max. 1) in relation to the number of features used.

TABLE 1 MIAS lesion distribution.
Lesion type Total number of cases
Circumscribedmasses 25
Spiculatedmasses 19
Calcification 21
Architectural distortion 19
Normal 209
Other 29

form the ROI set and a special, random based, procedure is used to assemble each specific dataset. It should be noted
that special care is taken for the selected images to be evenly distributed in the various density categories.

4.2 | DDSM
The first dataset from DDSM (H ) consists of 40 AD ROI s and 40 normal ROI s from mammograms digitized using
the Howtek scanner while L dataset consists of 40 AD ROI s and 40 normal ROI s from mammograms digitized
using the Lumi sy s scanner (Biswas and Mukherjee, 2011). Given the large number of available images in DDSM ,
an approach similar to the one described forMIAS datasets is used. More specifically, the required images for each
dataset are randomly selected from a larger dataset, consisted of 54 AD ROIs fromMLO views, alongwith 80 normal
cases digitized usingHowtek scanner and 80 normal cases digitized using Lumi sy s . DDSM database provides breast
density categorization into 4 categories, based on Breast Imaging Reporting andData System (BI-RADS) (Sickles et al.,
2013). For the normal cases, special care is taken oncemore so as to ensure that equal number of images belong to the
two lower density categories and the two higher ones. More specifically since 40 cases from each scanner have to be
selected, 3 cases are selected from breast density category 1, 17 cases from category 2, 17 cases form category 3 and 3
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TABLE 2 Dataset composition

Dataset Regions of interest (ROIs)
M1 19Architectural distortions vs 45Normal
M2 19 Architectural distortions vs 28Other
SM1 18 Spiculatedmasses vs 45Normal
SM2 18 Spiculatedmasses vs 28Other
H 40 Architectural distortions vs 40Normal (Howtek)
L 40 Architectural distortions vs 40Normal (Lumisys)
F 163Architectural distortions vs 375Normal

from category 4. We select more images from density ratings 2 and 3 since these are themost common ratings.
Moreover, a larger dataset is constructed and used in an attempt to further evaluate the performance of the

proposedmethod. The dataset (F) consists of allAD ROI s available inDDSM and thus, any bias caused bymanually
selecting cases is removed. Both benign (29 cases) andmalignant (134 cases)AD ROI s are included, alongwith 375
normal ROI s from MLO and CC images in DDSM . A total number of 211 normal ROI s digitized using Howtek
scanner (subfolders normal-7 and normal-8), and 164 normal ROI s digitized using Lumisys scanner (normal-9 and
normal-10) have been randomly selected from the correspondingDDSM subfolders.

The various datasets are shown in Table 2.

5 | RESULTS AND DISCUSSION
The performance of the proposedmethod is evaluated following the process presented in Section 3.2 for each of the
considered datasets enumerated in Table 2. The classification process is repeated for 10 times for each different dataset.
In each repetition the dataset is randomly assembled using different images from the original ROI set. The classification
process on F dataset is performed just once due to the fact that it contains all DDSM AD ROI s and ROI s from all
normal cases in certainDDSM sub folders.

Table 3 presents evaluation results (accuracy) whenCLBP is considered (D ), whenCLBP is combined with thresh-
olding and region averaging (DE ) andwhenDE is further combinedwith radial lengths (DRLE ).

It can be seen that for the majority of datasets, DRLE feature set performs better than DE and DE performs
better thanD . The only exceptions areM 2 and SM 2 datasets where the performance between the three feature sets is
almost the same. It should be noted though, that the specific datasets contain the smallest number of cases, 47 and 46
respectively.

A performance comparison of the proposedmethodwith other state-of-the-art methods is provided in Table 4. For
the proposedmethod, the performancemetrics are actually averaged values since the whole classification process is
performed ten times. Themean values are accompanied by their relating standard deviations. Furthermore, the metrics
for the repetition with the highest accuracy are also provided.

It can be seen that the averagedmetric values for the proposedmethod are generally inferior to the ones presented
in the literature. The only exception is SM 1. If the best performing single repetition is considered, the proposedmethod
clearly outperforms comparingmethods for SM 1 and can be considered almost similar, though inferior, forM 1 andH
datasets. We believe that the low classification accuracy obtained is mainly due to the statistical nature of PCA and
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TABLE 3 Performance (mean accuracy %) on S1, S2, SM1, SM2, H and L datasets forDRLE ,DE andD feature sets.

