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Abstract–A stochastic phase model is fitted to 216 

microelectrode recordings (MERs), acquired during 18 

surgical interventions in patients with Parkinson’s disease 

(PD), in order to comparatively simulate the 

desynchronizing effect of regular (130 Hz) versus non-

regular patterns of stimulation with the same mean 

frequency and increasing degrees of temporal variability. 

We demonstrate that non-regular patterns of stimulation 

displaying a minimum variability of 70-80% yield a 

significantly higher Lyapunov exponent compared with 

regular stimulation, at the 5% significance level. The 

stochastic model points to the prominent role of non-

regular stimulation patterns in the therapeutic outcome of 

deep brain stimulation (DBS). 

 

1. Introduction 

 

Recent evidence signifies the potential importance of 

the temporal pattern of high frequency deep brain 

stimulation (DBS) in the clinical efficacy of this reference 

neurosurgical procedure [1, 2]. Temporally irregular DBS 

can suppress tremor if there are no long pauses [1], while 

it may ameliorate motor symptoms and suppress 

pathological rhythmic activity in Parkinson’s disease (PD) 

more effectively than regular stimulation [2]. At the same 

time, alterations in the abnormal discharge pattern of 

subthalamic nucleus (STN) neurons [3] and disruption of 

neuronal synchronization [4-6] have been suggested to be 

involved in the therapeutic mechanisms of action of STN-

DBS.  

In this paper, we employ methods from stochastic 

nonlinear dynamics [7-9] to comparatively evaluate the 

Lyapunov exponent as a quantity reflecting subthalamic 

synchronization dynamics in response to regular (130 Hz) 

versus non-regular patterns of stimulation. A stochastic 

phase model is fitted to a total of 216 microelectrode 

recordings (MERs) corresponding to sites lying within the 

intraoperatively confirmed borders of the STN. The phase 

model is developed incorporating multiple factors 

affecting neuronal dynamics: neuronal coupling, intrinsic 

independent and extrinsic common noise sources, and 

external forcing. Non-regular patterns are generated by a 

gamma process with mean frequency of 130 Hz and 

increasing degrees of temporal variability [10].  

 
     (a) 

  

       
                    (b)                                               (c) 

 

Figure 1: Two-scale neuronal activity (a) Example of  raw 

extracellular signal recorded in the right STN, case 2 

(recording site depth: A +0.5). (b)-(c) The two derived 

high-pass filtered signals: spiking activity (a.u.=arbitrary 

units) and background unit activity, respectively. 

 

2. Patients and Methods 

 

2.1. Patients and Surgery 

 

During a 2-years period, 18 patients underwent bilateral 

implantation of DBS electrodes in the STN, at the 

Department of Neurosurgery, at Evangelismos General 

Hospital of Athens. The clinical criteria included 

idiopathic PD with motor fluctuations and/or dyskinesias. 

Stereotactic surgery was based on pre-operative 

anatomical targeting of the STN, MER and high 

frequency test stimulation [11]. 

 

2.2. Data Description-Signal Preprocessing 

  
A commercially available microrecording system 

(Leadpoint TM Neural Activity Monitoring System, 

Medtronic Inc., Minneapolis, MN) is used to acquire and 

store data. In total, data from 72 MER trajectories are 

retrospectively analyzed in Matlab (Mathworks, Natick, 

MA). Initially, the acquired signals are digitally high-pass 

filtered at 0.5-10 kHz applying a 4-pole Butterworth filter. 
The method we present here is based on the assessment of 
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two-scale neuronal activity: a. spiking activity quantified 

through the spike detection process [12] and b. activity of 

small neural populations quantified through the 

background unit activity extraction process [13] (figure 1). 

 

2.3. The Phase Model 

 

We consider the following Langevin equation (by 

virtue of the Stratonovich interpretation [7]) describing an 

ensemble of N globally coupled identical phase 

oscillators, driven by intrinsic independent and extrinsic 

common noises, but also subject to external forcing: 
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Here,  1,0i  is the phase variable of the ith  oscillator, 

  is its natural frequency and 0K  is the coupling 

strength. We assume that  ti  
is zero mean Gaussian 

white noise, added independently to each oscillator, with 

correlation specified by      tttt ijji   , where 

1ij  if ji   and 0  if ji  .We regard  t
 
as colored 

noise with zero mean and unitary variance, i.e. with 

autocorrelation function       C

C2
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Thus,  t  can be regarded as an Ornstein-Uhlenbeck  

process with correlation time C [7]. I  and C  
are small 

parameters representing the intensity of independent and 

common noise, respectively.  iR C  
and  iR I  

are phase 

sensitivity functions that represent the linear response of 

the phase variable i  to the respective  infinitesimal noise 

perturbations, while   ,iΔ
 
is the phase response curve 

(PRC) to a single (DBS) impulse [8, 9].  represents the 

stimulus amplitude and k  are the input times. 

Introducing the Kuramoto order parameter defined by 
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1   [8], Eq. (1) can be rewritten as [14]: 
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where r characterizes the mean degree of synchrony and 

 is the mean phase of the oscillators. Next, defining the 

effective drift and diffusion coefficients [15] 
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we obtain the following white-noise Langevin equation:
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The Stratonovich Eq. (5) is converted to an equivalent Itο 

stochastic differential equation [7]: 
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Phase eq. (6) is solved through the stochastic map from 

one stimulus cycle to the next [16]. We consider that the 

inter-impulse interval (IPI) nnnΔ   1  
obeys the 

gamma distribution with a mean of 130Hz and increasing 

degrees of temporal variability [10]. The phase dynamics 

during the IPI nΔ  is described by 
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where  tW
 
is a Wiener process with probability density 

function (PDF)
tW

f , which is a Gaussian with zero mean 

and variance Δ .
 
