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Abstract—The estimation of long–term diabetes complications 
risk is essential in the process of medical decision making. 
Guidelines for the management of Type 2 Diabetes Mellitus 
(T2DM) advocate calculating the Cardiovascular Disease (CVD) 
risk to initiate appropriate treatment. The objective of this study 
is to investigate the use of sophisticated machine learning 
techniques towards the development of personalized models able 
to predict the risk of fatal or non-fatal CVD incidence in T2DM 
patients. The important challenge of handling the unbalanced 
nature of the available dataset is addressed, by applying novel 
ensemble strategies. Hybrid Wavelet Neural Networks (HWNNs) 
and Self-Organizing Maps (SOMs) constitute the primary models 
for building ensembles following a sub-sampling approach. 
Different methods for combining the decisions of the primary 
models are applied and comparatively assessed. Data from the 5-
year follow up of 560 patients with T2DM are used for 
development and evaluation purposes. The highest discrimination 
performance (Area Under the Curve (AUC): 71.48%) is achieved 
by taking into account both the HWNN- and SOM- based primary 
models’ outputs. The proposed method is superior to the Binomial 
Linear Regression (BLR) model justifying the need to apply more 
sophisticated techniques in order to produce reliable CVD risk 
scores. 
 

Index Terms—Cardiovascular Disease, Diabetes, UKPDS, 
machine learning, unbalanced data 

I. INTRODUCTION 
ype 2 Diabetes Mellitus (T2DM) is the most common form 
of diabetes affecting 90% of people with diabetes 

worldwide. Optimal management of T2DM requires a deep 
understanding of the predisposing factors associated with the 
disease, early diagnosis and treatment before the occurrence of 

complications, and tight glycemic control. Early identification 
of patients at an increased risk of developing diabetes 
complications is of utmost importance to select appropriate 
treatment.  

Cardiovascular disease (CVD) is the most serious long-term 
diabetes complication being the major cause of death in people 
with diabetes, accounting for 50% or more of all diabetes 
fatalities and severe disabilities. Mortality rates due to CVD in 
patients with T2DM are 2–4 times higher than the 
corresponding ones in patients without diabetes. 

Taking into account that the medical treatment of CVD 
related risk factors reduces the occurrence of CVD, along with 
the increased prevalence of CVD and its economic burden, 
clinical practice guidelines focus on primary prevention and 
recommend care givers to evaluate patients for CVD risk 
factors that may warrant medical treatment [1]. However, it has 
been shown that care providers cannot estimate the CVD risk 
on their own [1]. Thus, computational models able to predict 
the CVD risk can provide valuable tools for treatment 
planning/selection. International guidelines for T2DM 
management advocate estimating the CVD risk to initiate 
appropriate treatment [2], [3]. 

The European Association for the study of Diabetes (EASD) 
recommends using FRAMINGHAM [4] and DECODE [5] as 
preferred prediction models for calculating the CVD risk. 
However, these models are applicable to the general population 
and underestimate the risk in diabetes patients [6], [7]. On the 
other hand, International Diabetes Federation guidelines 
recommend using the UKPDS risk engine [8] which is 
dedicated to the T2DM population, but results in varying 
discriminative performance (c-statistic: 65% - 86%) and poor 
calibration. The methodologies used for the development of 
these risk engines, are usually based on survival analysis (e.g. 
cox hazard regression) and regression equations.  

In general, a variety of methodologies in the area of statistics 
and machine learning, such as logistic regression, decision 
trees, artificial neural networks (ANNs), and Bayesian 
networks have been applied towards the development of 
computational models to predict clinical outcomes [8]-[14]. 
Among these, logistic regression and ANNs gained the most 
widespread acceptance in the field of risk prediction models, 
due to their simplicity and good predictive ability. ANNs are 
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particularly useful for capturing complex relationships in the 
data and have been successfully applied in several domains of 
medical diagnosis and prognosis. A hybrid decision support 
system for the risk assessment of retinopathy development in 
patients with Type 1 Diabetes Mellitus has been proposed [9], 
[14]. The system has been based on the combined use of a back-
propagated Feed forward Neural Network (FFN), a 
Classification and Regression Tree (CART) and a Hybrid 
Wavelet Neural Network (HWNN). The three primary 
classifiers have been comparatively assessed and the superiority 
of the HWNN over both CART and FNN has been 
demonstrated. Self Organizing Maps (SOMs) constitute 
another class of ANNs that has been extensively used in a 
variety of applications for clustering and classification 
purposes. However, limited SOM-based models have been 

proposed for assisting disease prognosis and diagnosis [15]-
[19]. Recently, the use of SOM has been investigated for the 
diagnosis of DM [18] as well as diabetic neuropathy [19].  

A major issue that is frequently encountered in the field of 
diagnosing a disease or predicting disease risks is the 
unbalanced nature of the available medical data [20]. Several 
techniques have been developed to overcome this problem, 
such as under- and over –sampling, cost-sensitive learning, and 
ensemble learning [21].   

The present study aims at applying and comparatively 
assessing sophisticated machine learning techniques towards 
the development of personalized risk prediction models for the 
fatal or non-fatal CVD incidence in T2DM, focusing on 
Coronary Heart Disease (CHD) and Stroke. Taking as input 
CVD related risk factors, the proposed models output the 5-year 
risk score for a T2DM patient to experience a CVD incidence 
for the first time. HWNNs’ and SOMs’ classification and 
regression abilities have motivated their application in the 
present work. In order to handle the unbalanced nature of the 
data, novel ensemble learning approaches have been deployed. 
To the best of authors' knowledge, this is the first work 
proposing the use of HWNNs and SOMs to calculate the CVD 
risk in T2DM. The performance of the proposed models has 
been assessed against a Binomial Linear Regression (BLR) 
model which has been chosen due to its simplicity and wide 
usage towards the development of risk prediction models [22]. 
Moreover, a comparison with commonly used machine learning 
techniques for the development of CVD risk prediction models 
in T2DM has been conducted. 

