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A method based ontthe £ombination of Local Binary Pattern
(LBP) operatorfand radial lengths (RL) is presented aiming
at the identification of Architectural Distortions (ADs) in
mammaograds. )L BP operator, a number of its variants and
RL ar¢ combined together producing a high-dimensional
fedture space. A process, based on the combination of Prin-
¢ipal Component Analysis (PCA) and t — test, is used to
effectively transform feature space and reveal the most de-
scriptive features. The classification step is performed using
a Support Vector Machine (SV M) classifier. Open access
databases (Mammographic Image Analysis Society-MIAS
and Digital Database for Screening Mammography-DD S M)
are used through an exhaustive evaluation framework that
aims at eliminating both mammogram selection bias and lim-
ited subtlety variation, thus enabling a fair and complete
comparison procedure. Furthermore, in order to provide a
testbed for future comparisons, a dataset is constructed
from all the available AD Regions Of Interest (ROIs) in
DDSM (163 AD vs 375 ROIs from specific normal cases)

and is used to further evaluate the performance of the pro-
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posed method. The method performed flawlessly and classi-

fied correctly all cases.
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Local Binary Pattern (LBP), Principal Component Analysis (PCA),
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mammogram

1 | INTRODUCTION

Mammography is the main imaging technique for the detection and diagnosis of breast cancer, however about 10% of
all cancerous lesions are missed by radiologists due to false interpretation of mammographic images (Sundaram et al.,
2011). Reading mammograms is known to be a very demanding job for radiologists since judgments depend on training,

experience, and subjective criteria (Cheng et al., 2006).

Architectural distortion (AD) is defined as a focal defect of fibroglandular distribution Which results in a modification
of the architecture of breast parenchyma (radiating-out spicules) without being accempanied by an increased density
or mass (Lavoue et al., 2016). Unfortunately, due to its subtlety and yagiakilityin presentation, it is often missed
during screening (Burrell et al., 1996). Even modern imaging technique$like digital mammography, have failed to alter
this fact. More specifically, a recent study (Suleiman et al., 2016) has shown that despite the availability of improved

post-processing tools for digital mammography, AD detection remainsta difficult task for readers.

The basic characteristic of ADs that most methods thyta€xploit is the existence of radiating spicules. A method
based on line extraction has been presented (Nemoto£t'al.,'2009), where a likelihood of AD association is based on
density and geometric measures on the lines extractedwFurthermore, a number of methods based on the analysis
of oriented structures, derived mainly throughGabagrlters, have been reported (Karssemeijer and te Brake, 1996;
Ayres and Rangayyan, 2007; Banik et al., 2018; Rangayyan et al., 2013). More specifically, approaches based on the
combination of orientation fields with phase partraits (Ayres and Rangayyan, 2007), (Banik et al., 2013) or the deviation

of oriented structures from the expected @rientation of breast tissue (Rangayyan et al., 2013) have been proposed.

However, methods based, ofi. multi-scale analysis suffer from the fact that AD spicules have variable size and
contrast. Additionally, pHase pokitrait analysis often fails since spicules usually present an incomplete “star” shape
(Biswas and Mukherjee, 2011)#As a result, different approaches have been proposed that ignore the specific shape
properties of ADs and focus mainly on texture analysis. One such approach has been based on fractal dimension
(Tourassi et al., 2006; Beheshti et al., 2016; Guo et al., 2009). In another case, a number of texture characteristics have
been defined using a set of multi-scale oriented filter bank responses. Gaussian Mixture Models have then been used in
order to define a set of texture primitives (textons) (Biswas and Mukherjee, 2011). Recently, a method to discriminate
between various breast lesion types based on local energy-based shape histograms has been presented (Wajid and
Hussain, 2015). The authors reported 100% accuracy in discriminating ADs (22 AD cases) from other lesion types but
no evaluation was presented against normal ROIs. A different approach is based on the empirical mode decomposition
of the image followed by a model-based approach (Zyout and Togneri, 2015). The method uses a large number of
image ROIsfrom DDSM database but performance analysis is limited only to the Area Under the receiver operating
characteristic Curve (AUC). Although, appropriate performance metrics are reported in most studies, their direct
comparison is not feasible, since, in the majority of cases, either restricted access datasets are used or, even in the case

of public databases, the exact image subset considered is not adequately defined. Thus, the reported performance is
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highly dependent on the dataset used.

The methods described so far, can be categorized as either performing AD detection (Tourassi et al., 2006; Guo
et al,, 2009; Wajid and Hussain, 2015) or AD identification (Karssemeijer and te Brake, 1996; Nemoto et al., 2009; Ayres
and Rangayyan, 2007; Banik et al., 2013; Rangayyan et al., 2013; Biswas and Mukherjee, 2011; Beheshti et al., 2016). In
the detection case, methods receive whole mammograms as inputs and attempt to define the existence of ADs. In the
identification case, methods receive various ROIs as input and try to categorize them either as normal tissue or AD. In
the current work, we attempt to perform AD identification.

Local Binary Pattern (LBP) has become quite popular lately as one very efficient texture operator (Ojala et al.,
2002). The main idea of LBP is to represent local patterns by calculating the difference of a central image pixel from its
surrounding pixels in a small neighborhood around it. L BP, despite its simplicity, has been proven to be very effective in
describing local image patterns, and has achieved impressive classification results on representative texture databases
(Hong et al., 2014). L BP has recently been used for mass detection on mammographic images. Texture features from
gray level co-occurrence matrix (GLCM) and a variation of LBP called completed local binary pattern (CLBP) along
with geometry features have been combined in order to discriminate masses from nermal breast tissue (Guo et al.,
2010). Furthermore, non-uniform patterns, that in normal L BP procedures are ignoredyhave been used towards the
discrimination between benign and malignant mass lesions (Liu and Zeng, 2015).

