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Asynchronous movement of the carotid atheromatous plaque from B-mode 20 

ultrasound has been previously reported, and associated with higher risk of stroke, 21 

but not quantitatively estimated. Based on the hypothesis that asynchronous 22 

plaque motion is associated with vulnerable plaque, in this study, synchronisation 23 

patterns of different tissue areas were estimated using cross-correlations of 24 

displacement waveforms. In 135 plaques (77 subjects), plaque radial deformation 25 

was synchronised by approximately 50% with the arterial diameter, and the mean 26 

phase shift was 0.4 s. Within the plaque, the mean phase shifts between the 27 

displacements of the top and bottom surfaces were 0.2 s and 0.3 s, in the radial 28 

and longitudinal directions, respectively, and the synchronisation about 80% in 29 

both directions. Classification of phase-shift-based features using Random Forests 30 

yielded Area-Under-the-Curve scores of 0.81, 0.79, 0.89 and 0.90 for echogenicity, 31 

symptomaticity, stenosis degree and plaque risk, respectively. Statistical analysis 32 

showed that echolucent, high-stenosis and high-risk plaques exhibited higher 33 

phase shifts between the radial displacements of their top and bottom surfaces. 34 

These findings are useful in the study of plaque kinematics.  35 

  36 
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Introduction  37 

The carotid atheromatous plaque is a lesion of the carotid artery wall and typically 38 

consists of a fibrous cap (mostly smooth muscle cells, collagen and elastic fibers) of 39 

varying thickness and a lipid core (mostly cholesterol and cellular debris). In cases of 40 

advanced degeneration, plaque lesions present a more complicated structure, 41 

including calcification, intraplaque hemorrhage and ulceration1 and narrow the 42 

arterial lumen, obstructing blood flow and oxygen supply to the brain. More severe 43 

damage may be caused by vulnerable plaques, i.e. plaques prone to rupture. These 44 

are strongly associated with the formation of blood clots and the release of plaque 45 

fragments into the systemic circulation, which may cause a cerebrovascular event, 46 

such as stroke or transient ischemic attack (TIA)2. Given the substantial burden of 47 

stroke (15 million people worldwide suffer a stroke annually, of whom 5 million die 48 

and 5 million are left permanently disabled3, investigating the behaviour of carotid 49 

plaque towards improving stroke prevention is of utmost importance.  50 

Ultrasound imaging is the preferred imaging modality for the diagnosis of carotid 51 

atheromatous plaque, owing to a number of advantages, including noninvasiveness, 52 

bedside availability, short examination times, lack of radiation exposure, and low 53 

cost4. Currently, clinical management of carotid plaque is based on the degree of 54 

stenosis, i.e., the percentage of lumen area occupied by atheromatous material, and 55 

the prior occurrence of symptoms5. Although the degree of stenosis is a validated 56 

marker for management of carotid plaques, some studies have indicated that a high 57 

degree of stenosis is not necessarily related to a high risk of a cerebrovascular 58 

event6,7. These facts indicate that there is room for improving the current clinical 59 
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scheme for assessing plaque vulnerability, possibly through the identification of 60 

noninvasive, low-cost and reliable imaging markers for predicting strokes8. 61 

For instance, carotid motion analysis estimated with ultrasound image sequences 62 

has gained increasing attention as a potential index of plaque vulnerability 9-12. 63 

Motion analysis can be defined as the estimation of arterial tissue displacement 64 

during one or more cardiac cycles. It has been shown that carotid atheromatous 65 

plaque performs a complex, multidirectional, often periodic, motion during the 66 

cardiac cycle13. Despite the technical challenges, such as the low image resolution in 67 

ultrasound imaging and the complexity of the local tissue geometry and mechanics, 68 

several studies have suggested a number of kinematic and strain indices associated 69 

with plaque rupture risk14. 70 

A number of efforts have focused on motion of non-atheromatous segments of 71 

the arterial wall in normal15,16 and pathological conditions, such as hypertension, 72 

diabetes and coronary artery disease17,18, as well as the motion of the wall adjacent 73 

to carotid plaque12,16,19,20. These studies have studied the expected cyclical motion in 74 

the radial direction and have also identified a longitudinal component of wall 75 

motion. It has also been observed that decreased longitudinal movement of the 76 

common carotid artery is associated with higher plaque burden20. Significantly lower 77 

amplitudes of both radial and longitudinal displacements have been found in older 78 

diabetic subjects, compared to healthy young adults18. Recently, the feasibility of 79 

assessing tissue motion inhomogeneities was demonstrated along with their 80 

association with the presence of coronary artery disease21. Blood pressure has been 81 

positively correlated with common carotid artery displacement17. Other studies have 82 

suggested that the severity of carotid stenosis is associated to axial wall stresses and 83 
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accelerations19, as well as to the presence of an anterograde component in the 84 

longitudinal direction of wall motion12.  85 

Related studies have proposed various metrics to quantify plaque motion 86 

patterns, including statistical measures of velocities, motion amplitudes and diastole-87 

to-systole displacements of the entire plaque area during the cardiac cycle11,13, 88 

maximal (discrepant) surface velocities9,22 and displacement vector maps23. A group 89 

of studies have also qualitatively described the so called “jellyfish sign” 90 

phenomenon, according to which the carotid plaque surface rises and falls in a 91 

manner inconsistent with arterial pulsatile wall motion24-26. Other similar 92 

phenomena include motion of intraplaque contents27, mobility at the edge of the 93 

plaque, mobility in all parts of the plaque and mobility at the bottom of an ulcer on 94 

the plaque26. Studies have also investigated tissue strain, i.e. the change of 95 

displacement with respect to some initial reference status10,28-32. These studies have 96 