II. DATASET 

The development and evaluation of the proposed risk 
prediction models was based on data from the medical records 
of 560 T2DM patients, which were collected from a 5 year 
follow up at the Hippokration General Hospital of Athens 
during the period 1996-2007. In this dataset, 41 out of the 560 

TABLE I 
RISK FACTORS FOR THE INCIDENCE OF FATAL OR NON-FATAL CVD IN T2DM 

Continuous variables 

Risk Factor Average ± Standard Deviation 

Age 58.56 ± 10.70 (years) 

Diabetes duration 7.67 ± 7.37 (years) 

Body Mass Index (BMI) 29.49 ± 5.54 

Glycosylated Hemoglobin 7.43 ± 1.81 (%) 

Pulse Pressure 56.75 ± 15.80 (mmHg) 

Fasting Glucose 165.15 ± 56.15 (mg/dL) 

Total Cholesterol 226.64 ± 50.04 (mg/dL) 

Triglycerides 167.39 ± 110.81 (mg/dL) 

HDL Cholesterol 48.35 ± 16.46 (mg/dL) 

Categorical variables 

Risk Factor Number of patients (Percentage) 

Smoking Habit 
Non smokers 
Current smokers 
Ex- smokers 

 
289 (51.61%) 
146 (26.07%) 
125 (22.32%) 

Sex 
Male 
Female 

 
263 (46.96%) 
297 (53.04%) 

Hypertension 260 (46.42%) 

Lipid-lowering therapy 
No 
Statins 
Fibrates 

 
469 (83.75%) 
74 (13.21%) 
17 (3.04%) 

Aspirin 
No 
100 mg 
325 mg 

 
509 (90.89%), 
44 (7.85%), 
7 (3.03%)  

Insulin Therapy 
No 
Yes 

 
494 (88.21%),  
66 (11.79%) 

Parental History of Diabetes 
No 
Yes 

 
304 (54.28%) 
256 (45.72%) 

 

 
Fig. 1. Conceptual framework. Different combination schemes were developed 
and applied on the HWNN- and SOM- based primary models towards 
producing the final CVD risk. 
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T2DM patients (7.32%) developed fatal or non-fatal CVD 
during their 5 year follow up period. Out of the 41 patients with 
CVD incidents, four patients experienced stroke and the rest 
experienced CHD. The incidence of fatal or non fatal CVD 
(positive instances) was encoded to 1 and the non-occurence of 
CVD (negative instances) to 0. The considered risk factors 
composing the input space are summarized in Table I along 
with their descriptive statistics. Baseline data related to 
demographics, lifestyle, laboratory examinations, and treatment 
are included, providing adequate information with regard to the 
clinical status of a T2DM patient [23]. The use of data collected 
from screening visits to build the proposed risk prediction 
models renders their adoption in clinical practice feasible.  

Each considered factor influences the CVD risk as evidenced 
by several studies. In particular, age constitutes an important 
risk factor by approximately tripling the CVD risk with each 
decade [24]. Duration of diabetes and elevated BMI increase 
the risk [25]. As an indicator of the average blood glucose 
concentrations over the preceding 2–3 months, glycosylated 
haemoglobin (HbA1c) level has been proven to be an 
independent risk factor for CVD events [26]. The relation 
between Pulse Pressure (PP) and CHD is nonlinear in patients 
with T2DM. Patients with PP outside the range of 45 and 55 
mmHg are at increased risk of future CHD [27]. Elevated 
fasting glucose levels have been also significantly associated 
with CVD and all-cause mortality [28]. Abnormal cholesterol 
levels, including high LDL and low HDL cholesterol, along 
with high triglycerides levels indicate poor lipid counts which 
often occur in patients with premature CHD [29]. Evidently, 
active smoking is associated with increased risks, up to 50%, of 
CVD events in T2DM [30]. Although men are at greater risk of 
heart disease than pre-menopausal women, females with 
diabetes are twice as likely as males with diabetes to develop 
heart disease [31]. Hypertension is quantitatively the most 
important risk factor for premature CVD accounting for an 
estimated 54 percent of all strokes and 47 percent of all 
ischemic heart disease events globally [32]. Lipid-lowering 
therapy and anti-thrombotic agents (e.g. aspirin) are considered 
to be protective factors for the incidence of CVD [33]. Several 
large trials have shown that insulin does not increase the CVD 
risk despite evidence of enhanced atherosclerosis obtained from 

in vitro studies [34]. Parental history of diabetes has been 
associated with the incidence of CVD in T2DM [35].  

III. METHODS 

A. Conceptual Framework 
Taking into account the multifactorial nature of T2DM, 

HWNNs and SOMs were applied due to their ability to exploit 
the complex interactions between the risk factors. HWNNs 
demonstrated increased input-output mapping capabilities by 
identifying nonlinearities and heterogeneities in diabetes 
related data [9]. SOM’s capacity to capture both density and 
topology of input data and map them in a bidimesional 
representation along with their ability to cluster input data in the 
absence of class memberships' knowledge motivated their use 
towards detecting and recognizing nonlinearities and 
heterogeneities inherent to diabetes data facilitating 
representation of relationships between the risk factors and their 
interactions.  
In order to handle the unbalanced nature of the available 
dataset, the use of different ensemble methods was investigated. 
The primary models for building the ensembles were based on 
HWNN and SOM. Over-fitting to the majority class (negative 
instances) was avoided by applying a sub-sampling approach 
[36] during the training stage, as described in detail in Section 
III-D. Following this approach, m sub-samples from the initial 
training dataset were created and used for training equally 
numbered primary models. The outputs of the trained primary 
models were combined by means of four different schemes 
resulting in corresponding HWNN- and SOM- based ensembles 
(Fig. 1). The level of complexity of the combination schemes 1 
to 4 ranged from simple (e.g. average) to more sophisticated 
(e.g. selection based on the best performance achieved on the 
nearest neighbor training instance). Moreover, a hybrid 
ensemble was developed by applying a voting scheme to the 
outputs of the HWNN-based ensemble 4 and SOM-based 
ensemble 4 (Fig. 2).  