To the best of authors’ knowledge, L BP has not been previously used for the identification of ADs in mammographic
images. Moreover, in an earlier work, we have highlighted the potential@fgadial lengths (RL) to enhance the contrast
on mammograms, achieving promising results (Chatzistergos et al., 20%4) Motivated by the simplicity and efficacy of
LBP intexture analysis and the ability of RL to reveal diagnostically‘eritical information, we propose the combination of
these two methodologies, in the process of discrimination betweel,AD and normal tissue or other lesion types (masses,
calcifications). Furthermore, in an attempt to reduce the diménSidhality of the feature set, a feature selection process
based on the combination of Principal Component Analysis (RGA) and ¢ — test is proposed. The final classification step
is performed using Support Vector Machines (SV Mys

In order to enable fair comparisons with thé results reported in previous studies, as well as with future studies,
we exploit two well established open acces$imammogram databases (MIAS, DDSM) and we propose a complete
evaluation framework based on the creati@n ofimultiple, randomly assembled datasets. Thus, we attempt to avoid image
selection bias and limited subtlety vatiatign, which are inherent in most published studies reporting results based on
fixed, manually selected datasets,MWewalso provide performance metrics on a dataset constructed from all the available
AD Regions of Interest (RO1Is) innthe DDSM (163 AD vs 375 ROI s from specific normal cases), which may be used as
arepresentative testbed forthedask of AD identification, given its large size.

The rest of this work is organized as follows: Section 2 briefly reviews LBP and its variations. The classification
process and the proposed evaluation framework are presented in Section 3, followed by information regarding the
construction of a benchmarking dataset from public databases in Section 4. In Section 5, the classification performance

of the proposed method is evaluated and discussed.

2 | LBP BASED SCHEMES

21 | Classical LBP

Given animage I and a point g. at (xc, y.), LBP is computed by first subtracting I(x, y.) from the gray values of image
points in a narrow neighborhood around the original point g.. If the result of the subtraction is greater or equal to

zero, the certain neighborhood point is assigned the value 1, otherwise O is assigned. The assigned values from all
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neighborhood locations are then summed up

P-1
LBPpg = Z s(gp—gc)-2° (1)
p=0
L, x20 . . . . .
where, s(x) = , 8¢ is the gray value of the central pixel (x., yc), gp is the gray value of its neighbors and P is

0, x<0
the total number of involved neighbors.

Another important parameter for LBP is the size of the local neighborhood which is defined through the radius R.
Given that a central pixel is located at (x, yc), the coordinates of g, are (xc + R -cos(2 -7 - p/P), yc + R -sin(2 -7 - p/P)). If
the coordinates are different from the exact pixel locations, interpolation is used to infer the gray value of the particular
points.

LBP asdefined in (1) is not rotation invariant. To make it rotation invariant the numbegof spatial transitions (bitwise
changes 1/0) of LBP needs to be defined

U(LBPpr) = |s(gp-1 — &c) — s(go0 7&w)]
P-1
+ [s(gp — gc) 45(gp-1% &2)|- (2)
p=1

LBP patterns whose U valueisOor 2 (U < 2) are called uniferm,sine they have limited transitions or else discontinuities
in their binary representation. By definition, exactly P #Tuniferm binary patterns can occur in a circularly symmetric

neighborhood set of P pixels. LBP can now be expressechin/a rotation invariant way (LBP,Q";?) if only uniform patterns
are considered

%73 s(gp —ge), ifU(LBPpg) <2

ju2
LBPEE = .
P+1, otherwise

LBPFCIZZ' which has P + 2 distinct output values can now be used to create an image histogram to represent image

texture

H(k) =

M=

D F(LBPEE,j), k) k € [0, P +1],
i=1 j=

1, x=
fooyy =1 77 (4)

0, otherwise

where (H,W) refer to image height and width, respectively.
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2.2 | CompletedLBP

As presented in the previous section, LBP is exclusively based on the sign of the calculated differences, discarding all
information found in the magnitude of the differences. However, this has the disadvantage that L BP is unaware of how
“strong” or else important a local structure is. To address this issue and integrate magnitude information into classic
LBP amodification of LBP called Completed LBP (CLBP)is proposed (Guo et al., 2010).

In CLBP alocal region is represented by its central pixel gray value and a local difference sign-magnitude transform
(LDSMT)

dp =8p—&c = Sp * Mp, (5)
sp = sign(dp), (6)
o =14 7)

LDSMT decomposes the image local structure into twe cemiplementary components, difference signs and differ-
ence magnitudes, which are then coded in a binary format uging the following operators:

P-1

GLBPSrr = Z t(sp,0) - 27, (8)
p=0

P-1
CLBP_Mpg = Z t(mp, c) - 2°, 9
p=0

,x >c¢
t(x,c) = . (10)
0,x<c

where c is a threshold that is defined adaptively and usually set equal to the mean value of m,, from the whole image.

The central pixel is simply coded by a binary code after global thresholding
CLBP_CPTR = t(gc, CI) (11)

where c; is the mean gray level of the whole image.
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2.3 | Thresholded CLBP (TCLBP)

Another disadvantage of LBP is that it tends to be sensitive to noise, particularly in near-uniform image regions
and smooth weak illumination gradients. To address exactly this issue, a work presented in (Tan and Triggs, 2010)
incorporated a threshold around the value of the central pixel introducing the notion of thresholded LBP.
Specifically, given a local neighborhood defined around a central pixel (x., y.) with gray value g, a thresholded
version of CLBP can be defined using a parameter E. which is either added (12) or subtracted (13) from the central

pixel value (g¢)

g; =gc + Eg, (12)

gc =gc— Ec. (13)

