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1 Introduction

Type 1 diabetes mellitus (T1DM) is a chronic metabolic 
disease characterized by elevated blood glucose levels 
(BGLs) caused by the autoimmune destruction of the insu-
lin-producing pancreatic beta cells resulting in the absence 
of insulin secretion. The subsequent lack of insulin leads to 
increased blood and urine glucose levels. The excess glu-
cose circulating through the body in the blood stream over 
time leads to severe long-term-mortality-related complica-
tions such as cardiovascular disease, diabetic neuropathy, 
and diabetic retinopathy. T1DM can be controlled through 
exogenous insulin administration applying either multiple 
insulin injections or continuous subcutaneous insulin infu-
sion through insulin pumps. However, the administration 
of too high insulin dose leads to hypoglycemic episodes. 
Intensive glycemic control, involving regular glucose meas-
urements and exogenous insulin administration, is essential 
to reduce the occurrence of acute episodes such as severe 
hypoglycemia and hyperglycemia and long-term diabetes 
complications [22], and consequently increase patients’ 
quality of life.

Continuous glucose measurement systems (CGMSs), 
able to provide with records of glucose levels every 1 min 
or 5 min, and insulin pumps are the latest technological 
advances within the scope of facilitating intensive glycemic 
control [11]. However, tight glycemic control is difficult 
to be achieved, since several environmental factors such as 
nutrition, physical activity, patient’s psychological status and 
his overall lifestyle along with endogenous processes, such 
as circadian rhythms, strongly affect glucose metabolism. 
Furthermore, intra- and inter-patient variability in response 
to therapy makes the regulation of glucose levels very dif-
ficult. The aforementioned difficulties can be addressed 
through the development of computational models able to 
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produce accurate and reliable estimations of future glu-
cose profile in response to various stimuli. Moreover, many 
attempts have been made in the recent years toward the 
development of closed-loop glucose controllers, which pro-
vide estimations of insulin infusion rates and boluses aiming 
at regulating glucose levels [16, 31]. These glucose control-
lers are usually based on model predictive control (MPC) in 
order to handle the delays and time lags caused by delivering 
insulin subcutaneously [9, 13, 16, 26, 31].

To this end, compartmental models (CMs) represent-
ing fundamental glucoregulatory processes have been 
developed [10, 13]. However, due to the fact that some of 
the endocrine processes affecting glucose metabolism are 
still not fully understood, these models take into account 
only a confined number of factors associated with glucose 
metabolism and cannot be easily individualized to accu-
rately simulate metabolic processes for a specific T1DM 
patient. Moreover, the identification of CMs’ parameters 
requires clinical measurements, which are not typically 
available in the clinical settings. In order to overcome these 
limitations, the use of data-driven modeling techniques 
has been proposed which disregard physiological insights 
and use pattern recognition techniques to simulate glucose 
metabolism. Volterra series models, time series analysis 
and machine learning methods are the most widespread 
data-driven techniques toward the development of glucose 
prediction models. In particular, nonlinear Volterra mod-
els of glucose–insulin dynamics have been shown to pro-
vide accurate predictions in the absence of noise [6, 14]. 
Autoregressive exogenous input (ARX) and Box–Jenkins 
(BJ) models with constant parameters and various model 
orders (high and low) have also been applied to simulate 
glucose–insulin dynamics [5]. Several types of artificial 
neural networks (ANNs) such as multilayer perceptron 
(MLP) neural networks (NN) [17, 18], radial basis func-
tion (RBF) NNs [2], wavelet NNs [28] and recurrent neural 
networks (RNNs) [2, 5, 6, 9, 10, 13–18, 26, 28, 31] have 
been deployed for the simulation of glucose metabolism. 
Furthermore, glucose prediction models based on Gaussian 
processes [23] have been developed. Additionally, hybrid 
glucose–insulin metabolism models based on the com-
bined use of CMs and data-driven modeling techniques, 
such as RNN [15, 16, 31], SVR [8] and self-organizing 
maps (SOMs) [29], have produced prominent results. Most 
of these models are fed with information related to glu-
cose records, insulin injections/infusion and meal intakes. 
Only a limited number of studies take into account physical 
activity as input to the models [7, 20, 24, 30].