The stochastic map is defined by the 

Perron-Frobenius operator, that maps the density of 

phases at the time of the  thn 1
 
impulse,  1np , onto 

the density of phases at the time of the nth  impulse, 

 np  [17,18,19]: 
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where  ΔτG is the PDF of the IPIs. Discretizing the 

density into 500M bins of size M/1 , the stochastic 

map is approximated using a 500500  transition matrix 

),(  A  (stochastic kernel) having all positive entries and 

a spectral radius of 1 [17, 18] (figure 2). This matrix 

possesses the strong Perron-Frobenius property [20]. The 

iterated mapping (8) converges to the steady-state phase 

distribution (invariant density),  stp , represented by the 

eigenvector corresponding to the dominant (unit) 

eigenvalue of the transition matrix. To quantify the 

stability of the synchronized states we calculate the 

Lyapunov exponent, using phase map (7), as [21, 22]: 
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where Hz130
1



Δ . Nonpositive values of the 

Lyapunov exponent indicate synchronization. 

  

 

2.4. Determination of Phase Sensitivity Functions  
 

Taking into consideration that for weak Gaussian 

common driving noise, a Type-II PRC is optimal for 

stochastic synchronization [23], we use this shape for the 

phase sensitivity to common noise in order to simulate the 

state of pathological synchronization in PD. A Type-I 

PRC is selected for the phase sensitivity to independent 

noise. Accordingly we consider  

     π2sin2C R
 
and      π2cos1

3

2
I R                               

   
 

Differently, there is evidence that the type 0 PRC may be 

optimal for stochastic desynchronization [24]. Hence, in
 

order to simulate the desynchronizing effect of DBS we 

consider   00, Δ
  

and 
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where
 

50   . 

 

2.5. Determination of Model Parameters  

 

There are eight parameters that must be estimated in the 

phase model (6):  , r , K ,  , C , v , D  and I . We 

set 1  according to [6]. The modulus r  of the order 

parameter (mean degree of synchrony) and the coupling 

strength K are adjusted to effect a substantial neural 

correlation but not perfect synchrony in the absence of 

stimulation [6]. Hence, we   set 8.0K and 44.0r .We 

also consider 0 . As indicated by Eqs. (3) and (4) 

calculation of parameters v  and D  is dependent on 

estimation of C  
and  tC . The intensity of common 

noise C  
is determined through evaluation of the power 

spectral density function of the background unit activity 

[13] using Welch’s method, while the autocorrelation 

function of the same signal is used as an estimate of  tC .  

  We proceed to evaluate the intensity of the independent 

noise I , through definition of the first passage time 

problem for the phase model (6) with no input.  Let 

 t,  represent the PDF of phases at time t .The 

corresponding Fokker-Planck equation is [7] 
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                          (a)                                      (b) 

Figure 2: Stochastic kernel functions based on MER at C 

0, right STN, case 1, (a) for 0  and (b) for 5 , and 

pattern variability of 70%. 
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with periodic boundary condition    tt ,1,0   . 

Extending the definition of the phase from  1,0  to  

  and
 
considering 1I  ,  we obtain the following 

approximations [25]: 

       tRR II   and      tψKrKr  π2sinπ2sin  .
                                                         

 

The Fokker-Planck equation for the corresponding PDF 

 t,  is  
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Respectively, the first passage time distribution is simply 

   ttz ,1 . Finally, maximization of the log likelihood 

function L  over I  yields an estimate for I  [16]:  
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where iΔt
 
are the interspike interval (ISI) data. 
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 (a) 

 
 (b) 

Figure 3: Simulation results. (a) Application of three 

distinct stimulation patterns and (b) the respective 

Lyapunov exponent   as a function of the stimulus 

amplitude  ,
 
at site C +1, right STN, case 14. Asterisks 

denote significant differences ( 05.0p ). 

 

3. Results 

 

Figure 2 depicts the stochastic kernel functions for two 

values of stimulus amplitude  and pattern variability of 

70%, derived based on MER at a specific site depth. For 

0 , the proposed phase model reproduces the 

pathological synchronized state (   ), while for 5 , 

the obtained state is less synchronized. Figure 3(b)  

displays the Lyapunov exponent for three distinct 

stimulation patterns, as a function of stimulus amplitude, 

derived based on the analysis of MER at a particular site 

depth. Overall, the Lyapunov exponent gradually 

increases with increasing stimulus amplitude, thereby 

reflecting the ability of the model to simulate the 

desynchronizing effect of stimulation [3-6]. Importantly, 

values of the Lyapunov exponent corresponding to each of 

the irregular patterns of stimulation are significantly 

higher  than the values of the exponent corresponding to 

the regular pattern of stimulation ( 05.0p ). In the total 

of the recordings examined, this significant difference was 

verified for stimulation patterns displaying a minimum 

temporal variability of 70-80%. 

 

4. Conclusion 

  Application of the proposed stochastic dynamical 

model to data pertinent to physiologically-guided DBS 

procedures signified the role of alternative stimulation 

patterns characterized by temporal irregularity in a 

potentially more effective symptom control in PD. 

Additional effect evaluation of long pauses and bursts in 

temporally irregular stimulation patterns [1, 2] would 

provide a deeper insight into the specific stimulation 

characteristics correlated with improved efficacy in PD. 
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