converged to the general conclusion that softer, echolucent plaques undergoing 97 

higher strains tend to be more prone to rupture and they are associated with poorer 98 

patient cognition. The concept of concordant and discordant motion was recently 99 

introduced to describe the spread of motion of different plaque areas33.  100 

Among the investigated phenomena, relative motion between the plaque and 101 

the adjacent wall13,24-26, as well as within the plaque itself 26,27 has been reported in 102 

some studies. The patterns of synchronisation of such relative movements have only 103 

been estimated qualitatively in a few studies24-26 and have shown that asynchronous 104 

motion of the plaque relative to the adjacent wall is associated with plaque 105 

instability and stroke recurrence.  106 
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To the best of our knowledge, there is no study focused on investigating 107 

synchronisation patterns of carotid plaque motion in an automated and quantitative 108 

way. Therefore, the purpose of this study was to quantify synchronisation patterns 109 

of the carotid plaque, in relation to its adjacent wall and within itself, and investigate 110 

potential associations of these synchronisation patterns with different plaque 111 

phenotypes, including echogenicity, stenosis degree, patient symptoms and plaque 112 

risk. The major contributions of this work are to (a) suggest a systematic approach 113 

for assessing such patterns, (b) provide specific numerical indices (measured in 114 

seconds) for the related phenomena, i.e. the phase shifts between plaque and wall, 115 

and within plaque in radial and longitudinal directions, and (c) evaluate the derived 116 

indices in different plaque phenotypes, based on the hypothesis that asynchronous 117 

plaque motion is associated with phenotypes characterising vulnerable plaque, 118 

namely echolucency, symptomaticity, high stenosis degree and high risk. These 119 

contributions will provide new knowledge about plaque biomechanics, which is 120 

important and necessary for future studies, including prognostic follow-up 121 

assessments.  122 

 123 

Materials and Methods  124 

Dataset  125 

Seventy seven consecutive patients (59 men, 18 women) with carotid 126 

atherosclerosis were included in the study, free from comorbidities, including heart 127 

failure, liver dysfunction, cancer, chronic diseases etc. Subjects were on statin-based, 128 

anti-platelet and lipid-lowering medication. The dataset included 18 symptomatic 129 

patients (31 plaques, degrees of stenosis 66% ± 29%), 57 asymptomatic patients (98 130 
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plaques, degrees of stenosis 73% ± 22%) and 2 patients (6 plaques) whose 131 

symptomaticity or stenosis degree was unknown; the latter were only included in 132 

the association-with-echogenicity study. The symptomatic subjects, for whom only 133 

the ipsilateral artery was studied, had experienced a stroke or a TIA, within 6 months 134 

prior to the examination. A number of asymptomatic subjects had plaque in both the 135 

right and left carotids and in both types of subjects more than one plaque may be 136 

present in an artery (tandem lesions); tandem lesions were treated as separate 137 

plaques. The patients' ages were 70 ± 9 years (range 43-85 years), and their stenosis 138 

degrees 75% ± 17% (range 20-99%), based on Doppler ultrasound measurements.  139 

B- mode ultrasound images were acquired in longitudinal section using a LOGIQ 140 

Book (GE Medical Systems, Milwaukee, WI, USA) scanner and a linear array 4-10 141 

MHz transducer. Subjects were examined in a supine position, with a slight backward 142 

inclination of the head, towards the opposite side of the carotid under examination. 143 

Patients rested for at least 5 minutes before the examination, to stabilise their heart 144 

rate and blood pressure. To minimise movements due to factors other than 145 

haemodynamic forces, the operator held the transducer as stable as possible, 146 

exerting minimal pressure, and the patients were asked to breath-hold during 147 

recordings. Scanner and transducer settings included a high dynamic range (60 or 75 148 

dB) and zero persistence, and 10 MHz centre frequency. At least three cardiac cycles 149 

were recorded at a rate of 25 frames/s. Image resolution was 12 pixels/mm in the 150 

radial and longitudinal directions. The room temperature was kept constant at 26oC. 151 

All ultrasound examinations were performed by 4 experienced physicians in the 152 

Vascular Surgery Department of the University Hospital “ATTIKON”, Athens, Greece. 153 

Data collection was approved by the ATTIKON hospital institutional review board and 154 
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all subjects included in the study gave their informed consent to the scientific use of 155 

the data. The methods were carried out in accordance with the relevant guidelines 156 

and regulations.  157 

 158 

Estimation of plaque motion synchronisation patterns 159 

Plaque motion synchronisation patterns relative to the adjacent normal wall as 160 

well as within the plaque were estimated through cross-correlations of pairs of 161 

waveforms representing displacements of plaque and wall tissue.  162 

1) Basic principles of cross-correlation. Cross-correlation ݎௗ is a measure of 163 

similarity of two signals in the form of time series, ݔ(݅) and ݕ(݅), where ݅ =164 1, 2, … , ܰ denotes time points, as a function of the displacement ݀ (also known as 165 

lag) of one relative to the other34. If cross-correlation is calculated for all lags 166 ݀ = 0, 1, … , ܰ − 1, then the resulting cross-correlation sequence is twice as long as 167 

that of the correlated series.  The following formula for cross-correlation was used: 168 

 169 

ௗݎ = ∑ (݅)ݔ)] − ݉௫)(ݕ(݅ − ݀) − ݉௬)]ඥ∑ (݅)ݔ) − ݉௫)ଶ ඥ∑ (݅)ݕ) − ݉௬)ଶ  

 170 

where ݉௫ and ݉௬ are the mean values of signals ݔ(݅) and ݕ(݅), respectively. The 171 

denominator in this formula serves to normalise the correlation coefficients, so that 172 

the cross-correlation is 1, for lag equal to 0. The subtraction of the mean values 173 ݉௫ and ݉௬ from the signals allows signals from different subjects to be comparable. 174 