Using the new values for the central pixel, (5), (8), (9) are transformed to

dy = gp— &2 = s, Ny, (14)
e-1

TCLBPgSh=)  t(s},0) - 2", (15)
p=0
P-1

TCLBP_M} 4 = Z t(m}.c) - 2°, (16)
p=0

d, =8p—8c =Sp My, (17)
P-1

TCLBP Spg = Z t(s;.0) - 2°, (18)
p=0
P-1

TCLBP_Mj 4 = Z t(my.c) - 2°. (19)
p=0

For E. =0, TCLBP becomes identical to CLBP.
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FIGURE 1 Original image (left), 3D image representation after treating gray level values as z-axis values (center),
demonstration of Radial Lengths Method on an image slice (right). Radial lines start prépagating at each image point
after a value Kp is subtracted from the image gray value at the corresponding point. Prepagation will stop if the image
boundaries are met. Points located at a suspected lesion region with high gray level valugs and close to strong edges
(Point A) will present smaller radial length values (r41, r42).On the other hand, paints at low intensity regions away from
strong edges (Point B), which are commonly considered as normal tissue pegions, will present larger radial length values

(rg1. re2)-

Two ways to define E. are evaluated. At first, all differepeesthetween g. and g, are calculated (DIFF;) for the
entire image ROI and then £77°2" and E5!“ are defined u$ing (20)'and (21) respectively

1
1 CELL ™ A 3
FRT Z IDIFF;], (20)

1
EStd = \/TN Z(DIFF,— — EJrean)2, (21)
1

where Ty is the total number of differences for the particular image ROI.

2.4 | Radial Lengths and CLBP

In our previous work (Chatzistergos et al., 2014) we demonstrated the ability to reveal diagnostically critical information
in mammograms by improving the local contrast, using a series of equally rotated radials that propagate until they meet a
certain limit. The basic idea is to treat gray level values at each image point (xg, yo) as values in the z-axis (zp) and create
this way a 3D surface from the original image (Fig.1). Given the surface point (xo, yo, 20), a new point (xo, yo, 2o — Kp)
is defined by subtracting a certain value K, from zo. From this point, a fixed number of lines can start propagate until
they meet the surface limit. The lines must be equally rotated between each other and remain parallel to the surface
specified by axes x, y. The line lengths produced this way, comprise the radial lengths of image I at point (xg, yo). The
method described, is termed Radial Lengths Method (RLM).
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In this work, we investigate the potential of RLM to reveal strong local edges, which are of great importance in
most image classification tasks. More specifically, diagnostically critical information usually lies in high intensity image
regions (e.g. masses, calcifications) and therefore these regions are expected to contain a large number of strong edges
(Fig.1). On the other hand, regions with normal tissue are expected to present low intensity values and contain large
number of weak edges. The radial lengths from an image point located at a high intensity region and close to a strong
edge (Fig.1, Point A) will present lower values (r41, ra2) as compared to the radial length values (rg1,rg2) from an image
point (Fig.1, Point B) located at a low intensity region away from strong edges.

At each image point a total number of Q equally rotated radial lengths are defined. Furthermore, parameter Kp is

defined using the maximum gray level value of each image using

Kp = a - max(I). (22)

Parameter a is user defined and takes values in (0, 1). Smaller values of a force radial fengths to propagate closer to
the image surface and therefore small gray level fluctuations have strong impact onithe radial lengths. In other words,
smaller values of a introduce noise, while larger values reduce the sensitivity t@ important local edges. It was visually
determined that clinically important information is better revealed whep@alues lie between 0.05 and 0.15. Therefore,
in the current work a is set equal to {0.05,0.10,0.15}.

Once radial lengths (ry, where g € [0, Q — 1]) at each image pGint(x, y) are calculated, the radial differences (R;)

are determined

Ry=rq-c, (23)
where
c= rg(x, y). (24)
H'W'Qx=1y=1 q=0

This subtraction of ¢ from ry is performed as an equivalent to the subtraction of g¢ from g, used in classical LBP.

Furthermore, based on the notion of CLBP equations (5), (8), (9) are transformed to

Rg =5sq - mgq, (25)
-1
RL-LBP Sg.= ) t(sg,0) 27, (26)

q=0
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Q-1
RL-LBP Mg, = t(mg,cm) 27, (27)
q=0

where

Q
L

M=

Rq(x. y). (28)

1 H
LR P3P

xX=

<
n

Q
]

A large number of radial lengths is desired so as not to omit useful information from the image. However, as Q
becomes larger, so does the computational cost. Q values, multiples of 2, between 4 and 32 have been evaluated.
Preliminary results have indicated small correlation between Q value and performancg, for Q >= 8. In the following
steps, Q is set equal to 16, so as to ensure good performance without overly increasing ¢onmiputational cost.

One of the reasons why LBP has been proven to be so effective in charagtegizing various texture types is the fact
that by imposing the use of uniform patterns it actually distinguishes bétweeRstrong and weak local edges, rejecting
the latter as noise. This characteristic of L BP is what we want to furthéf enhance by defining CLBP on r, instead of
the actual image values. The ability of RLM to reveal important local edges is demonstrated in Fig. 2 (e) to (h), where
the mean radial length value, at each image point, is provided=Qne can notice that the various lesions are becoming
more obvious. Fig. 2 (i) to (I) and (m) to (p) present respectifely, the LBP_Sg1 and RL-LBP_Si6.05 histograms of
the corresponding lesion types. It can be seen that bgth méethods provide differentiating histograms for different
lesion types, supporting the hypothesis that the conibiatien of those two methods can lead to improved classification
performance.More specifically and as far as RL-4.B P54 ¢ o5 is concerned, it can be seen that in Fig. 2 (r) at bin 9, ARCH,
CALC and the pair CIRC, NORM have clearly separable values. Furthermore, at bins 1 and 2, CIRC clearly differs from
the rest.