The present work investigates the ability to produce 
accurate glucose profile predictions based on data pro-
vided by only two sensors, monitoring glucose concen-
tration and physical activity, respectively. The potential 

of three models based on FNN, SOM, and a neuro-fuzzy 
network with wavelets as activation functions (WFNN), 
respectively, to capture the metabolic behavior of a spe-
cific patient with T1DM is investigated and comparatively 
assessed. The contribution of physical activity input data 
toward improvement of models prediction accuracy is 
evaluated. Issues related to low-input dimensionality, low 
complexity, stability and subsequent integration of the 
models in closed-loop glucose controllers, have motivated 
the investigation of these particular methodologies. SOM 
has the advantage of converting the input space into a low-
dimensional map, which preserves the relations between 
input data. In the present study, the original SOM algorithm 
is modified in order to obtain multiple local linear models, 
making it, thus, suitable for subsequent integration into 
closed-loop glucose controllers. WFNN has the ability to 
handle low-input dimensionality but its subsequent integra-
tion into a MPC would result in high on line computational 
complexity caused by the direct use of nonlinear and non-
convex programming techniques. FNN is chosen for com-
parison purposes, due to its widespread applications in the 
domain of dynamic modeling. Furthermore, aiming at justi-
fying the need of applying such sophisticated techniques in 
order to capture the metabolic behavior of a T1DM patient, 
the performances of the three models have been compared 
with the one obtained by applying a linear regression model 
(LRM). For the development and evaluation of the models, 
data from 10 patients with T1DM, collected from a 6-day 
observation period, are used.

2  Materials and methods

2.1  Dataset

For the development and evaluation of the models, 
data collected within the framework of the European 
funded research project METABO [7] have been used. 
The data correspond to the medical records of 10 T1DM 
patients (7 males and 3 females) who were monitored for 
10.70 ± 4.69 days.

During the observation period, the patients followed 
multiple-dose insulin therapy and wore the guardian real-
time CGM system (Medtronic Minimed Inc.), which 
provided blood glucose records every 5 min, and the 
SenseWear Armband (BodyMedia Inc.) wearable body 
monitoring system, which recorded the energy expenditure 
of daily physical activities or exercise events with a resolu-
tion time of 1 min. In order to evaluate the models’ ability 
to handle inter-subject variability, the data corresponding 
to identical number of days (6) for each patient were used. 
Table 1 summarizes the patients’ characteristics.



Med Biol Eng Comput 

1 3

2.2  Methodology

Four machine learning methods based on FNN, SOM, 
WFNN, and LRM, respectively, are applied and compara-
tively assessed toward the development of personalized 
glucose prediction models. In order to assess the impact of 
the addition of physical activity data to the models’ predic-
tive performance, two different cases are investigated. In 
Case 1, two variables provide input to the models: (a) most 
recent glucose measurement (G(t)), and (b) glucose change 
(ΔG(t)). In Case 2, information related to physical activ-
ity is added in the input space of Case 1. In particular, the 
sum of the energy expenditure during the time period [t—
150 min, t—120 min] is fed into the models in order to take 
into account the physical activity during the latest 30 min 
with a lag time equal to 120 min. The lag time of 120 min 
is a constraint imposed by the requirement to evaluate the 
models’ predictive performance up to 120 min PH.

2.2.1  Prediction models

2.2.1.1 Feedforward neural network One hidden layer, 
the hyperbolic tangent sigmoid transfer function and the 
backpropagation training algorithm have been used to 
develop the FNN.

2.2.1.2 Self‑organizing map Although SOMs are usually 
applied for data clustering and visualization, they can also 
be successfully applied for dynamic modeling [29]. This 
is achieved by applying a vector quantization method [4]. 
In particular, a two-dimensional grid of N neurons is cre-
ated and every neuron (i) is associated with a weight vector 
(win) with dimension identical to that of the input vector and 
a weight output value (wout) corresponding to the glucose 
prediction. During the training stage, the winning neuron is 
determined by calculating the Euclidean distance between 
the input vector and the weight vectors (win). The neuron 
with the lowest Euclidean distance is the winner (i*(t)),

where xin denotes the input vector. The weights win and 
wout are updated according to the following equations,