The length ܰ of the signals coincides with the maximum duration of the ultrasound 175 

recording in each case.  176 



8 
 

If the peaks (or the troughs) of two time-varying signals coincide in time, their 177 

cross-correlation has a high positive value. These signals are considered 178 

synchronous, or in-phase, or with a 0o phase shift. If the peaks of one signal coincide 179 

in time with the troughs of the other signal, their cross-correlation has a high 180 

negative value. These signals are considered asynchronous, or out-of-phase, or with 181 

a 180o phase shift. A cross-correlation value equal to 0 indicates uncorrelated signals. 182 

2) Description of methodology. The main steps of the methodology are described 183 

below and illustrated in Fig.1.  184 

A - Selection of regions of interest (ROIs). For each plaque image sequence 185 

(video), an experienced physician marked manually in the first frame the following 186 

four ROIs: the posterior and anterior wall-lumen interfaces (PWL and AWL, 187 

respectively), and the plaque top and bottom surfaces (PTS and PBS, respectively) 188 

(Fig.1a). PWL and AWL were selected on the normal, i.e. non-atheromatous, arterial 189 

wall, adjacent to the plaque.  190 

B - Motion estimation of selected ROIs. The radial and longitudinal positions of all 191 

pixels included in the selected ROIs were estimated across all frames with an 192 

adaptive block-matching algorithm, which incorporates Kalman filtering35. This 193 

algorithm was evaluated in an in silico framework consisting of 13 simulated 194 

sequences, and has been shown to be accurate and robust in motion tracking of the 195 

arterial wall from B-mode ultrasound images13. For each ROI, 1.6 ×1 mm2 reference 196 

blocks were selected in the first frame, centred at ROI pixels. Fig.1b shows examples 197 

of selected ROIs (AWL, PWL, PTS, PBS) for a diastolic, an intermediate and a systolic 198 

frame and of the sequence.   199 
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C - Waveforms extracted from motion analysis. ROI positions were used to 200 

estimate six sets of waveforms for each plaque:  201 

(i) wall diameter, which was selected as the most representative waveform, i.e. the 202 

one in which the most clear cyclic motion was observed, among the distances of 203 

vertical pairs of AWL and PWL pixels,  204 

(ii) radial displacements of all PTS pixels, namely their radial positions along 205 

consecutive frames, 206 

(iii) longitudinal displacements of all PTS pixels, namely their longitudinal positions 207 

along consecutive frames, 208 

(iv) radial displacements of all PBS pixels,  209 

(v) longitudinal displacements of all PBS pixels, and  210 

(vi) radial distances of PTS and PBS pixel pairs, defined as the absolute differences of 211 

waveforms (ii), (iv) across vertical pixel pairs. 212 

Twenty five pixels from the right and 25 from the left edge of the plaque PTS and 213 

PBS were removed to ensure that only plaque pixels, and no normal (non-plaque) 214 

wall area, were included in the analysis. The number of removed pixels (25) was 215 

heuristically determined, following visual inspection and testing. Fig.1c shows 216 

examples of interrogated waveforms.  217 

A high-pass 4th order Butterworth filter with a cutoff frequency of 0.6 Hz was 218 

applied to the displacement waveforms36, so as to remove unwanted offsets or 219 

abrupt fluctuations present in the low-frequency band. The cutoff value was selected 220 

to ensure that heart rates above approximately 40 beats per minute remain 221 

unaffected after filtering. Independent component analysis (ICA) demonstrated that 222 
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the suggested methodology is robust against external motion (Supplementary 223 

methods).  224 

D - Calculation of cross-correlations. Three types of cross-correlations were 225 

calculated using the previously described waveforms:  226 

a) Cross-correlation 1 (CC1): Radial deformation of the plaque with wall diameter, i.e. 227 

waveforms (i) and (vi),  228 

b) Cross-correlation 2 (CC2): Radial displacements of plaque top and bottom 229 

surfaces, i.e. waveforms (ii) and (iv), and  230 

c) Cross-correlation 3 (CC3): Longitudinal displacements of plaque top and bottom 231 

surfaces, i.e. waveforms (iii) and (v).   232 

CC2 and CC3 describe intra-plaque kinematics, whereas CC1 was considered, so 233 

as to provide a measure with respect to a well-known arterial parameter. 234 

Fig.1d shows examples of interrogated pairs of waveforms ((a)-(c), above) and 235 

their corresponding cross-correlations.  236 

Signals to be correlated were confined within an average cycle window, 237 

estimated from the dominant frequency of the wall diameter waveform.  238 

From each cross-correlation waveform, two types of measurements were 239 

obtained: (a) the sign corresponding to the maximum absolute cross-correlation, and 240 

(b) the corresponding lag ݀݉ܽݔ, in seconds (Fig.1d). For each plaque, cross-correlation 241 

waveforms were produced for all PTS-PBS pairs, and the following indices were then 242 

extracted: 243 

• The synchronisation percentage, defined as the percentage of the positive 244 

values present in the entire set of maximum signed cross-correlation values, 245 

derived from all PTS-PBS pairs of the plaque. According to the principles of 246 
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cross-correlation described previously, this percentage represents the 247 

proportion of plaque pairs that exhibit synchronous motion patterns for a 248 

given type of cross-correlation. 249 

• Seven statistical (histogram-based) measures (maximum-, minimum-, mean-, 250 

median-value, standard deviation, skewness, and kurtosis) of the lags ݀݉ܽ251 ݔ 

extracted from all PTS-PBS pairs of the plaque. 252 

 253 

Therefore a total of 24 features were extracted for each plaque, namely 8 254 

features (synchronisation percentage and 7 statistical indices) for each of the 3 255 