2.5 | Feature histograms‘assembly

For each image ROI a number of binary codes using the operators determined so far, are defined. In all cases the
rotation invariant version of the operators is used. For the sign and magnitude components, the relating binary codes
are defined using a series of variations. More specifically, seven thresholds (E7h7¢s = 4 £5t9, _g5td ypmean _pmean ()
as well as two {P, R} pairs ({P,R} = {1,8},{2,16}, {3,24}) are used. The computations are performed on average
values of block subregions rather than individual pixels (Jia et al., 2013), with block sizes (W, ) ranging from 1 to 20 pixels
(WL =0,5,10, 15, 20). Furthermore, sign and magnitude components are calculated for the radial lengths defined for
three a parameters (a = 0.05,0.10,0.15). Following the notion of CLBP, a binary code for the central grey level is also
defined. The produced codes are then used to produce one dimensional histograms or combined together to produce
two dimensional (2D) or three dimensional (3D) histograms. The multidimensional histograms are created by using
different binary code sequences at each dimension. These multidimensional histograms are then converted back to 1D
by rearranging their values. This conversion is performed for the sake of simplicity and uniformity in the classification

step. The overview of the histogram (feature vector) creation process is given in Fig. 3.
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FIGURE 2 Variousimage ROIs ((a) tofd)) received from MIAS database, along with the mean value of radial
lengths at each RO point ((e) to (h)). Plets,at {i) to (I) and (m) to (p) demonstrate LBP_Sg and RL — LBP_S16,0.05
histograms, respectively. An envelop line i§ included for each histogram to better highlight its fluctuations. A
comparison of the various envgloglinés for LBP_Sg and RL — LBP_S16 .05 histograms is given at (q) and (r) respectively.
ROIs include: (a) normal tissue¥NORM), (b) AD (ARCH), (c) calcifications (CALC) and (d) circumscribed mass (CIRC).

3 | CLASSIFICATION

3.1 | Featureselection

The number of the produced histograms for each image ROI is very high (1320 histograms), therefore there is a need

to reduce the dimensionality of the feature set and reveal features with strong discrimination ability. To this end, a
framework based on the combination of PCA and t — test is used (Fig. 4). From the original set of ROIs, a specific
dataset is randomly assembled. Then, based on the 10-fold cross validation procedure a training and a testing set is

properly defined. Test and training sets in this stage (Fig. 4.A) consist of 1320 histograms each of which contains from

10 until up to 1,000 bins.

Next, PC A on both training and testing sets is used to transform histograms into linearly uncorrelated variables

called principal components (Martinez and Kak, 2001). Each component is associated with a value Vp that expresses



CHATZISTERGOS ET AL. 11

Mean [ Std
Ec€{Ec™ Ec™} — [ TcLBP_S'
@ L | TCLBP_M'
- - - CLBP S
Sub-region Averaging Local Differences

- ™ -
(W.={0,5,10,15,20}) (P.R={1,8}, {2,16}, {3,24}) CLBP M

@ TCLBP_S’ Histograms
Image ROI "| (Feature Vectors)
¢ L—»| ToLBP_ M

Center Gray Level =-—>
RLM RL-LBP_: S
(a={0.05, 0.10, 0.15}) }—»’ Radial Differences
RL LBP_M

Y

|

FIGURE 3 Overview of feature histograms creation process. Feature histograms are created following routes A,B
and C. Route A: Subregion averaging for different window lengths (W, ) is followed by Logal Differences calculation for
different pairs of neighborhood size (R) and number of involving neighbors (P). Eithera pasitive (+) or negative (-)
threshold E. is then used and results are given as inputs to appropriate sign (_S) or magnitude (M) CLBP or
thresholded CLBP (T CLBP) operators. Route B: Center gray level is given as ifiputito CLBPc operator. Route C:
Radial length method (RLM) for different a values is performed, followed by RadiakBifferences calculation and given as
input to appropriate sign (_S) or magnitude (M) RL — LBP operataf.

the percentage of the total variance for the particular component. Components with Ve < 1 are rejected. Principal
components from all different histograms of a single case(R@7) Are aligned together and form a new feature vector
(Fig. 4.B). Feature vectors from the training set are thepisedio perform a statistical test (¢t — test). The purpose is to
define the features for which there is significant statisticahditfference between cases that belong to different categories
(like AD or normal). All other features from traigding'and testing sets are rejected (Fig. 4.C). The statistical test used is
the two-sided t — test with significance level $%. Ivorder to further reduce the number of features, PC A is used once
more. Again, components with Vp < 1 aré rejécted. The resulting features from the original training and testing sets

(Fig. 4.D) are used for the final classifigation step.

3.2 | Evaluation framework

In order to perform the final classification step, a SV M classifier with linear kernel is used. This classifier is selected
mainly due to the fact that it is a well-established and effective classifier, used successfully in many classification
tasks (Wei et al., 2005; Liu and Tang, 2014; Andreadis et al., 2011). The feature selection framework, described so far,
effectively defines a reduced number of features but experimentation showed that there is strong relation between the
actual number of features used and the classification performance.

Therefore, a procedure based on 10 — fol/d cross validation and misclassification rate is implemented in order to
define the number of features that maximize classification performance. Specifically, from each training set, a certain
number of features is considered and the set is segmented into ten partitions, nine of which are used to train the classifier.
The trained classifier is used to classify the remaining partition. This step is repeated ten times in total, until all partitions
are used for testing. By calculating the percentage of misclassified cases for each test segment the misclassification rate
for the particular number of features is determined. Fig. 5 presents an example plot of misclassification rate in relation

to the number of features used. The final number of features to be used is the one that minimizes the misclassification
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FIGURE 4 Feature selection and evaluation framework. From the original set of ROIs a specific dataset is defined
and separated into training and testing sets in order to perform 10-fold-validation (point A). Principal component
analysis (PCA) is then performed on the entire set (point B), followed by t — test on just the train set. After this step all
statistical insignificant features from both training and testing set are rejected (point C). PC A is performed again (point
D) and followed by misclassification rate process on train set to define the optimal features number (point E). These
features are then used to train the classifier and perform the final classification step orithe testing set.

rate (Fig. 4.E). The order of features is not considered since they are actually softed\in descending order, based on the

percentage of the total variance defined in the lastly performed PC A.