(1)i∗(t) = argmin{�xin(t)− win(t)�}

(2)�win(t) = �(t) · h(i∗, i, t) · [xin(t)− win(t)]

where xout is the actual glucose value, λ(t) is the learning 
rate which decreases exponentially with time from value λ0 
until λT according to the equation,

where T is the number of total epochs. Furthermore, h(i*, i, 
t) is the neighborhood function with a Gaussian form,

where ri(t) and ri∗(t) are the locations of neurons i* and i, 
respectively, while s(t) is the variance of the Gaussian func-
tion and decreases exponentially with time from value s0 
until sT,

Thus, at the beginning of the training procedure, a wide 
area of neurons is affected and as the procedure goes by, a 
smaller area around the winner neuron is affected until only 
the winner neuron changes its weights.

After the training stage, SOM can be used to obtain esti-
mates of future glucose values. For every new input vector, 
the winner neuron (i*) is calculated and the corresponding 
wout value is the glucose prediction. However, this tech-
nique requires a great number of neurons in order to have 
a small prediction error [4]. To overcome this problem, a 
technique that allows the creation of multiple local linear 
models is applied [19]. Particularly, the estimated glucose 
levels are produced from a linear autoregressive model with 
exogenous inputs, as follows,

where v represents linear models’ coefficients which are 
calculated during the training stage [3, 25] starting from 
zero values. The vector of these coefficients (vi) cor-
responding to each neuron is updated according to the 
equation,

Thus, the neighborhood around every neuron forms a local 
linear model. After the training stage, when a new input 
vector arises, the winner neuron is computed and the cor-
responding coefficients are used to produce the future glu-
cose value using Eq. (7).

(3)�wout(t) = �(t) · h(i∗, i, t) · [xout(t)− wout(t)]

(4)�(t) = �0 ·

(

�T

�0

)
t
T

(5)
h(i∗, i, t) = e

(

−�ri(t)−ri∗ (t)�
2·s(t)2

2
)

(6)s(t) = s0 ·

(

sT

s0

)
t
T

(7)upred(t + 1) = v
T · xin

(8)

�vi(t) = �(t) · h(i∗, i, t) ·

[

xout(t + 1)− vi(t)
T · xin(t)

]

·
xin(t)

�xin(t)�
2

Table 1  Patients’ characteristics

Average ± SD

Age 41.8 ± 14.39

Diabetes duration 25.00 ± 16.40

BMI 23.34 ± 3.49

HbA1c 7.75 ± 0.79
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Parameter N and number of epochs are determined 
through trial and error, which is performed by applying the 
10-fold cross-validation for each individual patient. In par-
ticular, several candidate values for the parameter N and the 
number of epochs are tested and the optimum values achiev-
ing the lowest average validation root-mean-square error 
(RMSE) calculated over all folds over all patients are found. 
A grid of 15 × 15 is found to be large enough to quantize 
the input data. Moreover, a number of 50 epochs is suffi-
cient to achieve convergence. Regarding the parameters 
associated with the learning rate, λ0 and λT are set equal 
to 0.9 and 0.01, respectively, s0 is equal to 14 which corre-
sponds to the maximum distance between all neurons, while 
sT is set equal to 1. The initial values of the weights are ran-
domly selected within the range [0, 1]. It is also noted that 
the data have been normalized within the range [0, 1].

2.2.1.3 Neuro‑fuzzy network with wavelets as activation 
functions Neuro-fuzzy-based systems take advantage 
of the fuzzy logic’s ability to use limited information and 
provide solutions to problems that are not well structured 
and the NNs’ ability to be trained and generalized. In par-
ticular, the fuzzy sets and rules are approximated through 
NNs since limited empirical knowledge exists to create 
the appropriate IF–THEN rules [1]. Furthermore, in order 
to avoid trapping into local minima and slow convergence 
during training stage, wavelets are applied as activation 
functions. The overall architecture of the WFNN consists of 
seven layers and is presented in Fig. 1. The first layer cor-
responds to the input layer. In the second layer, the fuzzifi-
cation process is applied, using Gaussian functions as mem-
bership functions of the fuzzy logic. It should be noted that 
the choice of the Gaussian functions is based on the need of 