cross-correlation types.  256 

 257 

Grayscale normalisation and estimation of plaque echogenicity 258 

To normalise ultrasound images according to widely accepted procedures37, the 259 

physician selected a region in the blood and one in the adventitia, and the median 260 

pixel values of these regions (GSMblood and GSMadv, respectively) were set as the 261 

lowest (black) and the highest (white) values in the image, respectively. Then, the 262 

image grayscale intensities were linearly adjusted so that GSMblood was 0, and GSMadv 263 

was 19037.  264 

An echolucent plaque is a dark appearing plaque in the ultrasound recording, 265 

while an echogenic plaque is a bright appearing one38. Plaque echogenicity was 266 

estimated as follows: the plaque was located automatically in each frame of the 267 

sequence after the first frame, using motion analysis of PBS and PTS areas, and the 268 

corresponding grayscale median (GSM) values were calculated. Plaque GSM was 269 
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defined as the mean value of the GSMs of all frames. Echolucent plaques were 270 

considered those with a GSM<2539 and echogenic those with GSM≥ 25.  271 

 272 

Variability study 273 

Intra and inter-observer variability were assessed by means of phase shift 274 

measurements performed for plaque boundaries displaced by 0-2 pixels with respect 275 

to the original (expert-annotated) ones. This experiment was designed based on the 276 

assumption that different observers, or the same observer at different times, 277 

produce different tissue outlines, which are displaced versions of a given contour. 278 

The range of the displacements (0-2 pixels, including subpixel values) was selected 279 

heuristically, based on observations that tissue outlines derived by different experts 280 

were not more than 2 pixels apart. Differences between original and displaced 281 

versions in all cases were assessed statistically.  282 

 283 

Classification & statistical analysis 284 

The four associations investigated were validated through classification schemes 285 

using supervised machine learning. The purpose of classification was to evaluate the 286 

overall potential of the extracted features, which, can alternatively be considered as 287 

a “motion synchronisation signature”, through their association with the four clinical 288 

phenotypes. Subsequently, statistical analysis was performed, to identify the 289 

features with the highest discriminatory ability.  290 

Feature selection was applied using Principal Component Analysis (PCA), 291 

whereby the initial feature set is converted into a reduced set of linearly 292 

uncorrelated features, orthogonal to each other (principal components), which 293 
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retains most of the initial set’s variance, namely, its information content40. For this 294 

study, as many principal components as necessary were retained to cover 95% of the 295 

initial set’s variance. 296 

Classification models for each association were implemented using the Weka 297 

workbench version 3.6 (Machine Learning Group at the University of Waikato, 298 

Hamilton, New Zealand)41. Among the algorithms available in Weka, the Random 299 

Forest (RF) algorithm was used, due to its superior performance and its robustness 300 

to overfitting42. The RF algorithm uses a number of parameters that need to be 301 

tuned properly, before training, to avoid overfitting or underfitting. The two 302 

parameters that were tuned included the number of features to be used in random 303 

selection (range: 2-number of features, with a step of 1), and the number of trees to 304 

be generated (range: 100-900, with a step of 200). For parameter tuning, 10-fold 305 

cross-validation was used. The parameters that were tuned included the number of 306 

data points, the number of features of each tree of the forest, and the number of the 307 

trees that we build for the forest. 308 

To address the problem of class imbalance that is present in our data, the 309 

ADASYN algorithm43 was applied to create synthetic samples for the minority class, 310 

i.e. the class with the lowest number of cases. Of note, these synthetic samples were 311 

used only for training the model, not for testing.  312 

For the evaluation of each model, leave-one-out cross-validation (LOOCV) was 313 

chosen, because the medium size of our dataset indicated it as the optimal choice in 314 

terms of computational cost, as well as bias-variance trade-off44.  315 

To evaluate the performance of the classification models, a set of metrics was 316 

calculated, including accuracy (ACC), sensitivity (SENS), specificity (SPEC), precision 317 
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(PREC), negative predictive value (NPV), F1 score (F1SC) and the area under the 318 

Receiver Operating Characteristics (ROC) curve (AUC)45.  319 

Statistical analysis was performed using the non-parametric Wilcoxon rank sum 320 

test and statistical significance was considered for a p-value equal to or lower than 321 

0.05.  322 

All analyses were performed using Matlab R2016a (MathWorks, Natick, MA, USA) and a 323 

computer with an Intel Core i5 220 GHz CPU.  324 

 325 
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Results 326 

Table 1 shows the performance of the RF classifier, for the four associations 327 

interrogated, in terms of the evaluation metrics described in the previous section. 328 

This corresponds to the overall performance of all interrogated PCA-selected 329 

features.  330 

Regarding the variability study, all indices were similar between the original and 331 

the displaced versions. As an example, the p-values for the mean phase shifts were 332 

0.46 for CC1 and CC2 and 0.39 for CC3.  333 

In the following subsections detailed results are presented for the statistical 334 

analysis of the entire dataset, for each of the investigated scenarios. Tables showing 335 

statistical analysis results present values for synchronisation percentages and mean 336 

phase shifts, even if they were not found statistically different, so as to provide a feel 337 

for these measures, given they are reported for the first time.  338 

 339 

Association with plaque echogenicity 340 

Of the 135 plaques of the dataset, 37 were echolucent (GSM<25) and 98 were 341 

echogenic (GSM≥25). The stenosis degrees and ages were not statistically different in 342 

the two groups (p-values=0.17 and 0.24, respectively).  343 

The application of PCA identified 13 features as the principal components 344 

satisfying the 95% variance coverage criterion for this association.  345 

Table 2 shows the mean values and corresponding p-values of the 346 

synchronisation percentages, mean phase shift values, and statistically significant 347 

features for the three cross-correlation types, in echogenic and echolucent plaques. 348 