The hybrid ensemble integrates the inherent advantages and 
features of both the HWNN- and the SOM- based ensembles 
offering the opportunity to produce more flexible relationships 
between risk factors and the CVD risk by identifying and 
representing nonlinearities and differentiations in the 
correlations between certain risk factors in the dataset. The 
primary models, combination schemes, HWNN- and SOM-
based ensembles, as well as the hybrid ensemble are described 
in detail in the following Sections. 

B. Hybrid Wavelet Neural Network (HWNN) 
Wavelet Neural Networks (WNN) belong to a new class of 

Neural Networks with unique capabilities in system 
identification and classification [37]. The concept of WNN is 
inspired by both the technologies of wavelet decomposition and 
Neural Networks. Particularly, wavelets are obtained from a 
single prototype wavelet ψ(t) called mother wavelet by dilations 
and translations, 
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Fig. 2. Outline of the hybrid ensemble.  
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where is a family of wavelets, α is the dilation parameter 
and b is the translation parameter, that are real numbers in R and 
R+ respectively.  

In the present study, a structure of a feed forward Hybrid 
WNN (HWNN) was used employing the wavelet (1) and the 
sigmoid function as the activation function of the hidden and 
output layer units, respectively [9], [37]. A bias term was added 
in the hidden layer. In order to handle back propagation’s 
problem of local minima, two momentum terms were used in 
its learning algorithm. Moreover, a modified cost function was 
defined as follows: 

 (2) 

where 𝑦𝑖𝐻𝑊𝑁𝑁𝑖 and 𝑦𝑟𝑒𝑎𝑙𝑖  are the HWNN’s output and the target 
output, respectively, and N is the number of patterns of the 
training data set. By applying the sub-sampling approach, the 
HWNN was trained with a representation of positive instances 
equal to 33.33%. Given that the CVD incidence rate in the 
general T2DM population is lower, training the HWNN with 
this dataset would avoid over-fitting but would cause the 
prediction of high risk scores which would, in turn, result in bad 
calibration performance. To overcome this problem, a 
weighting coefficient (Γi) was applied to the cost function in 
order to decrease the contribution of the positive instances to 
the weights’ adjustment. Oscillations were avoided and the 
convergence was accelerated by using an adaptive learning rate, 
based on Vogl’s algorithm [38]. Furthermore, a particular 
initialization procedure was followed to ensure that the 
wavelets covered the entire input space [37]. Initial weights 
were randomly set to small values and the bias term was 
initialized to the average output. 

C. Self Organizing Map (SOM) 

In general, SOMs belong to the category of competitive 
learning networks and are widely used for data clustering and 
visualization of high dimensional data. Their philosophy is 
based on the notion of unsupervised learning, according to 
which a system can learn to represent input data in the absence 
of any information related to the target outputs. However, 
SOMs can be trained to learn input-output mappings and can 
be, thus, effectively applied for function approximation [39], 
[41]. Through a competitive-cooperative learning scheme, the 
neurons of the SOM are driven to capture the spatial 
relationships of input data and finally perform a vector 
quantization of the input space. 

In the present study, a technique that generated multiple local 
linear models following a SOM-based vector quantification was 
deployed [42]. In particular, the SOM consisted of a two 
dimensional grid of neurons (j), each of which was associated 
with a weight vector (win) of identical dimension to that of the 
input, a coefficient vector (v) of a linear autoregressive model 
with exogenous inputs and a weight output value (wout). All 
weights were randomly initialized and subsequently updated at 
every iteration of the training stage, based on the Euclidean 
distance between the current input instance vector (xin) and the 

weight vectors. The winner neuron (j*(t)) was selected as the 
one that minimized the Euclidean distance: 

Input and output weights were updated according to the 
equations explicitly presented in [39], [40]. In this way, the 
degree to which each neuron was affected depended on its 
proximity to the input, and the inputs’ area of influence was 
restricted as the training procedure evolved, so that eventually 
only the winner neuron’s weights were updated. 

The estimation of the final CVD risk score for every testing 
input instance was performed by deployment of a novel 
method, according to which the neurons’ outputs of the whole 
grid were taken into account. Particularly, for each testing input 
instance the CVD probabilities ( 𝑦𝑗̂) were calculated by 
applying the local linear models associated to each neuron (j), 
as follows: 

The weighted average of the probabilities produced by the 
local linear models constituted the final CVD risk. The 
corresponding weights assigned to each individual probability 
were based on the Euclidean distance of the testing input 
instance from each neuron, according to the following equation:  

𝑤𝑛𝑒𝑢𝑟𝑜𝑛 = {
𝑑𝑘 − 𝑑𝑗

𝑑𝑘 − 𝑑1
, 𝑖𝑓 𝑑𝑘 ≠ 𝑑1

1, 𝑖𝑓 𝑑𝑘 = 𝑑1

 (5) 

where dj represents the Euclidean distance
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Fig. 3. Upper panel: Ensemble learning based on sub-sampling approach. 