4 | DATASETS

In order to enable proper comparisons with the results repoktedn previous studies of the literature, the data selection
process used in (Biswas and Mukherjee, 2011) is utilized.) More specifically, four datasets (M1, M2, SM1, SM2) are
constructed from MIAS Suckling et al. (1994) databasg and two (H,L) from DDSM (Heath et al., 2001). Additionally,
a larger dataset (F) is constructed and propgdsedyincluding all the available AD ROIs from DDSM database, in an
attempt to provide a representative testbédferthe task of AD identification

4.1 | MIAS

The first dataset from MIASEMT) consists of 19 AD ROIs and 45 normal ROIs, the second (M2) consists of 19 AD
ROIs and 28 ROIs with other abnormalities like calcifications and circumscribed masses. The third dataset (SM1)
contains 18 spiculated masses with 45 normal ROIs and the fourth (SM2) contains 18 spiculated ROIsand 28 ROIs
with other abnormalities. In images with lesions, ROI's are defined using the smallest bounding rectangle to the supplied
ground truth, while in normal cases, ROIs are randomly selected. More specifically, on each case a point belonging to
the actual breast region is randomly selected and used as the ROI’s center, while an edge is randomly selected from a
pool consisted of all AD ROI edges. If the defined rectangle region is found to contain less than 90% of breast tissue it is
rejected and the procedure is repeated. The reason we use edge values from the pool of lesion ROI edges is to avoid

any possible bias of either fixed or completely random edge values.

Table 1 shows the distribution of the various lesion types in the MIAS database. It can be seen that there are 209
normal cases of which 45 need to be selected, furthermore there are 46 cases with calcifications or circumscribed
masses from which 28 need to be selected. In order to avoid a possible bias in the case images are manually selected, we

randomly select the required number of images from each lesion category. Therefore, all available ROIs are used to
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FIGURE 5 Misclassification rate (max. 1) in relation to the number of features useds

TABLE 1 MIASIlesiondistribution.

Lesion type Total number of cases
Circumscribed masses 25
Spiculated masses 19
Calcification 21
Architectural distortion 19

Normal 209

Other 29

form the ROT set and a special, randora based, procedure is used to assemble each specific dataset. It should be noted
that special care is taken for the selected images to be evenly distributed in the various density categories.

42 | DDSM

The first dataset from DDSM (H) consists of 40 AD ROIs and 40 normal ROIs from mammograms digitized using
the Howtek scanner while L dataset consists of 40 AD ROIs and 40 normal ROIs from mammograms digitized
using the Lumisys scanner (Biswas and Mukherjee, 2011). Given the large number of available images in DDSM,
an approach similar to the one described for MIAS datasets is used. More specifically, the required images for each
dataset are randomly selected from a larger dataset, consisted of 54 AD ROIs from MLO views, along with 80 normal
cases digitized using Howtek scanner and 80 normal cases digitized using Lumisys. DD SM database provides breast
density categorization into 4 categories, based on Breast Imaging Reporting and Data System (BI-RADS) (Sickles et al.,
2013). For the normal cases, special care is taken once more so as to ensure that equal number of images belong to the
two lower density categories and the two higher ones. More specifically since 40 cases from each scanner have to be

selected, 3 cases are selected from breast density category 1, 17 cases from category 2, 17 cases form category 3 and 3
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TABLE 2 Dataset composition
Dataset Regions of interest (ROls)
M1 19 Architectural distortions vs 45 Normal
M2 19 Architectural distortions vs 28 Other
SM1 18 Spiculated masses vs 45 Normal
SM2 18 Spiculated masses vs 28 Other

H 40 Architectural distortions vs 40 Normal (Howtek)
L 40 Architectural distortions vs 40 Normal (Lumisys)
F 163 Architectural distortions vs 375 Normal

from category 4. We select more images from density ratings 2 and 3 since these are the most common ratings.

Moreover, a larger dataset is constructed and used in an attempt to further evaltiate the performance of the
proposed method. The dataset (F) consists of all AD ROIs available in DD SM and ghus, aiy bias caused by manually
selecting cases is removed. Both benign (29 cases) and malignant (134 cases) AG"RO¥$ are included, along with 375
normal ROIs from MLO and CC images in DDSM. A total number of 241 negmial ROIs digitized using Howtek
scanner (subfolders normal-7 and normal-8), and 164 normal ROI sdigitizedusing Lumisys scanner (normal-9 and
normal-10) have been randomly selected from the correspondingd D S Misubfolders.

The various datasets are shown in Table 2.

5 | RESULTS AND DISCUSSION

The performance of the proposed method is evaluatedfollowing the process presented in Section 3.2 for each of the
considered datasets enumerated in Table 2. Theclassification process is repeated for 10 times for each different dataset.
In each repetition the dataset is randomly @ssembled using different images from the original RO set. The classification
process on F dataset is performed just orice due to the fact that it contains all DDSM AD ROIs and ROIs from all
normal cases in certain DD S M sub folders.

Table 3 presents evaluation resutts (accuracy) when CLBP is considered (D), when CLBP is combined with thresh-
olding and region averaging (B£) and when DE is further combined with radial lengths (DRLE).

It can be seen that for the majority of datasets, DRLE feature set performs better than DE and DE performs
better than D. The only exceptions are M2 and SM2 datasets where the performance between the three feature sets is
almost the same. It should be noted though, that the specific datasets contain the smallest number of cases, 47 and 46
respectively.