As we can see, in echolucent plaques, the top plaque surface moves less 349 
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synchronously (with a higher phase shift) relative to the bottom surface, than in 350 

echogenic plaques, in the radial direction (higher meanCC2 and medianCC2). Also, the 351 

mean phase shifts between top and bottom surfaces of both echogenic and 352 

echolucent plaques were significantly higher in the longitudinal direction, compared 353 

to the radial direction.  354 

 355 

Association with symptomaticity 356 

Of the 124 plaques used in this substudy, 93 caused a degree of stenosis higher 357 

than or equal to 70%. Of these 93 high-stenosis plaques, 71 were asymptomatic and 358 

22 were symptomatic. The stenosis degrees and ages were not statistically different 359 

in the two groups (p-values=0.15 and 0.35, respectively).  360 

The application of PCA identified 11 features as the principal components 361 

satisfying the 95% variance coverage criterion for this association.  362 

Table 3 shows the mean values and corresponding p-values of the 363 

synchronisation percentages, mean phase shift values, and statistically significant 364 

features for the three cross-correlation types, for asymptomatic and symptomatic 365 

plaques. As we can see, there was no difference between symptomatic and 366 

asymptomatic cases (except for 3 histogram-based features). Also, the mean phase 367 

shifts between top and bottom surfaces of asymptomatic plaques were significantly 368 

higher in the longitudinal direction, compared to the radial direction. Symptomatic 369 

plaques did not show such difference.  370 

 371 
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Association with stenosis degree  372 

Of the 124 plaques used in this substudy, 97 were asymptomatic. Of these 97 373 

asymptomatic plaques, 26 caused a low degree of stenosis (<70%) and 71 caused a 374 

high degree of stenosis (≥70%). The ages of the patients were not statistically 375 

different in the two groups (p-value=0.16). By definition, the high-stenosis group in 376 

this study is the same as the asymptomatic group in the previous study.  377 

The application of PCA identified 13 features as the principal components 378 

satisfying the 95% variance coverage criterion, for this association.  379 

Table 4 shows the mean values and corresponding p-values of the 380 

synchronisation percentages, mean phase shift values, and statistically significant 381 

features for the three cross-correlation types, for low- and high-stenosis plaques. As 382 

we can see, in high-stenosis plaques, the top plaque surface moves less 383 

synchronously (higher maxCC2, higher meanCC2) and less uniformly (higher stdevCC2) 384 

relative to the bottom surface, than in low-stenosis plaques, in the radial direction. 385 

Also, the mean phase shifts between top and bottom surfaces of both low- and high-386 

stenosis plaques were significantly higher in the longitudinal direction, compared to 387 

the radial direction.  388 

 389 

Association with plaque risk 390 

Of the 124 plaques used in this substudy, 26 were low-risk and 98 were high-risk. 391 

The ages of the patients were not statistically different in the two groups (p-392 

value=0.25). According to the current clinical decision-making scheme, high-risk 393 

subjects are symptomatic ones with stenosis degrees ≥50%46 and asymptomatic 394 

subjects with stenosis degrees ≥70%47; otherwise subjects are considered low-risk5.  395 
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The application of PCA identified 12 features as the principal components 396 

satisfying the 95% variance coverage criterion for this association.  397 

Table 5 shows the mean values and corresponding p-values of the 398 

synchronisation percentages, mean phase shift values, and statistically significant 399 

features for the three cross-correlation types, for low- and high-risk plaques. As we 400 

can see, in high-risk plaques, the top plaque surface moves less synchronously 401 

(higher meanCC2) and less uniformly (higher stdevCC2) relative to the bottom surface, 402 

than in low-risk plaques, in the radial direction.  In addition to this, most of the 403 

significantly different features (3 out of 4) were derived from cross-correlation type 404 

2, namely between radial motion of top and bottom plaque surfaces. Also, the mean 405 

phase shifts between top and bottom surfaces of both low-risk and high-risk plaques 406 

were significantly higher in the longitudinal direction, compared to the radial 407 

direction.  408 

 409 

As it can be observed, a few of the features in the previous Tables 2, 4 and 5 410 

present high standard deviations, sometimes even higher than the corresponding 411 

mean values (medianCC2 in Table 2, and minCC1 in Tables 4 and 5), indicating a high 412 

inter-plaque variability, probably due to differences between subjects.  413 

 414 
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Representative examples of cross-correlation distributions 415 

Figures 2 and 3 illustrate examples of distributions of cross-correlations of the 416 

three types of cross-correlations for an echogenic, asymptomatic, low-stenosis case 417 

and an echolucent, symptomatic, high-stenosis case, respectively. Cross-correlation 418 

values correspond to pixels along the manually extracted plaque contour in the first 419 

frame of the sequence. Videos 1 and 2 show the displacements of the interrogated 420 

ROIs (AWL, PWL, PTS and PBS) in each case. Synchronisation percentages were 38%, 421 

100% and 100% for CC1, CC2 and CC3, respectively, in the asymptomatic case and 422 

95%, 72% and 53% for CC1, CC2 and CC3, respectively, in the symptomatic case. 423 

Mean phase shifts were 0.45 s, 0.00 s and 0.04 s for CC1, CC2 and CC3, respectively, 424 

in the asymptomatic case and 0.79 s, 0.33 s and 0.48 s for CC1, CC2 and CC3, 425 

respectively, in the symptomatic case.  426 

 427 

Discussion 428 

This study showed that the synchronisation percentages in our dataset were 429 

approximately 50%, 80% and 80%, for CC1, CC2 and CC3, respectively, and the mean 430 

phase shifts were 0.4 s, 0.2 s and 0.3 s, respectively. To the best of our knowledge, 431 

such features characterising phase shifts and synchronisation percentages of the 432 

motion of carotid atheromatous plaque from B-mode ultrasound have not been 433 

previously quantified. The RF algorithm yielded AUC scores of 0.81, 0.79, 0.89 and 434 