Lower panel: The application of combination schemes 1 to 4 on the trained 
primary models led to corresponding HWNN- and SOM- based ensembles. 
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of the testing input instance to the weight vector of neuron j, d1 
and dk denote the input’s distance from the nearest and the 
furthest neuron, respectively. 
D. Ensemble learning based on sub-sampling approach 

The dataset used for the development and the evaluation of 
the personalized risk prediction models, includes a small 
number (7.32%) of CVD incidents. Since most classifiers are 
built with the assumption that the testing data are drawn from 
the same distribution as the training data, this unbalanced 
dataset would cause over-training the models. To reduce the 
over-fitting, appropriate testing and training datasets should be 
created. Therefore, an ensemble learning technique was 
followed, in which multiple primary models were individually 
trained using subsets of the original data while their outputs 
were combined to produce the final CVD risk prediction of a 
patient. The training subsets were created using a sub-sampling 
approach so that the minority representation in each subset was 
equal to 33.33% [36]. For the creation of the sub-samples, the 
initial training dataset was firstly divided into positive and 
negative instances. Sub-samples were created using all positive 
instances from the initial training dataset and double sized 
randomly selected negative instances. Following this approach, 
6 different sets of sub-samples (m=6) were created and used for 
training 6 primary models. The adopted ensemble learning 
approach is presented in Fig. 3. 

E. Combination Schemes and Ensembles 
Four methods to combine the outputs of each individually 

trained primary model (HWNN or SOM) were applied, 
resulting in four HWNN- and four SOM- based ensembles.  

1) Combination scheme 1: The first scheme was based on the 
Εnsemble Αveraging (ΕΑ), in which the outputs of the 
individually trained models were simply averaged (ensemble 
1).  

2) Combination scheme 2: The second scheme followed the 
dynamic weighted average approach to obtain the final risk 
score (ensemble 2), as  

            (6) 

where 𝑦(𝑥)̅̅ ̅̅ ̅̅  is the final risk score, m denotes the number of the 
individually trained models (m=6), wnet and ynet(x) represent the 
weights and the outputs of the trained primary models, 
respectively.                                                             
For the calculation of the weights (wnet), the Dynamic 
Weighting based on Certainties (DWC) [43], [44] was used, 
according to which the weights were set proportional to the 
certainties (𝑐𝑛𝑒𝑡) of the respective trained primary model 
output, using the following equations: 

The values of the weights depended on the outputs of the trained 
primary models. The certainty of a specific output increased 
when the output is closer to 0 or 1. 

3) Combination scheme 3: Selection of the minimum or 
maximum estimated probability by the trained primary models 
was performed according to the output produced by a SOM 
classifier concerning positivity or negativity for CVD. 
Particularly, if the input instance was classified as negative, the 

¦
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Algorithm 1: Training stage of the SOM Classifier 
1. Input: A matrix I containing the training instances  
2. Output: Two trained SOM nets (SOM1, SOM2),                         

labeled clusters of the training instances 
//Phase 1 
3. Use the negative training instances to train SOM1 
4. Apply SOM1 on the training instances (both negative and 

positive) in order to form clusters of all instances included in I  
5. for all clusters do      
6.         if cluster contains only negative instances 
7.           assign a negative label 
8.       else 
9.           assign a positive label 
10.     end if  
11. end for 
//Phase 2 
12. Create a matrix I2 containing the training instances that were 

assigned to clusters with positive labels through Phase 1. 
13. Use the negative training instances included in I2 to train 

SOM2. 
14. Apply SOM2 on the training instances (both negative and 

positive) included in I2 in order to form clusters 
15. for all clusters do 
16.      if cluster contains only negative instances 
17.          assign a negative label 
18.      else 
19.          assign a mixed label 
20.      end if 
21. end for 
22. Apply the 0-1 knapsack approach to the clusters with mixed        

label in order to classify each for positive or negative label  
 

Algorithm 2: Testing stage of the SOM Classifier 
1. Input: A matrix X containing testing input instances,  
                 trained SOM nets (SOM1, SOM2), 
                 labeled clusters of the training instances 
2. Output: A vector containing labels of the testing input 

instances 
3. for all testing input instances in X do 
//Phase 1 
4.        apply SOM1 to assign the testing input instance to a cluster 
5.        if cluster is negative 
6.            assign a negative label to the instance 
7.       else 
//Phase 2 
8.            apply SOM2 to assign the testing input instance to a 

cluster 
9.             if cluster is negative 
10.               assign a negative label to the instance 
11.           else 
12.               assign a positive label to the instance. 
13.           end if 
14.      end if 
15. end for 
 

 

wnet= 𝐶𝑛𝑒𝑡
∑ 𝐶𝑛𝑒𝑡

𝑚
𝑛𝑒𝑡=1

                     (7) 

cnet={ 𝑦𝑛𝑒𝑡,         𝑖𝑓 𝑦𝑛𝑒𝑡 ≥ 0.5
1 − 𝑦𝑛𝑒𝑡, 𝑖𝑓 𝑦𝑛𝑒𝑡 < 0.5                (8) 
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minimum output value was selected, otherwise the maximum 
output value was set as the final predicted probability (ensemble 
3). 