Fig. 1  Overall architecture of 
WFNN
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obtaining a degree of belonging to a given interval and due 
to its smoother transitions compared to trapezoidal function. 
Each input is associated with k membership functions,

where nj(xin,i) is the membership degree of the ith input in 
the jth fuzzy set, k is the number of membership functions, 
and m is the number of inputs, while cij and σij represent the 
centers and the standard deviations of the Gaussian func-
tions, respectively. In the third layer, the fuzzy rules (μ) are 
generated. Each membership function participates in only 
one rule. The outcome of the rules is calculated using the 
minimum operation, as follows,

In the fourth layer, the wavelet activation functions (ψ) are 
calculated. The wavelet function used is the mexican hat,

where aij, bij are the dilation and translation of the wavelet 
function, respectively. The output of the fourth layer is cal-
culated as

where

The defuzzification process is carried out in the fifth and 
sixth layer. Particularly, the outputs of the third and fourth 
layer are multiplied and then divided by the sum of all the 
outputs of the third layer. The output is generated in the 
seventh layer as

During the training stage, the parameters of the Gauss-
ian functions (cij, σij) along with the weights (wl) and the 
parameters of the wavelets (aij, bij) are updated accord-
ing to a gradient-based algorithm with adaptive learn-
ing rate. In particular, if the RMSE of a certain epoch is 
greater than that of the previous epoch, the learning rate 
is reduced slightly. Similarly, if the RMSE is smaller, the 

(9)nj(xin,i) = e
−

(xin,i−cij )
2

σ2
ij ,

j = 1, . . . , k

i = 1, . . . ,m

(10)µj(xin) =
∏

i

nj
(

xin,i
)

,
j = 1, . . . , k

i = 1, . . . ,m

(11)

ψ(zij) =
1

√

∣

∣aij
∣

∣

(

1− z2ij

)

· e
−zij
2 ,

j = 1, . . . , k

i = 1, . . . , k

zij =
xin,i − bij

aij

(12)yl = wl ·�l(z), l = l, . . . , k

(13)�l(z) =

m
∑

i=1

ψ(zij)

(14)upred =

∑k
l=1 µl(xin) · yl
∑k

l=1 µl(xin)

learning rate slightly increases. It should be stressed that 
in this work the mini-batch method [27] is used, which is 
a hybrid method combining the batch and online method 
for training NNs.

The number of the membership functions (k) along 
with the number of epochs are defined through trial and 
error and set equal to 6500, respectively. In particular, 
these are the optimum values obtained by applying the 
10-fold cross-validation individually for each patient in 
order to test several candidate values and correspond to 
the ones achieving the lowest average validation RMSE 
calculated over all folds over all patients. The initial value 
of the learning rate is chosen to be 0.01, while taking into 
consideration that a large learning rate can lead to unsta-
ble learning and a very small one slows the algorithms 
learning speed significantly. The number of subsets in 
which the original trained set is divided in order to apply 
the hybrid method of training is 40, which is defined, 
taking into account the size of the training sets (approxi-
mately 1100). Furthermore, the data have been normal-
ized within the range [0, 1].

2.2.1.4 Linear regression model The LRM has the fol-
lowing form

where β represents the vector of coefficients, which are cal-
culated by applying the least-squares method.

2.2.2  Evaluation criteria

In order to account for the inter-subject variability, the 
models are patient specific by being trained individually on 
each patient’s data. Aiming at assessing the models’ gen-
eralization ability, the 10-fold cross-validation criterion is 
applied individually for each patient. The folds are gener-
ated randomly by applying the MATLAB function “cross-
valid.” It should be stressed that in order to achieve a fair 
comparison of the models’ predictive performance, the 
folds created for each patient remain the same when apply-
ing the different models. The predictive performance of the 
models is evaluated considering PHs of 30, 60 and 120 min 
with a 5-min resolution, using both mathematical and clini-
cal evaluation criteria. In particular, the RMSE, correla-
tion coefficient (CC) and the mean absolute relative dif-
ference (MARD) are applied to evaluate the performance 
of the models in terms of matching the predicted glucose 
profiles with the original ones. Furthermore, the continu-
ous glucose-error grid analysis (CG-EGA) [12] is applied 
to evaluate the clinical accuracy of the glucose predictions 
and their effect on decisions to avoid hypo- and hyper-gly-
cemic events.