0.90, for the association with echogenicity, symptomaticity, stenosis degree and 435 

plaque risk, respectively. It was also observed that echolucent, high-stenosis and 436 

high-risk plaques had significantly higher phase shifts between the radial 437 
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displacements of their top and bottom surfaces (0.23-0.26 s on average), compared 438 

to echogenic, low-stenosis and low-risk plaques (0.16-0.20 s on average).  439 

The interrogated phenotypes were selected on the grounds of their associations 440 

with plaque vulnerability and selection of treatment. Specifically, echogenicity has 441 

been associated with increased vulnerability. Symptomatic and asymptomatic 442 

plaques with stenosis degrees higher than 70% are currently offered carotid 443 

revascularisation5. Asymptomatic subjects with low- and high-stenoses are offered 444 

different treatments; conservative treatment with medication for the former, while 445 

carotid revascularisation for the latter5.  446 

Feature selection identified the same set of features for most association 447 

scenarios (3 out of 4, with a small differentiation for the symptomaticity scenario). 448 

Also, in all association studies, NPV had the lowest value among all evaluation 449 

metrics. This is expected, because the “negative” class was the minority class, 450 

namely it was outnumbered by the “positive” class, therefore, this metric reflects the 451 

inferiority of the “negative” class in terms of sample size. It is pointed out that 3 452 

additional classifiers, besides RF, were benchmarked on the same dataset, namely 453 

Multilayer Perceptron, Nearest Neighbours and Support Vector Machines (SVMs). 454 

These algorithms perform supervised machine learning, i.e. their inputs and outputs 455 

are known; see48 for more information. The performances of these classifiers were 456 

inferior compared to the RF algorithm.   457 

Although feature selection identified 12-13 features for each association 458 

scenario, statistical analysis yielded fewer features, namely 2-4 depending on the 459 

scenario. This indicates that despite the relatively low number of statistically 460 

significant features in a specific association, there is additional, potentially 461 
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discriminatory, information which is uniformly distributed among the entire set of 462 

the 24 features, and is revealed with classification. The good performance of the 463 

classifiers, ranging from 79% to 90%, indicates that there is sufficient information 464 

present in the datasets of all association scenarios.  465 

Most of the previous studies have used statistical tests to validate their 466 

results9,13,22,25-27, while machine learning methodologies have been introduced in 467 

fewer cases 11,30,32 24. Specifically, Gastounioti et al.11 compared multiple classifiers 468 

and feature selection methods, as well as combinations of them, and concluded that 469 

the SVM classifier combined with the Fisher Discriminant Ratio for feature selection 470 

were optimal in discriminating symptomatic and asymptomatic patients. Meshram et 471 

al.30 and Wang et al.32 implemented a logistic regression classifier and ROC analysis, 472 

towards correlation of plaque strain indices with patient cognitive function. Finally, 473 

Ichinose et al.24 implemented a multiple linear regression analysis (stepwise analysis 474 

and partial least squares analysis), followed by a machine learning analysis using an 475 

Artificial Neural Network based on the Log-Linearised Gaussian Mixture Network, to 476 

correlate the “jellyfish sign” of motion with the presence of new lesions, detected by 477 

diffusion-weighted imaging. The generation of these lesions is the most common 478 

complication caused by carotid artery stenting. Machine learning is appropriate for 479 

the study of complex relations, whereas statistical tests are limited to simpler cases. 480 

The combination of both machine learning and statistical analysis methodologies, 481 

which is implemented in the current study, allows the design of a robust, multi-level 482 

validation scheme and, thus, the extraction of reliable results about the complex 483 

phenomenon of plaque motion synchronisation.  484 
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Echolucent, high-stenosis and high-risk plaques presented significantly higher 485 

phase shifts between the radial displacements of their top and bottom surfaces, 486 

compared to echogenic, low-stenosis and low-risk plaques. A potential implication of 487 

these findings is that asynchronous motion patterns are associated with higher 488 

plaque vulnerability, given their association with its determinants, including 489 

echolucency, high-stenosis and presumed high risk. These results and related 490 

implications should be confirmed in follow-up studies. In contrast, statistical analysis 491 

between symptomatic and asymptomatic plaques did not reveal any differences. 492 

This finding may imply that echogenicity and stenosis degree hold more information 493 

and, thus, are more crucial clinical parameters, than symptomaticity, as far as plaque 494 

kinematics are concerned. Moreover, the significantly higher phase shifts in the 495 

longitudinal direction, in the majority of interrogated groups (7 out of 8), indicate 496 

more asynchronous intra-plaque motion in the longitudinal direction, than in the 497 

radial direction. 498 

The main findings of this research, namely that echolucent, high-stenosis and 499 

high-risk plaques are characterised by higher phase shifts and, thus, less synchronous 500 

motion patterns between the radial motion of their top and bottom surfaces than 501 

echogenic, low-stenosis and low-risk plaques, qualitatively agree with other studies 502 

on plaque kinematics. Gastounioti et al.13 reported that symptomatic plaques 503 

presented 37% higher radial motion range of PTS and 50% higher relative movement 504 

between PTS and PBS. Moreover, Kume et al.25, Ogata et al.26 and Ichinose et al.24 505 

showed that the jellyfish sign, a pattern that characterises the asynchronous motion 506 