A performance comparison of the proposed method with other state-of-the-art methods is provided in Table 4. For
the proposed method, the performance metrics are actually averaged values since the whole classification process is
performed ten times. The mean values are accompanied by their relating standard deviations. Furthermore, the metrics
for the repetition with the highest accuracy are also provided.

It can be seen that the averaged metric values for the proposed method are generally inferior to the ones presented
in the literature. The only exception is SM 1. If the best performing single repetition is considered, the proposed method
clearly outperforms comparing methods for SM1 and can be considered almost similar, though inferior, for M1 and H

datasets. We believe that the low classification accuracy obtained is mainly due to the statistical nature of PCA and
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TABLE 3 Performance (mean accuracy %) on S1,52,SM1,SM2, H and L datasets for DRLE, DE and D feature sets.

Dataset Feature Set Accuracy Sensitivity  Specificity Area Under the Curve (AUC)

DRLE 72.55 54.14 80.32 0.67
M1 DE 68.97 49.63 77.14 0.63
D 66.97 6.77 92.38 0.50
DRLE 64.58 61.19 66.81 0.64
M2 DE 64.32 59.21 67.67 0.63
D 53.13 4211 60.35 0.51
DRLE 79.37 48.15 91.85 0.70
SM1 DE 75.4 43.52 88.15 0.66
D 70.11 17.59 91.11 0.54
DRLE 51.37 42.06 57.14 0.50
SM2 DE 50.15 38.89 57.14 0.48
D 50.15 43.65 54.19 0.49
DRLE 76.04 76.25 7583 0.76
H DE 75.21 72.92 TARS 0.75
D 65.83 72.08 59.58 0.66
DRLE 73.04 71.43 74.64 0.73
L DE 70.36 68.57 72.14 0.70
D 68.75 68.93 68.57 0.69

D: only CLBP considered.
DE: CLBP combined with threshel@ingand region averaging.
DRLE: DE combined with radiat léngths.

t — test. It seems that these procedurses fail to correctly estimate the statistical properties of feature distributions when
limited samples are used, influenting strongly the overall classification performance.

If F is considered, the performance for D is almost perfect while for DE and DRLE all cases are correctly classified
(Table 5). The increased performance when F dataset is used can be attributed to the large number of cases within the

set, which allows PCA and t — test based feature selection process to perform properly.

6 | CONCLUSIONS

A method to perform AD and other mammogram lesions identification has been presented. The method is based on a
number of modifications of the classical LBP and their combination with radial lengths. PCA and t — test are adopted
to perform feature selection while the final lesion classification is performed using SV M.

Special care has been taken to evaluate the proposed method’s performance in terms of metrics directly comparable

with other studies, which usually report performance on either private databases or on arbitrarily selected data subsets
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TABLE 4 Comparison of proposed approach with state-of-the-art

Performance proposed proposed (single repetition

Dataset Metric (averaged value u + o) with higher accuracy) method A method B
Accuracy (%) 72.54 +4.22 76.56 81.60 83.60
Sensitivity(%) 54.14 +8.44 52.63 84.20 82.40

M1 Specificity (%) 80.32 +5.04 86.67 79.10 71.90
AUC (%) 0.67 +0.05 0.70 0.832 0.772
Accuracy (%) 64.58 +4.45 68.75 82.50 76.40
Sensitivity(%) 61.18 +7.41 57.89 85.50 76.40

M2 Specificity (%) 66.81+5.51 75.86 81.00 76.50
AUC (%) 0.64 +0.05 0.67 0.83° 0.77°2
Accuracy (%) 79.37 £3.01 82.54 76.30 -
Sensitivity(%) 48.15 +7.59 50 78.20 -

sM1 Specificity (%) 91.85+5 95.56 74.30 ;
AUC (%) 0.70 +£0.03 0.73 - -
Accuracy (%) 51.37 +8.89 61.7 74.40 -
Sensitivity(%) 42.06 +13.17 61.11 79.00 -

SM2 Specificity (%) 57.14 +8.17 62.07 72.10 ;
AUC (%) 0.50 +0.09 0.62 - -
Accuracy (%) 76.04 +5.27 82.5 86.50 -
Sensitivity(%) 76.25 +5.65 80 87.40 -

H Specificity (%) 75.83 +£9.83 85 84.10 -
AUC (%) 0.76 +0.05 0.68 0.87°b -
Accuracy (%) 73.04 £3.45 76.25 88.30 -
Sensitivity(%) 71.43 +£10.49 77.50 89.20 -

L Specificity (%) 74.64 +10.15 75 86.70 -
AUC (%) 0.73+0.03 0.76 0.87b -

averaged M1 and M2,
averaged H and L.
method A, proposed by Biswas and Mukherjee (2011) ; method B, proposed by Ayres and Rangayyan (2005)

of public databases. To this eid: (i) the proposed method has been evaluated using appropriate datasets from open
access mammogram databases (MIAS, DD SM), (i) a complete evaluation framework has been introduced, where the
datasets are assembled multiple times in a random fashion with the final performance measure defined as the averaged
performance on each single dataset, and (iii) further evaluation of the proposed method has been carried out using a
large dataset consisted of all AD cases available in DDSM (163 AD vs 375 normal cases), which may provide a proper

baseline enabling future comparisons to the current results.

Rigorous evaluation of the proposed pipeline following the aforementioned framework has shown that L BP variants
and RL, when properly combined, can effectively detect ADs. Moreover, the combination PCA and t — test is proven
quite capable to successfully transform and identify the most descriptive features especially when adequately large
datasets (F) are considered. When the smaller datasets (M1, M2, SM1, SM2, H, L) are considered, the performance is

deteriorated.
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TABLE 5 Performance for dataset F
Feature Set Accuracy (%) Sensitivity (%) Specificity (%) AreaUnder the Curve (AUC)

DRLE 100.00 100.00 100.00 1.00
DE 100.00 100.00 100.00 1.00
D 99.26 99.40 99.20 0.99

D: only CLBP considered.
DE: CLBP combined with thresholding and region averaging.
DRLE: DE combined with radial lengths.