The SOM classifier was built following an approach able to 
handle highly unbalanced datasets [45]. The approach resulted 
in the creation of clusters labeled as positive or negative. The 
general architecture included two phases in the testing stage. 
During the first phase, the new testing input instance was 
classified as negative if it was assigned to a negative cluster, 
otherwise it was forwarded to the second phase, where it 
received the label of the winner neuron’s cluster. For this 
purpose, the following training procedure was implemented: 
x Phase 1: Negative instances were firstly filtered out of the 
training dataset and used to train the first SOM (SOM1). The 
trained SOM’s neurons were considered as the clusters’ centers. 
The clusters were created taking into account the minimum 
Euclidean distance of both the positive and negative training 
instances from each cluster center. A cluster was labeled as 
negative if all the training instances that were assigned to it 
belonged to the negative class, otherwise, it was labeled as 
positive. 
x Phase 2: Negative training instances that were assigned to 
positive clusters during phase 1 were used to train the second 
SOM (SOM2). After the training procedure was completed, 
these negative training instances along with the positive ones 
were compared (Euclidean distance) with the clusters’ centers 
(e.g. SOM’s neurons) in order to create the final clusters. The 
challenge of assigning labels to inhomogeneous clusters was 
addressed by using the 0-1 knapsack approach [45]. 
Appropriate labels were assigned to the clusters so that the 
False Positive Rate was lower than a predefined value. The 
training and testing algorithm are summarized by the pseudo 
code given in Algorithms 1 and 2, respectively. 

During the training stage of each phase, the neighborhood 
function was modified so that at every iteration only the winner 
neuron's weights were updated [46].  

The dimension of the SOM classifier’s input space was 
decreased in order to avoid the creation of too many 
inhomogeneous clusters which would lower its performance. 
For this reason, an identical set of risk factors from the input 
space to those used by the UKPDS risk engine were used. 
According to Table I, the input domain consisted of: i) Age, ii) 
Duration of Diabetes, iii) Sex, iv) Smoking Habit, v) HbA1c, 
vi) Systolic Blood Pressure, vii) Total Cholesterol, and viii) 
HDL Cholesterol.  

4) Combination scheme 4: The fourth method included a 
selection between the decisions produced by ensemble versions 
1 and 3, based on their corresponding performance achieved on 
the nearest neighbor training input instance. More specifically, 
by following the k nearest neighbors approach, for every testing 
input instance, the nearest neighbor in the training dataset was 
determined. If the nearest neighbor had developed CVD, the 
combination scheme that produced the highest probability was 
selected to be applied for the testing instance, otherwise the 
scheme that produced the lowest probability was used 
(ensemble 4). 

F. Hybrid Ensemble 
A hybrid ensemble was developed by applying a voting scheme 
to the outputs of the HWNN-based ensemble 4 and the SOM-
based ensemble 4 (Fig.2). Following the sub-sampling 
approach, several HWNNs were trained while the SOM-based 
vector quantification technique was deployed as described in 
Section III.C, towards generating multiple local linear models 
in order to create the trained primary SOM models.  As depicted 
in Fig. 2 the outputs of the trained primary HWNNs and SOMs 
were combined using the combination scheme 4 (Section III.E) 
towards producing two decisions of the CVD risk, respectively. 
The final decision was provided by applying a voting scheme 
on the two estimated CVD risks. In particular, for every testing 
input instance, the maximum or minimum decision was 
selected, depending on whether both decisions were greater or 
lower than a certain threshold value, respectively. In all other 
cases, decisions were combined by applying the DWC method. 
The threshold value was chosen equal to 0.1. 

G. Evaluation Criteria 
In order to assess the generalization ability of the developed 

risk prediction models, 10-fold cross-validation was used. The 
division of the dataset into 10 sets of identical size was based 
on the DUPLEX data splitting method with the aim of 
achieving effective coverage of the training input space [47]. 
According to DUPLEX, data samples are drawn to be added to 
a set based on their mutual Euclidean distance. The predictive 
performance of the models was measured for both 
discrimination and calibration. Discrimination refers to the 
ability of the model to separate the patients who developed the 
disease from those who did not, by providing higher risk scores 
to the former case. One of the most reliable and popular 
measures of discrimination is the Area Under the Curve (AUC), 
also known as c-statistic [48]. An AUC of 100% indicates 
perfect discrimination ability, while an AUC of 50% provides 
worthless performance. In addition to AUC, the classification 
accuracy, sensitivity and specificity were also used as a 
measure of the models’ discriminative ability. Accuracy 
corresponds to the percentage of correctly predicted outcomes. 
Sensitivity reflects the model’s ability to correctly identify the 
positive incidents, while specificity represents the percentage 
of the correctly predicted negative for CVD outcomes. 
Calibration measures how close the predictions are to the actual 
probability. A commonly used criterion of calibration is the 
Brier score [49], which measures the mean square difference 
between the estimated and the actual risks of CVD incidence.  

Further to the above criteria, the clinical impact of the model, 
which achieved the best performance, was also assessed by 
applying the Net Benefit criterion [50],  

𝑁𝑒𝑡 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 =  𝑇𝑃𝐶
𝑁𝑡

− 𝐹𝑃𝐶
𝑁𝑡

∙ ( 𝑝𝑡
1−𝑝𝑡

)         (9) 

where 𝑝𝑡 , 𝑁𝑡, 𝑇𝑃𝐶, and 𝐹𝑃𝐶 represent the threshold 
probability, the total number of patients, the true positive counts 
and the false positive counts, respectively. Assuming that the 
threshold probability of developing CVD, at which a patient 
would initiate treatment, is informative of how the patient 
weighs the relative harms of a false-positive and a false-
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negative prediction, the net benefit criterion was calculated 
across different threshold probabilities towards the creation of 
the “decision curve”. Based on decision curve analysis, the 
range of threshold probabilities in which a model is of value 
was identified.  