of the plaque relative to the adjacent wall, is associated with plaque vulnerability 507 

and stroke recurrence. Gastounioti et al.49 found that echolucent plaque segments 508 
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moved more intensely in the radial direction, compared to echogenic plaque 509 

segments. Finally, Tat et al.12 reported that patients with severe plaque stenosis 510 

presented greater longitudinal anterograde wall motion than those with moderate 511 

stenosis. In combination with our finding that high-stenosis plaques had significantly 512 

higher and more dispersed phase shifts between the radial displacement of their top 513 

and bottom surfaces, this suggests that irregular wall dynamics characterising high-514 

stenosis cases may be reflected not only within plaque but also in relative movement 515 

with the adjacent wall.  516 

This work is one of the studies demonstrating the ability to extract features 517 

characterising tissue kinematics from B-mode ultrasound images. Although 518 

radiofrequency ultrasound is being widely used for tissue motion and strain 519 

estimation 23,31,32, B-mode has also been used for motion measurements 22,24,26,29. In 520 

this work, only B-mode data were available in the commercial scanning device that 521 

was used. It has been shown that radiofrequency ultrasound outperforms B-mode, 522 

due to its reduced variability in cardiac strain estimation50. A more recent study 523 

however showed that local arterial characteristics can be assessed equally reliably 524 

and accurately with B-mode technology51. Advantages of B-mode include relatively 525 

low-cost and widespread use in clinical practice, while radiofrequency devices are 526 

higher-cost and mostly used for research purposes. It is therefore important to be 527 

able to extract as much information as possible from the widely available B-mode 528 

devices allowing to address a wider range of clinical applications. B-mode-529 

ultrasound-based tissue kinematics could be further combined with other plaque 530 

properties, such as neovascularisation and elasticity, assessed using contrast-531 
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enhanced ultrasound and elastography, respectively, towards providing an overall 532 

valid plaque characterisation52.  533 

Motion of the arterial wall and plaque during the cardiac cycle is a particularly 534 

complex phenomenon, resulting from the combined effect of a number of different 535 

forces/stresses, including translation, rotation, shear, tethering, etc. Taking into 536 

account the complexity of this phenomenon, in this study we selected to address 537 

representative plaque motion patterns, namely in relation to adjacent wall as well as 538 

in the radial and longitudinal directions within itself. 539 

The limitations of this study include the medium size and the heterogeneity of 540 

the dataset. Compared to previous studies on ultrasound-based carotid plaque 541 

kinematics, in which dataset sizes ranged from 11 to 165 patients, our 77-patient 542 

(135-plaque) dataset was considered adequate for benchmarking our methodology. 543 

Dataset heterogeneity consists in including subjects of both gender and with lesions 544 

located in both the left and right carotids. Although larger and more homogeneous 545 

datasets are always desirable to reach safer conclusions, we believe that the medium 546 

size of our dataset and the grouping into smaller, somewhat more homogeneous, 547 

datasets has allowed us to make some reliable and interesting observations.  548 

The findings presented in this study are promising for further in-depth study of 549 

carotid plaque kinematics from B-mode ultrasound. Future work in this area might 550 

focus on the combination of phase-shift features with other ultrasound-based 551 

kinematic features towards extracting valuable information about plaque mechanics. 552 

The application of the proposed classification model to substantially larger datasets, 553 

including follow-up patient data, will allow the identification of potential novel 554 

markers for improved risk stratification. 555 
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In conclusion, this study quantified synchronisation patterns of the carotid 556 

atheromatous plaque from B-mode ultrasound, and associated them with 557 

echogenicity, symptomaticity, stenosis degree and plaque risk. Synchronisation 558 

percentages in our dataset were approximately 50%, 80% and 80% and the mean 559 

phase shifts 0.4 s, 0.2 s and 0.3 s, for cross-correlation types 1, 2 and 3, respectively. 560 

The RF algorithm, combined with PCA, achieved very good performance in the 561 

benchmarking procedures, yielding AUC scores of 0.81, 0.79, 0.89 and 0.90, for the 562 

association with echogenicity, symptomaticity, stenosis degree and plaque risk, 563 

respectively. Statistical analysis showed that echolucent, high-stenosis and high-risk 564 

plaques exhibited higher phase shifts between the radial displacements of their top 565 

and bottom surfaces. These findings are promising for further in-depth study of 566 

ultrasound-based carotid plaque kinematics, towards improving risk stratification. 567 

 568 
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The datasets generated and analysed during the current study are available from the 570 
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Figure Legends 737 

Fig.1. Examples of interrogated ROIs and corresponding waveforms, illustrating 738 

the different steps of the methodology. A – Plaque and wall ROIs in frame 1. Vertical 739 

yellow dotted lines indicate the boundaries of the investigated area. The top and 740 

bottom edges of the vertical yellow solid line correspond to the ROI pair for which 741 
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waveforms are illustrated.  B – Plaque and wall ROI pixel positions at three different 742 

frames representing different phases of the cardiac cycle, and corresponding time 743 

points, obtained after motion analysis. Pixel positions at diastole are superimposed 744 

on intermediate and systolic frames as dashed lines. C – Radial displacements of 745 

selected pixels of PTS, PBS and their difference (left column), and radial 746 

displacements of selected pixels of AWL, PWL and their difference, which represents 747 

the arterial wall diameter (right column). D – Displacement pairs for estimation of 748 

cross-correlation (top row), the corresponding cross-correlation waveforms (middle 749 

row) and the selected cross-correlation segment for calculation of features (bottom 750 

row). RDis: radial displacement, PRDef: plaque radial deformation, WD: wall 751 

diameter, LDis: longitudinal displacement. 752 

Fig. 2. Example of an echogenic (GSM=30) low-stenosis (60%) asymptomatic 753 

plaque, with (a) contours superimposed on the B-mode image, illustrating the 754 

distribution of CC1 values on PTS and PBS (top row), and displacement waveforms of 755 