REFERENCES

Andreadis, I. 1., Spyrou, G. M. and Nikita, K. S. (2011) A comparative study of image features for classification of breast microcal-
cifications. Measurement Science and Technology, 22, 114005. URL: http: //stacks.iop.org/0957-0233/22/i=11/a=114005.

Ayres, F. and Rangayyan, R. (2007) Reduction of false positives in the detection of architectursl distortion in mammograms by
using a geometrically constrained phase portrait model. International Journal of ComputenAssisted Radiology and Surgery, 1,
361-369. URL: http://dx.doi.org/10.1007/511548-007-0072-x.

Ayres, F.and Rangayyan, R. M. (2005) Characterization of architectural distortionifh mamhograms. Engineering in Medicine and
Biology Magazine, IEEE, 24,59-67.

Banik, S., Rangayyan, R. and Desautels, J. (2013) Measures of angulafspread and entropy for the detection of architectural
distortion in prior mammograms. International Journal of Computel AsSisted Radiology and Surgery, 8, 121-134. URL: http:
//dx.doi.org/10.1007/s11548-012-0681-x.

Beheshti, S., Noubari, H. A., Fatemizadeh, E. and Khalili, M={20416) Classification of abnormalities in mammograms by new
asymmetric fractal features. Biocybernetics and Biomedigal Engineering, 36, 56 — 65. URL: http://www.sciencedirect.com/
science/article/pii/S0208521615000583.

Biswas, S. and Mukherjee, D. (2011) Recognizing architectural distortion in mammogram: A multiscale texture modeling ap-
proach with GMM. Biomedical Engineering, IEEETransactions on, 58, 2023-2030.

Burrell, H. C., Sibbering, D. M., Wilson, A, R., Pinder, S. E., Evans, A. J., Yeoman, L. J,, Elston, C. W,, Ellis, I. O., Blamey, R. W. and
Robertson, J. F. (1996) Screening interval breast cancers: mammographic features and prognosis factors. Radiology, 199,
811-817. URL: http://dx.do. okg/10.1148/radiology.199.3.8638010. PMID: 8638010.

Chatzistergos, S., Andreadis, Ianpd Nikita, K. (2014) Tensor radial lengths for mammographic image enhancement. In XI/I
Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. L. M. Roa Romero), vol. 41 of IFMBE
Proceedings, 305-308. Springer International Publishing. URL: http://dx.doi.org/10.1007/978-3-319-00846-2_76.

Cheng, H. D, Shi, X. J., Min, R., Hu, L. M., Cai, X. P. and Du, H. N. (2006) Approaches for automated detection and classification
of masses in mammograms. Pattern Recognition, 39, 646-668. URL: http://www.sciencedirect.com/science/article/
pii/s0031320305002955.

Guo, Q, Shao, J. and Ruiz, V. (2009) Characterization and classification of tumor lesions using computerized fractal-based
texture analysis and support vector machines in digital mammograms. International Journal of Computer Assisted Radiology
and Surgery, 4, 11-25. URL: http://dx.doi.org/10.1007/s11548-008-0276-8.

Guo, Z., L., Z. and Zhang, D. (2010) A completed modeling of local binary pattern operator for texture classification. Image
Processing, IEEE Transactions on, 19, 1657-1663.

Heath, M., Bowyer, K., Kopand, D., Heath, R. M. M., Moore, K. B. R. and Kegelmeyer, W. (2001) The digital database for screening
mammography. In 5th IWDM, 212-218. Yaffe M. Medical Physics Publishing.



18 CHATZISTERGOS ET AL.

Hong, X., Zhao, G., Pietikainen, M. and Chen, X. (2014) Combining Ibp difference and feature correlation for texture descrip-
tion. Image Processing, IEEE Transactions on, 23,2557-2568.

Jia, X, Yang, X., Zang, Y., Zhang, N., Dai, R,, Tian, J. and Zhao, J. (2013) Multi-scale block local ternary patterns for fingerprints
vitality detection. In Biometrics (ICB), 2013 International Conference on, 1-6.

Karssemeijer, N. and te Brake, G. (1996) Detection of stellate distortions in mammograms. Medical Imaging, IEEE Transactions
on,15,611-619.

Lavoue, V., Fritel, X., Antoine, M., Beltjens, F., Bendifallah, S., Boisserie-Lacroix, M., Boulanger, L., Canlorbe, G., Catteau-Jonard,
S., Chabbert-Buffet, N., Chamming’s, F., Chereau, E., Chopier, J., Coutant, C., Demetz, J., Guilhen, N., Fauvet, R., Kerdraon,
O, Laas, E., Legendre, G., Mathelin, C., Nadeau, C., Naggara, |. T., Ngo, C., Ouldamer, L., Rafii, A., Roedlich, M.-N., Seror, J.,
Seror, J-Y., Touboul, C., Uzan, C. and Darai, E. (2016) Clinical practice guidelines from the french college of gynecologists
and obstetricians (cngof): benign breast tumors ??? short text. European Journal of Obstetrics & Gynecology and Reproductive
Biology, 200, 16 - 23. URL: http://www.sciencedirect.com/science/article/pii/S0301211516300537.

Liu, X. and Tang, J. (2014) Mass classification in mammograms using selected geometry and texture features, and a new svm-
based feature selection method. IEEE Systems Journal, 8, 910-920.

Liu, X. and Zeng, Z. (2015) A new automatic mass detection method for breast cancer witli falsg positive reduction. Neurocom-
puting, 152, 388 - 402. URL: http://www.sciencedirect.com/science/article/pi1%s0925231214014003.

Martinez, A. M. and Kak, A. C. (2001) Pca versus |da. IEEE Transactions on PattérniAnalysis and Machine Intelligence, 23, 228-233.