(14)upred = βτ · xin
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3  Results

3.1  Evaluation of models’ predictive performance 
in Case 1

Mathematical and clinical evaluation criteria, as described 
above, are applied to evaluate the models’ predictive 

performance, in case of being fed with information related 
to glucose and glucose change. In particular, Table 2 pre-
sents the average and standard deviation values of RMSE, 
CC and MARD over all patients which are obtained by 
applying the three glucose prediction models consider-
ing PHs of 30, 60, and 120 min. In order to investigate 
whether there is at least one significant difference between 

Table 2  Mathematical criteria 
for evaluating the models’ 
predictive performances in 
Case 1

The best values obtained for each criterion are shown in bold

PH (min) Model RMSE CC (%) MARD

30 FNN 17.81 ± 8.80 95.42 ± 3.88 7.25 ± 1.48

SOM 12.29 ± 2.27 97.92 ± 0.70 5.34 ± 1.08

WFNN 15.64 ± 3.15 96.87 ± 0.87 7.38 ± 1.77

LRM 15.51 ± 3.78 96.81 ± 0.72 7.47 ± 2.08

60 FNN 25.70 ± 9.23 90.80 ± 4.62 11.44 ± 2.54

SOM 21.06 ± 3.20 94.00 ± 1.77 9.36 ± 1.95

WFNN 25.5 ± 4.62 91.72 ± 2.18 12.38 ± 2.83

LRM 26.39 ± 7.98 91.22 ± 2.10 12.79 ± 4.17

120 FNN 38.51 ± 9.67 79.12 ± 5.26 18.68 ± 5.26

SOM 33.68 ± 5.26 84.22 ± 4.87 15.99 ± 3.14

WFNN 40.81 ± 7.09 79.06 ± 5.26 20.42 ± 4.55

LRM 44.52 ± 19.31 77.99 ± 5.40 22.27 ± 9.62

Average ± SD  
(over all PHs)

FNN 27.34 ± 10.44 88.44 ± 8.40 12.45 ± 5.78

SOM 22.34 ± 10.75 92.04 ± 7.05 10.23 ± 5.37

WFNN 27.31 ± 12.68 89.21 ± 9.16 13.39 ± 6.57

LRM 28.80 ± 14.65 88.67 ± 9.66 14.17 ± 7.49

Table 3  P-values obtained by 
applying t-test to compare the 
models’ predictive performance 
in Case 1

PH 30 min PH 60 min PH 120 min

WFNN SOM LRM WFNN SOM LRM WFNN SOM LRM

RMSE

 FF 0.19 0.03 0.22 0.47 0.04 0.42 0.13 0.02 0.14

 WFNN 0.00 0.42 0.00 0.29 0.00 0.22

 SOM 0.00 0.01 0.03

CC

 FF 0.14 0.04 0.16 0.28 0.03 0.40 0.49 0.01 0.30

 WFNN 0.00 0.37 0.00 0.11 0.00 0.15

 SOM 0.00 0.00 0.00

MARD

 FF 0.33 0.00 0.31 0.03 0.00 0.06 0.02 0.01 0.06

 WFNN 0.00 0.42 0.00 0.32 0.00 0.22

 SOM 0.00 0.01 0.02

AR (Hypo)

 FF 0.23 0.00 0.08 0.00 0.00 0.02 0.00 0.00 0.00

 WFNN 0.00 0.08 0.00 0.14 0.13 0.40

 SOM 0.00 0.02 0.09

AR (Hyper)