IV. RESULTS 

A. Parameters Tuning 
1) HWNN-based primary model: In the present study, the 
Morlet wavelet was selected as the mother wavelet for the 
HWNN, because of its high resolution both in time and 
frequency domains. The initial values of the learning rate (η) 
and the two momentum terms (α1, α2), as defined in [37], were 
set to 0.1, 10-4 and 10-4, respectively. Parameter γ in Eq. 2, was 
set to 0.5. 
2) SOM-based primary model: A grid of 3×3 was found to be 
large enough to quantize the input data. The number of epochs 
was selected equal to 100. Parameters a0, aT, and sT, which were 
associated with the learning rate as defined in [39], [40], were 
set equal to 0.9, 0.01, and 1, respectively. Before training the 
models, a normalization of the data within the range [-1, 1] was 
performed. For this reason, the initial values of the weights 
were randomly selected within the range [-1, 1].  
3) SOM classifier: A grid of 5×5 and 3x3 neurons was 
selected for the first and second phase of the SOM classifier, 
respectively. The false positive rate in the 0-1 knapsack 
problem algorithm, was set equal to 35%. The values of all the 
other tuning parameters were identical to those used in the 
SOM-based primary model.   

B. Evaluation of models’ performance 
Table II summarizes the results obtained by the HWNN- and 

SOM- based ensembles 1 to 4 and the hybrid ensemble. 
Accuracy, sensitivity and specificity were calculated by setting 
the probability threshold equal to 10%. 

The simple combination schemes 1 and 2 achieved low 
discrimination ability for both the HWNN- based ensembles 
(AUC values: 59.97 ± 15.65% and 60.03 ± 15.70%, 
respectively) and the SOM- based ensembles (AUC values: 
61.85 ± 8.12% and 61.46 ± 8.68%, respectively). The higher 
values of specificity (68.44 ± 26.76 % and 75.18 ± 24.27%) 
with respect to sensitivity values (39.50 ± 29.67% and 30.00 ± 
32.91%) obtained by HWNN-based ensembles 1 and 2 indicate 
over-fitting to the majority class. On the other hand, the SOM-
based ensembles 1 and 2 achieved low specificity (20.43 ± 
4.38% and 23.32 ± 5.10%) and high sensitivity values (90.00 ± 
17.48% and 90.00 ± 17.48%). 

The application of more sophisticated combination schemes 
increased the ensembles’ performance. In particular, the 
minimum - maximum selection via the SOM classifier 
(combination scheme 3) demonstrated higher average AUC 
values for both the HWNN- (61.83 ± 19.90%) and the SOM- 
based (67.55 ± 14.61%) ensembles 3. Taking also into account 
the performance of ensemble 1 and 3 on the nearest neighbor 
training instance in order to choose the best final decision 
between ensemble 1 and 3 (combination scheme 4), the AUC 
value was further increased up to 67.64 ± 15.09% and 70.54 ± 
13.72% for HWNN- and SOM-based ensemble 4, respectively. 
A low sensitivity and high specificity value was obtained by 
applying the HWNN-based ensemble 4, while the opposite was 
achieved by the SOM- based ensemble 4. This outcome 
motivated the development of the hybrid ensemble, which 

TABLE II 
DISCRIMINATION AND CALIBRATION PERFORMANCE FOR EACH ENSEMBLE, THE 
SOM CLASSIFIER, THE BLR MODEL, THE FNN, THE CART, THE RANDOM 
FOREST AND THE NAÏVE BAYES. THE DISCRIMINATION ABILITY WAS 
MEASURED USING THE C-STATISTIC (AUC), SPECIFICITY (SPC) AND 
SENSITIVITY (SENS). THE CALIBRATION ABILITY WAS MEASURED BY 
CALCULATION OF THE BRIER SCORE. CRITERIA VALUES WERE CALCULATED BY 
AVERAGING THE CORRESPONDING VALUES TO THE TESTING SETS GENERATED 
BY THE 10-FOLD CROSS-VALIDATION. 

 
Mean ±SD (%) 

AUC ACC SPC SENS Brier 
Score 

HWNN-
based 

ensemble 

 1 59.97±15.65 66.25±23.18 68.44±26.76 39.50±29.67 0.07±0.01 

 2 60.03±15.70 71.19±21.28 75.18±24.27 30.00±32.91 0.07±0.01 

 3 61.83±19.90 77.68±8.72 81.52±9.71 29.50±25.98 0.09±0.03 

 4 67.64±15.09 83.04±8.22 87.30±9.73 29.50±23.15 0.08±0.01 

SOM-
based 

ensemble 

 1 61.85±8.12 25.54±3.77 20.43±4.38 90.00±17.48 0.08±0.01 

 2 61.46±8.68 28.21±4.19 23.32±5.10 90.00±17.48 0.08±0.01 

 3 67.55±14.61 48.21±5.19 46.25±5.88 73.00±18.59 0.08±0.02 

 4 70.54±13.72 49.11±5.00 46.44±5.77 83.00±16.70 0.07±0.01 

Hybrid 
ensemble 71.48±15.73 71.79±9.06 72.64±9.44 61.00±26.65 0.07±0.02 

SOM 
classifier - 74.46±7.05 76.31±7.12 51.50±27.79 - 

BLR model 55.11±9.81 41.25±12.70 39.08±14.36 67.50±20.58 0.09±0.02 

FFN 60.09±19.70 55.54±12.89 55.49±13.93 57.00±31.90 0.09±0.03 

CART 47.99±8.64 78.57±10.10 83.84±11.10 11.50±15.47 0.12±0.03 

Random 
Forest 60.80±18.65 68.04±10.96 70.53±11.97 37.00±37.95 0.07±0.01 

Naive Bayes 67.19±8.71 68.04±3.99 68.79±3.90 58.50±11.80 0.10±0.06 
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resulted in the highest AUC (71.48 ± 15.73) and acceptable 
levels of both sensitivity (61.00 ± 26.65%) and specificity 
(72.64 ± 9.44%) for this unbalanced dataset. As it is 
demonstrated by the low Brier scores, all ensembles were well-
calibrated. 