Nemoto, M., Honmura, S., Shimizu, A., Furukawa, D., Kobatake, H. andfNawanadyS. (2009) A pilot study of architectural distor-
tion detection in mammograms based on characteristics of line shddows. International Journal of Computer Assisted Radiol-
ogy and Surgery, 4,27-36. URL: http://dx.doi.org/10.1007/s44,548-008-0267-9.

Qjala, T., Pietikainen, M. and Maenpaa, T. (2002) Multiresolutioh,gray-scale and rotation invariant texture classification with
local binary patterns. Pattern Analysis and Machine Intelligenée, IEEE Transactions on, 24, 971-987.

Rangayyan, R, Banik, S., Chakraborty, J., MukhopadhyaysS. and Desautels, J. (2013) Measures of divergence of oriented pat-
terns for the detection of architectural distortion ifyprior mammograms. International Journal of Computer Assisted Radiology
and Surgery, 8,527-545. URL: http://dx{ dod), org/10.1007/s11548-012-0793-3.

Sickles, E., D?Orsi, C. and Bassett, L. (2043) ACR BI-RADS? Mammography. In: ACR BI-RADS? Atlas, Breast Imaging Reporting and
Data System. Reston, VA, Americ¢an Gollege of Radiology.

Suckling, J., Parker, J., DancepD., Astley, S., Hutt, I. and Boggis, C. (1994) The mammographic images analysis society digital
mammogram database. Exerpta Med., 1069, 375-378.

Suleiman, W., McEntee, M., Lewis, S., Rawashdeh, M., Georgian-Smith, D., Heard, R., Tapia, K. and Brennan, P. (2016) In the
digital era, architectural distortion remains a challenging radiological task. Clinical Radiology, 71, €35 - €40. URL: http:
//www.sciencedirect.com/science/article/pii/S0009926015003967.

Sundaram, M., Ramar, K., Arumugam, N. and Prabin, G. (2011) Histogram modified local contrast enhancement for mam-
mogram images. Applied Soft Computing, 11, 5809-5816. URL: http://www.sciencedirect.com/science/article/pii/
$1568494611001621.

Tan, X. and Triggs, B. (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. Image
Processing, IEEE Transactions on, 19, 1635-1650.

Tourassi, G. D., Delong, D. M. and Jr, C. E. F. (2006) A study on the computerized fractal analysis of architectural distortion in
screening mammograms. Physics in Medicine and Biology, 51, 1299. URL: http://stacks.iop.org/0031-9155/51/i=5/a=
018.



CHATZISTERGOS ET AL. 19

Wiajid, S. K. and Hussain, A. (2015) Local energy-based shape histogram feature extraction technique for breast cancer diag-
nosis. Expert Systems with Applications, 42, 6990 - 6999. URL: http://www.sciencedirect.com/science/article/pii/
S50957417415002997.

Wei, L., Yang, Y., Nishikawa, R. M. and Jiang, Y. (2005) A study on several machine-learning methods for classification of malig-
nant and benign clustered microcalcifications. IEEE Transactions on Medical Imaging, 24, 371-380.

Zyout, |. and Togneri, R. (2015) Empirical mode decomposition of digital mammograms for the statistical based characteriza-
tion of architectural distortion. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), 109-112.

SEVASTIANOS CHATZISTERGOS received the diploma in Electrical Engineering (2004) from the Aristotle University
of Thessaloniki, Greece and the M.Sc. degree in Biomedical Engineering (2008) from the School of Medicine of
University of Patras, Greece and the National Technical University of Athens (NTUA). He is currently pursuing the
Ph.D. degree in medical imaging from the NTUA. His main research interests include image processing, pattern

recognition and machine learning.

IOANNIS ANDREADIS received the degree in electrical and computer engineering from the NTUA in 2006 and
his PhD degree in Biomedical Engineering from the same institutin in 2014. Since 2007, he has been with the
Biomedical Simulation and Imaging Laboratory, Department of Electrical and Computer Engineering, NTUA where
he has worked as senior or post-doc researcher in research projects. He has contributed to a number of papers in
journals, book chapters, international and national,cenferences and he has given two invited talks. He serves as
reviewer in 11 international scientific journals@ng’é international conferences and participated in the organizing
and scientific committees of 6 international conferences. His main research interests include biomedical image

processing and analysis, medical decisiofi support systems, machine learning and computer-aided clinical diagnosis.

KONSTANTINA NIKITA received the diploma in Electrical Engineering (1986) and the PhD degree (1990) from the
NTUA, Greece. She then received the MD degree (1993) from the Medical School, University of Athens, Greece.
Since 1990, she has been working as a researcher at the Institute of Communication and Computer Systems. In
1996, she joined the School of Electrical and Computer Engineering, NTUA, as an assistant professor, and since 2005,
she serves as a professor at the same school. Her current research interests include biomedical signal and image
processing and analysis, biomedical informatics, simulation of physiological systems, medical imaging, biological
effects, and medical applications of radiofrequency electromagnetic fields. Dr. Nikita has authored or coauthored
154 papers in refereed international journals, 38 chapters in books, and over 300 papers in international conference
proceedings. She has authored or edited two books (Simulation of Physiological Systems and Medical Imaging
Systems) in Greek and five books in English published by Springer and Wiley. She holds two patents. She has
been the technical manager of several European and National R&D projects. She is an associate editor of the




20 CHATZISTERGOS ET AL.

IEEE Transactions on Biomedical Engineering, the I EE E Journal of Biomedical and Health Informatics, Wiley
Bioelectromagnetics and the Journal of Medical and Biological Engineering and Computing and a guest editor of
several international journals. Dr. Nikita has received various honors or awards, among which, the Bodossakis
Foundation Academic Prize for exceptional achievements in Theory and Applications of Information Technology in
Medicine (2003).

2 dataset Composition