 FF 0.01 0.00 0.10 0.09 0.00 0.07 0.16 0.00 0.09

 WFNN 0.00 0.00 0.00 0.01 0.00 0.09

 SOM 0.00 0.00 0.01
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the models’ predictive performance, the one-way analysis 
of variance (ANOVA) has been applied with a 0.05 level 
of significance. The ANOVA revealed statistical signifi-
cant differences in terms of CC (p value 0.04 for 120 min 
PH) and MARD (p value 0.02, for 30 min PH). In order to 
perform a pairwise comparison of the models’ accuracy, 
the one-tail paired t test has been applied and the cutoff 
0.05 has been considered as the level of significance. 
In Table 3, the corresponding p values are presented. It 
can be shown that SOM is statistically more accurate 
than FNN, WFNN and LRM in terms of RMSE, CC and 
MARD for all PHs. FNN, LRM and WFNN achieve simi-
lar accuracy for 30 min PH, while for greater PHs, statis-
tical significant differences are observed between WFNN 

and FNN in terms of MARD. The CG-EGA [12] is shown 
in Fig. 2, where the percentage of accurate readings (AR), 
benign errors (BE), and erroneous errors (ER) in each 
relevant glucose range (hypoglycemia, euglycemia and 
hyperglycemia) are depicted. According to the CG-EGA, 
each model demonstrates its lowest performance in the 
hypoglycemic range, while most ARs have been achieved 
by applying the SOM (86.06, 72.53, 54.74 % for PH up to 
30, 60, and 120 min, respectively). In the euglycemic and 
hyperglycemic range, all the three models perform well 
even in the case of PH up to 120 min. The ANOVA and 
the paired t test are applied in order to compare the ARs 
in the hypoglycemic and hyperglycemic range. Signifi-
cant differences in terms of ARs in both the hypoglycemic 

Fig. 2  CG-EGA applied in Case 1 to evaluate the glucose predictions’ clinical accuracy
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(p value 0.00 for all PHs) and the hyperglycemic range 
(p value 0.03 for 30 min PH) have been observed from 
applying the one-way ANOVA. The t test has revealed 
SOM’s superior performance in the hypo- and hyper-gly-
cemic range over the other models for all PHs (Table 3). 
The models’ predictive performance deteriorates for 
larger PHs, as demonstrated from the mathematical cri-
teria presented in Table 2. Furthermore, it is concluded 
that SOM achieves the smallest variations in RMSE, CC 
and MARD with respect to the different PHs as indicated 
from the standard deviations (SDs) over all PHs which are 
also presented in Table 2. Thus, SOM appears to be the 
most robust model for larger PHs.

3.2  Evaluation of models’ predictive performance 
in Case 2

The results obtained by feeding the models with infor-
mation related to glucose, glucose change and physi-
cal activity are shown in Tables 4 and 5 and Fig. 3. 
RMSE, CC and MARD average and standard deviation 
values over all patients are summarized in Table 4. It 
is observed that the additional input related to physi-
cal activity results in improved predictive performance. 
In particular, RMSE value as averaged over all PHs is 
reduced by a factor of 10, 7 and 3 % for FNN, SOM 
and WFNN, respectively. Similarly, MARD value as 

Fig. 3  CG-EGA applied in Case 2 to evaluate the glucose predictions’ clinical accuracy
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averaged over all PHs is reduced by a factor of 11, 6, 
and 5 % for FNN, SOM and WFNN, respectively. CC 
value as averaged over all PHs is increased by a factor 
of 1 and 0.2 % for SOM and FNN, respectively, while it 
is slightly reduced (0.1 %) for WFNN. Figure 3 presents 
the results of CG-EGA in Case 2. Comparing the results 

of CG-EGA depicted in Fig. 3, with the ones obtained in 
Case 1, it can be observed that the hypoglycemic range 
benefits the most from the additional physical activity 
information, followed by the hyperglycemic range. In 
the euglycemic range, a rather small increase in ARs is 
observed (Fig. 3). 

Table 4  Mathematical criteria 
for evaluating the models’ 
predictive performances in 
Case 2

PH (min) Model RMSE CC (%) MARD

30 FNN 13.31 ± 4.47 97.34 ± 1.54 5.65 ± 1.76

SOM 11.42 ± 2.33 98.14 ± 0.37 5.19 ± 1.48

WFNN 15.22 ± 2.17 96.73 ± 0.77 7.28 ± 1.52

LRM 13.88 ± 2.55 97.14 ± 0.66 6.60 ± 1.56

60 FNN 22.66 ± 6.86 92.37 ± 3.53 10.07 ± 3.12

SOM 19.58 ± 3.80 94.26 ± 1.27 8.95 ± 2.24

WFNN 24.66 ± 3.39 91.56 ± 1.91 11.74 ± 2.47

LRM 23.65 ± 3.93 91.88 ± 1.86 11.26 ± 2.69

120 FNN 37.62 ± 11.79 79.81 ± 7.70 17.28 ± 5.40

SOM 31.00 ± 6.07 84.28 ± 6.54 14.56 ± 3.46

WFNN 39.59 ± 5.03 78.89 ± 5.20 18.83 ± 3.83

LRM 39.20 ± 6.49 79.19 ± 5.57 19.17 ± 4.81

Average ± SD  
(over all PHs)