For reference purposes, the discriminative ability of the SOM 
classifier was also assessed (Table II). The obtained results 
indicated low sensitivity (51.50 ± 27.79%) and acceptable 
accuracy (74.46 ± 7.05%) and specificity (76.31 ± 7.12%).  

In order to compare the averaged criteria obtained by 
applying the 10-fold cross validation, the pairwise t-test was 
used. Table III presents the p-values obtained by comparing the 
hybrid ensemble with all the other ensembles and the BLR 
model. Statistical significant differences were observed for 
most of the cases demonstrating the hybrid ensemble's 
superiority. 

A boxplot presenting the distributions of the hybrid 
ensemble’s estimated risks for the patients who developed CVD 
and those who did not is depicted in Fig. 4. In can be seen that 
significantly higher probabilities (p-value<0.05) were 
estimated for the patients who developed CVD. The hybrid 
ensemble’s clinical impact was also assessed by applying the 
Net Benefit criterion. The obtained decision curve presented in 
Fig. 5 depicts the magnitude of the Net Benefit across different 
threshold probabilities including also the cases of assuming that 
all patients are positive (dashed line) and negative (dash-dot 
line) for CVD, respectively. The hybrid model is of value 
within the range of 4% and 14%. 

C. Comparison with the state of the art 
The results obtained by the best performing hybrid ensemble 

were comparatively assessed against those obtained by 
applying the UKPDS risk engine on the same dataset [53]. The 
development of the UKPDS risk engine was based on 
multivariate logistic regression while data from 5102 T2DM 
patients were used. The publicly available executable file of the 
UKPDS risk engine v2 was downloaded, set up and applied on 
the entire Hippokration dataset in order to produce the 
estimated probabilities for each patient to develop CHD and 
Stroke within the 5-year time period. For comparison purposes, 
the maximum value between the estimated CHD and Stroke risk 
was taken into consideration while, for those patients who 
developed either CHD or Stroke, the corresponding estimated 
risk was considered. In order to provide a fair comparison, the 
multiple test sets generated from the 10-fold cross validation 
were merged together into one large test set, which included all 
the patients of the Hippokration dataset. This test set was used 
to produce the AUC obtained by applying the hybrid ensemble. 
The hybrid ensemble provided much higher discriminative 
ability than the UKPDS (70.00% versus 58.74%).  

Since logistic regression is one of the most commonly used 
methods towards the development of CVD risk prediction 
models, for comparison purposes, a BLR model was also 
implemented, applying the logit link function, 

log ( 𝜇
1−𝜇

) = 𝛸 ∙ 𝑏𝐵               (10) 

 
Fig. 4. Distributions of the CVD risks estimated by applying the hybrid 
ensemble  

 
Fig. 5. Decision curve for the hybrid ensemble. Net benefit amplitude 
calculated across different threshold probabilities based on the risk produced 
by the hybrid ensemble (solid line) and on the assumption that all patients are 
positive (dashed line) and negative (dash-dot line) for CVD.      

TABLE III 

P-VALUES OBTAINED BY APPLYING T-TEST TO COMPARE THE PREDICTIVE 
PERFORMANCE OF HYBRID ENSEMBLE WITH THAT OF HWNN -BASED 
ENSEMBLES 1 TO 4, SOM- BASED ENSEMBLES 1 TO 4 AND THE BLR MODEL, IN 
TERMS OF THE C-STATISTIC (AUC), ACCURACY (ACC), SPECIFICITY (SPC) 
AND SENSITIVITY (SENS) CRITERIA. 

 
Hybrid ensemble 

AUC ACC SPC SENS 

HWNN-
based 

ensemble 
 

1 0.04 0.45 0.62 0.13 

2 0.04 1.00 0.75 0.03 

3 0.07 0.00 0.00 0.01 

4 0.16 0.00 0.00 0.01 

SOM-
based 

ensemble  
 

1 0.03 0.00 0.00 0.00 

2 0.02 0.00 0.00 0.00 

3 0.24 0.00 0.00 0.15 

4 0.55 0.00 0.00 0.00 

BLR model 0.02 0.00 0.00 0.47 
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where 𝜇, 𝛸 and 𝑏𝐵 represent the CVD risk, a vector including 
the CVD risk factors (Table I) and the coefficients, respectively. 
Following the 10-fold cross validation criterion, the obtained 
results (Table II), demonstrated low discrimination 
performance (AUC: 55.11±9.81%) and proved BLR model’s 
inability to handle the unbalanced nature of the dataset. As 
presented in Table III, the hybrid ensemble achieved 
significantly higher discrimination performance in terms of 
AUC (p-value = 0.02), ACC (p-value = 0.00) and SPC (p-value 
= 0.00). Although the BLR model provided a measure of the 
association between the CVD risk factors and the CVD onset in 
a clinically interpretable way, it failed to produce reliable CVD 
risk scores. On the other hand, the hybrid ensemble did not 
require pre-specification of a model structure and resulted in a 
better CVD prediction model at the sacrifice of interpretability 
of how risk factors relate to the CVD incidence.  