Dataset Feature Set Accuracy Sensitivity Specificity Area Under the Curve (AUC)

M1
DRLE 72.55 54.14 80.32 0.67
DE 68.97 49.63 77.14 0.63
D 66.97 6.77 92.38 0.50

M2
DRLE 64.58 61.19 66.81 0.64
DE 64.32 59.21 67.67 0.63
D 53.13 42.11 60.35 0.51

SM1
DRLE 79.37 48.15 91.85 0.70
DE 75.4 43.52 88.15 0.66
D 70.11 17.59 91.11 0.54

SM2
DRLE 51.37 42.06 57.14 0.50
DE 50.15 38.89 57.14 0.48
D 50.15 43.65 54.19 0.49

H
DRLE 76.04 76.25 75.83 0.76
DE 75.21 72.92 77.5 0.75
D 65.83 72.08 59.58 0.66

L
DRLE 73.04 71.43 74.64 0.73
DE 70.36 68.57 72.14 0.70
D 68.75 68.93 68.57 0.69

D : onlyCLBP considered.
DE : CLBP combinedwith thresholding and region averaging.
DRLE : DE combinedwith radial lengths.

t − t est . It seems that these procedures fail to correctly estimate the statistical properties of feature distributions when
limited samples are used, influencing strongly the overall classification performance.

If F is considered, the performance forD is almost perfect while forDE andDRLE all cases are correctly classified
(Table 5). The increased performance when F dataset is used can be attributed to the large number of cases within the
set, which allows PCA and t − t est based feature selection process to perform properly.

6 | CONCLUSIONS

Amethod to performAD and other mammogram lesions identification has been presented. Themethod is based on a
number of modifications of the classical LBP and their combination with radial lengths. PCA and t − t est are adopted
to perform feature selection while the final lesion classification is performed using SVM .

Special care has been taken to evaluate the proposedmethod’s performance in terms ofmetrics directly comparable
with other studies, which usually report performance on either private databases or on arbitrarily selected data subsets
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TABLE 4 Comparison of proposed approachwith state-of-the-art
Dataset Performance

Metric
proposed

(averaged value µ ± σ)
proposed (single repetition
with higher accuracy) method A method B

M1
Accuracy (%) 72.54 ±4.22 76.56 81.60 83.60
Sensitivity(%) 54.14 ±8.44 52.63 84.20 82.40
Specificity (%) 80.32 ±5.04 86.67 79.10 71.90
AUC (%) 0.67 ±0.05 0.70 0.83 a 0.77 a

M2
Accuracy (%) 64.58 ±4.45 68.75 82.50 76.40
Sensitivity(%) 61.18 ±7.41 57.89 85.50 76.40
Specificity (%) 66.81 ±5.51 75.86 81.00 76.50
AUC (%) 0.64 ±0.05 0.67 0.83 a 0.77 a

SM1
Accuracy (%) 79.37 ±3.01 82.54 76.30 -
Sensitivity(%) 48.15 ±7.59 50 78.20 -
Specificity (%) 91.85 ±5 95.56 74.30 -
AUC (%) 0.70 ±0.03 0.73 - -

SM2
Accuracy (%) 51.37 ±8.89 61.7 74.40 -
Sensitivity(%) 42.06 ±13.17 61.11 79.00 -
Specificity (%) 57.14 ±8.17 62.07 72.10 -
AUC (%) 0.50 ±0.09 0.62 - -

H
Accuracy (%) 76.04 ±5.27 82.5 86.50 -
Sensitivity(%) 76.25 ±5.65 80 87.40 -
Specificity (%) 75.83 ±9.83 85 84.10 -
AUC (%) 0.76 ±0.05 0.83 0.87 b -

L
Accuracy (%) 73.04 ±3.45 76.25 88.30 -
Sensitivity(%) 71.43 ±10.49 77.50 89.20 -
Specificity (%) 74.64 ±10.15 75 86.70 -
AUC (%) 0.73 ±0.03 0.76 0.87 b -

a averagedM1 andM2.
b averagedH and L.

method A, proposed by Biswas andMukherjee (2011) ; method B, proposed by Ayres and Rangayyan (2005)

of public databases. To this end: (i) the proposed method has been evaluated using appropriate datasets from open
access mammogram databases (MIAS ,DDSM ), (ii) a complete evaluation framework has been introduced, where the
datasets are assembledmultiple times in a random fashion with the final performancemeasure defined as the averaged
performance on each single dataset, and (iii) further evaluation of the proposedmethod has been carried out using a
large dataset consisted of allAD cases available inDDSM (163AD vs 375 normal cases), whichmay provide a proper
baseline enabling future comparisons to the current results.

Rigorous evaluationof theproposedpipeline following the aforementioned frameworkhas shown thatLBP variants
and RL, when properly combined, can effectively detectADs . Moreover, the combination PCA and t − t est is proven
quite capable to successfully transform and identify themost descriptive features especially when adequately large
datasets (F ) are considered. When the smaller datasets (M 1,M 2, SM 1, SM 2,H , L) are considered, the performance is
deteriorated.
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TABLE 5 Performance for dataset F

Feature Set Accuracy (%) Sensitivity (%) Specificity (%) Area Under the Curve (AUC)
DRLE 100.00 100.00 100.00 1.00
DE 100.00 100.00 100.00 1.00
D 99.26 99.40 99.20 0.99

D : onlyCLBP considered.
DE : CLBP combinedwith thresholding and region averaging.
DRLE : DE combinedwith radial lengths.
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