FNN 24.53 ± 12.26 89.84 ± 9.03 11.00 ± 5.87

SOM 20.67 ± 9.84 92.23 ± 7.15 9.57 ± 4.72

WFNN 26.49 ± 12.29 89.06 ± 9.18 12.62 ± 5.82

LRM 25.57 ± 12.79 89.40 ± 9.22 12.34 ± 6.35

Table 5  P values obtained by 
applying t test to compare the 
models’ predictive performance 
in Case 2

PH 30 min PH 60 min PH 120 min

WFNN SOM LRM WFNN SOM LRM WFNN SOM LRM

RMSE

 FF 0.09 0.04 0.31 0.17 0.03 0.28 0.30 0.02 0.31

 WFNN 0.00 0.04 0.00 0.19 0.00 0.40

 SOM 0.00 0.00 0.00

CC

 FF 0.16 0.07 0.34 0.28 0.07 0.32 0.39 0.07 0.38

 WFNN 0.00 0.15 0.00 0.38 0.02 0.45

 SOM 0.00 0.00 0.00

MARD

 FF 0.01 0.07 0.00 0.08 0.03 0.02 0.22 0.01 0.04

 WFNN 0.00 0.17 0.01 0.34 0.02 0.43

 SOM 0.00 0.00 0.00

AR (Hypo)

 FF 0.07 0.26 0.25 0.47 0.16 0.31 0.17 0.03 0.22

 WFNN 0.11 0.23 0.24 0.25 0.44 0.45

 SOM 0.26 0.47 0.31

AR (Hyper)

 FF 0.34 0.00 0.38 0.43 0.00 0.33 0.38 0.00 0.45

 WFNN 0.06 0.36 0.09 0.34 0.08 0.38

 SOM 0.00 0.01 0.01



 Med Biol Eng Comput

1 3

Similarly to Case 1, SOM achieves the lowest RMSE 
and MARD values and the highest CC value as compared 
to FNN, WFNN and LRM. The application of the one-
way ANOVA has revealed statistical significant differences 
between the models’ predictive performance in terms of CC 
(p value 0.02 for 30 min PH) and MARD (p value 0.02 for 
30 min PH). Table 5 summarizes the p values obtained by 
applying the paired t test. Statistical significant differences 
are observed between SOM and the other models in terms 
of RMSE, CC and MARD, demonstrating, thus, SOM’s 
best predictive performance. Regarding the models’ perfor-
mance in the hypoglycemic range of the CG-EGA, accord-
ing to the results obtained by applying the t test in order to 
compare the average ARs (Table 5), all the models produce 
similar results for PHs up to 60 min, while SOM outper-
forms FNN for PH equal to 120 min. Regarding the hyper-
glycemic range, SOM outperforms FNN and LRM, while 
SOM and WFNN demonstrate similar performance for all 
PHs. In the euglycemic, all the models perform similarly 
and well for all PHs.

4  Discussion

In this work, four machine learning methodologies based on 
FNN, SOM, WFNN and LRM toward the development of 
glucose prediction models have been applied and compara-
tively assessed. The models are fed with data from sensors 
monitoring glucose and physical activity. The input space 
consists of the most recent glucose measurement and glu-
cose change, along with or without information related to 
energy expenditure. The objective of this work is to compare 
the four models in terms of their ability to accurately predict 
glucose profiles, and handle inter- and intra-patient variabil-
ity based only on most recent information of glucose and 
physical activity. Low-input dimension provides the advan-
tage of keeping the time necessary to train the models rela-
tively small, which is important especially for the WFNN 
model since, in general, neuro-fuzzy systems require large 
training time for large-dimensional input spaces.