A comparison between the obtained results and those 
reported in the literature was, also, carried out. Although a 
direct and fair comparison was not feasible due to different 
datasets, input spaces and evaluation frameworks, substantial 
inferences could be obtained. The most well-studied 5-year 
CVD risk prediction models dedicated to T2DM population 
were based on survival analysis and regression models while 
the reported AUCs ranged from 67% to 85% (average 72.80%) 
[51]. However, in all cases the validation method was based on 
split sampling which usually resulted in biased analysis since 
the choice of the training and testing dataset strongly affected 
the models’ performance. This becomes of greater importance 
when considering the unbalanced nature of the data used in all 
studies. The limitations of the State of the Art (SoA) models 
were also evidenced by the low validated performance achieved 
on external datasets [52]. In the present study, the application 
of the 10-fold cross validation provided a reliable measure of 
the models’ generalization capabilities. In this sense, although 
the AUC obtained from the hybrid ensemble was slightly lower 
than the average by the SoA models (71.48% vs 72.80%), it 
highlighted the ensemble’s potential to produce more accurate 
risk scores. 

Having recognized the increased capabilities of machine-
learning approaches to improve the risk accuracy by exploiting 
complex interactions between risk factors, recently reported 
studies have been focused on applying machine learning 
techniques for the calculation of the CVD risk in T2DM [53]. 
The most commonly used approaches were based on neural 
networks, Bayesian, and decision trees. In order to provide a 
fair comparison with the SoA, the performance of the hybrid 
ensemble was comparatively assessed with those obtained by 
applying a Feedforward Neural Network (FNN), a 
Classification and Regression Tree (CART), a Random Forest, 
and a Naïve Bayes classifier, on the Hippokration dataset. The 
results presented in Table II justify the superiority of the hybrid 
ensemble over the other models. 

V. DISCUSSION 
Existing CVD risk prediction models in T2DM are mainly 

based on advanced statistics. In the present study, the use of 

advanced machine learning approaches was investigated and 
compared with the SoA justifying the need to apply more 
sophisticated techniques towards producing reliable CVD risk 
scores. The proposed ensembles of HWNNs and SOMs 
addressed the commonly encountered challenge of handling the 
unbalanced nature of the available datasets as well as issues 
associated with the complex interactions and nonlinearities 
inherent in diabetes related data.  

The deployment and comparison of several combination 
schemes towards the creation of the ensembles highlighted the 
increased effectiveness of the advanced combination schemes 
against simpler ones, with respect to the ensembles’ 
discriminative ability. Moreover, the SOM- based ensembles’ 
superiority over the HWNN-based ensembles was shown. The 
combined use of both ensembles (hybrid ensemble) further 
improved the overall performance, which was attributed to the 
diversity among the members of the ensemble.  

Evidence regarding the hybrid ensemble’s potential to 
produce more reliable CVD risk scores than those reported in 
the literature was provided. The comparison between the results 
obtained by applying the 10-fold cross validation to evaluate 
the hybrid ensemble’s performance and those reported in the 
literature, which, in most cases, were produced following the 
split sampling validation method, illustrated the higher 
generalization capabilities of the hybrid ensemble over the 
existing CVD risk prediction models for patients with T2DM. 
Moreover, the application of the UKPDS risk engine on the 
Hippokration dataset resulted in lower discrimination 
performance than the hybrid ensemble. In order to provide a fair 
comparison with the SoA, commonly used statistics (e.g. BLR) 
and machine learning strategies (e.g. FFN, CART, Random 
Forest, and Naïve Bayes) were applied and evaluated on the 
Hippokration dataset. The obtained results indicated the hybrid 
ensemble’s ability to produce more accurate CVD risk scores.  

Although the main scope of the present study was to provide 
evidence of the effectiveness of the proposed machine learning 
techniques and not to propose a final CVD risk prediction 
model to be used in clinical practice, the hybrid ensemble’s 
clinical assessment highlighted its potential to support clinical 
decision making. Furthermore, its usability was ensured since 
it only required information from patients’ medical history and 
easily available laboratory tests.   

Potential limitations of the present study refer to the nature 
of the used dataset and the increased inherent complexity of the 
proposed models. Particularly, data corresponding to 
homogeneous population in terms of race and ethnicity were 
used for development and evaluation purposes. This was 
beneficial to the proposed models as compared to the UKPDS 
risk engine, which was built based on data corresponding to 
cohorts of T2DM patients with larger variance regarding their 
race/ethnicity and validated on the population used in this 
study. Furthermore, the proposed machine learning approaches 
were characterized by higher complexity than logistic and cox 
hazard regression, making thus the representation of each risk 
factor’s impact and interpretation of the predicted outputs more 
difficult. 

Future work concerns the validation of the proposed methods 
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on datasets of larger size and heterogeneity with the ultimate 
goal to provide a well validated CVD risk prediction model to 
be adopted in clinical practice. The integration of the model into 
a web-based medical decision support system that provides 
user-friendliness though interfaces incorporating simplified 
charts and tables, is expected to facilitate the interpretation of 
the results. 

VI. CONCLUSIONS 
Within the framework of the present study, the use of 

advanced machine learning techniques based on HWNNs, 
SOMs and ensemble learning towards producing CVD risk 
scores for the T2DM population was investigated. The 
application of a sub-sampling learning approach led to the 
creation of multiple HWNN- and SOM-based primary models. 
Several combination schemes were deployed to merge the 
outputs of the individually trained primary models and 
comparatively assessed. The models were tested using data 
from the medical records of 560 T2DM patients, and the best 
discrimination performance was up to 71.48% in terms of AUC. 
The obtained results indicate that a hybrid ensemble integrating 
both the HWNN- and SOM- based primary models performs 
well even if the dataset used includes a small number of CVD 
incidents. The introduction of larger datasets corresponding to 
patients with different ethnicity and race will extend the 
applicability of the model to other cohorts of patients. 
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