Although all the models perform well in the euglycemic 
range, the most accurate glucose predictions in the hypo-
glycemic and hyperglycemic range are produced by the 
SOM-based model. This, along with the fact that SOM 
results in better RMSE, CC and MARD values, proves 
SOM’s superiority over FNN, WFNN and LRM for both 
cases of input data. It should be stressed, though, that 
the greater number of SOM’s training parameters com-
pared to the number of the other models’ training param-
eters gives advantage to the SOM and might increase the 
risk of overfitting, especially considering the fact that the 
number of training instances is not enough higher than the 
SOM’s training parameters. However, the application of 

the 10-fold cross-validation, which gives an insight on how 
the model generalizes to an independent dataset, limits the 
problem of overfitting. It is also noteworthy that the intro-
duction of physical activity to the models leads to more 
accurate glucose predictions especially in the hypoglyce-
mic range. However, it should be noted that the WFNN is 
little affected by the inclusion of physical activity data in 
the input space, demonstrating, thus, its ability to perform 
well even in the case of receiving less informative input.

A comparison between the results obtained by applying 
the SOM model and those reported in the literature is car-
ried out. Although direct and fair comparison is not feasible 
due to different datasets and input spaces, substantial infer-
ences can be obtained. Previous relevant studies focusing on 
the development of glucose prediction models for patients 
with T1DM based on methods different from the ones 
applied in the present study are chosen for comparison pur-
poses. Furthermore, taking into consideration that the input 
space usually includes information related to either glu-
cose levels or glucose levels along with insulin injections/
infusion rates, meal intakes and physical activity, relevant 
studies referring to the former case are chosen for com-
parison purposes. In particular, the application of autore-
gressive models with time-varying parameters for the esti-
mation of future glucose profile taking as input past CGM 
data [21], resulted in RMSE equal to 18.78 mg/dl for PH up 
to 30 min which is higher than the one obtained by apply-
ing SOM (12.29 mg/dl) and WFNN (15.64 mg/dl) in Case 
1. Moreover, a glucose prediction model based on SVR, 
which received as inputs past CGM data, achieved 15.29, 
24.19 and 33.04 mg/dl RMSE values for PHs up to 30, 60 
and 120 min, respectively [8]. These values are higher than 
the ones obtained by SOM (12.29, 21.06, 33.68 mg/dl for 
30, 60 and 120 min PH, respectively) and smaller than those 
obtained by WFNN (15.64, 25.50, 40.81 mg/dl for 30, 60 
and 120 min PHs, respectively) in Case 1. A glucose pre-
dictor implemented with a multilayer FNN [18] resulted in 
around 18 mg/dl RMSE value for 30 min PH versus 12.29 
and 15.64 mg/dl obtained by SOM and WFNN, respec-
tively. From the above, SOM’s superiority over the other 
models is demonstrated. The advantage of SOM relies on its 
ability to provide clinically acceptable glucose predictions 
through the creation of localized linear models. Moreover, 
taking into account that, the SOM is based on quantizing 
the input space, generalization can be ensured, if for every 
new input, a similar neuron exists. This does not necessarily 
require large number of training instances, but the training 
data should cover adequately the range of glucose values (in 
the hypoglycemic, euglycemic and hyperglycemic range) 
and glucose changes as a result of the patient’s lifestyle 
and treatment. Future research directions refer to further 
improve the SOM-based model by choosing patients’ spe-
cific number of neurons and epochs.
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5  Conclusions

Four glucose prediction models based on FNN, SOM, 
WFNN and LRM have been developed, evaluated and com-
paratively assessed. The models are fed with data originating 
from wearable sensors monitoring glucose. Furthermore, the 
impact of physical activity input data to models’ predictive 
performance has been investigated. For the development and 
evaluation of the models, data from 10 patients with T1DM 
have been used. The superiority of SOM over FNN, WFNN 
and LRM has been demonstrated. The obtained results indi-
cate the SOM’s ability to capture the metabolic behavior of 
a patient with T1DM and to handle inter- and intra-patient 
variability. SOM’s low complexity and the fact that it results 
in linear glucose prediction models, make it a good candidate 
for integration into a closed-loop glucose controller.
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