the central pixel pair and the corresponding cross-correlation waveform (bottom 756 

row), (b) contours superimposed on the B-mode image, illustrating the distribution 757 

of CC2 values on PTS and PBS (top row), and displacement waveforms of the central 758 

pixel pair and the corresponding cross-correlation waveform (bottom row) and (c) 759 

contours superimposed on the B-mode image, illustrating the distribution of CC3 760 

values on PTS and PBS (top row), and displacement waveforms of the central pixel 761 

pair and the corresponding cross-correlation waveform (bottom row). RDis: radial 762 

displacement, PRDef: plaque radial deformation, WD: wall diameter, LDis: 763 

longitudinal displacement. 764 
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Fig. 3. Examples of an echolucent (GSM=15) high-stenosis (70%) symptomatic 765 

plaque, with (a) contours superimposed on the B-mode image, illustrating the 766 

distribution of CC1 values on PTS and PBS (top row), and displacement waveforms of 767 

the central pixel pair and the corresponding cross-correlation waveform (bottom 768 

row), (b) contours superimposed on the B-mode image, illustrating the distribution 769 

of CC2 values on PTS and PBS (top row), and displacement waveforms of the central 770 

pixel pair and the corresponding cross-correlation waveform (bottom row) and (c) 771 

contours superimposed on the B-mode image, illustrating the distribution of CC3 772 

values on PTS and PBS (top row), and displacement waveforms of the central pixel 773 

pair and the corresponding cross-correlation waveform (bottom row). RDis: radial 774 

displacement, PRDef: plaque radial deformation, WD: wall diameter, LDis: 775 

longitudinal displacement. 776 
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Table 1. Values of evaluation metrics for the four associations investigated, 

corresponding to the overall performance of all interrogated PCA-selected features. 

 ACC SENS SPEC PREC NPV F1SC AUC 

Echogenicity 0.73 0.73 0.73 0.88 0.51 0.80 0.81 

Symptomaticity 0.69 0.69 0.68 0.88 0.41 0.77 0.79 

Stenosis degree 0.85 0.86 0.81 0.92 0.68 0.89 0.89 

Plaque risk 0.84 0.83 0.88 0.96 0.58 0.89 0.90 
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Table 2. Mean ± standard deviation values and corresponding p-values of the 

synchronisation percentages, mean phase shift values, and statistically significant 

features for the three cross-correlation types, for echogenic and echolucent 

plaques. 

  Echogenic Echolucent p-value 

spCC1 52% ± 24% 60% ± 23% 0.11 

spCC2 82% ± 17% 81% ± 15% 0.47 

spCC3 77% ± 18% 74% ± 16% 0.22 

meanCC1 (s) 0.42 ± 0.20 0.40 ± 0.19 0.83 

meanCC2 (s) 0.20 ± 0.15 0.26 ± 0.15 0.05 

meanCC3 (s) 0.30 ± 0.18* 0.34 ± 0.15* 0.09 

medianCC2 (s) 0.09 ± 0.17 0.11 ± 0.13 0.05 

sp: synchronisation percentage 

* indicates significant difference (p-value<0.05) with respect to meanCC2  
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Table 3. Mean ± standard deviation values and corresponding p-values of the 

synchronisation percentages, mean phase shift values, and statistically significant 

features for the three cross-correlation types, for asymptomatic and symptomatic 

plaques of high stenosis degrees. 

  Asymptomatic Symptomatic  p-value 

spCC1 57% ± 23% 53% ± 21% 0.38 

spCC2 82% ± 15% 79% ± 14% 0.34 

spCC3 80% ± 14% 76% ± 19% 0.36 

meanCC1 (s)        0.40 ± 0.20 0.47 ± 0.18 0.13 

meanCC2 (s) 0.23 ± 0.14 0.24 ± 0.13 0.51 

meanCC3 (s) 0.29 ± 0.15* 0.32 ± 0.18 0.64 

maxCC1 (s) 1.02 ± 0.20 1.14 ± 0.13 0.01 

stdevCC1 (s) 0.33 ± 0.11 0.39 ± 0.09 0.05 

maxCC3 (s) 0.96 ± 0.27 1.06 ± 0.24 0.05 

sp: synchronisation percentage, stdev: standard deviation

* indicates significant difference (p-value<0.05) with respect to meanCC2 
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Table 4. Mean ± standard deviation values and corresponding p-values of the 

synchronisation percentages, mean phase shift values, and statistically significant 

features for the three cross-correlation types, for low-stenosis and high-stenosis 

plaques. 

  Low-stenosis  High-stenosis p-value 

spCC1 50% ± 27% 57% ± 23% 0.27 

spCC2 85% ± 16% 82% ± 15% 0.14 

spCC3 75% ± 18% 80% ± 14% 0.23 

meanCC1 (s) 0.41 ± 0.20 0.40 ± 0.20 0.98 

meanCC2 (s) 0.16 ± 0.15 0.23 ± 0.14 0.03 

meanCC3 (s) 0.27 ± 0.15* 0.29 ± 0.15* 0.49 

minCC1 (s) 0.03 ± 0.07 0.02 ± 0.08 0.03 

maxCC2 (s) 0.66 ± 0.41 0.94 ± 0.26 0.00 

stdevCC2 (s) 0.19 ± 0.13 0.29 ± 0.12 0.00 

sp: synchronisation percentage, stdev: standard deviation 

* indicates significant difference (p-value<0.05) with respect to meanCC2 
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Table 5. Mean ± standard deviation values and corresponding p-values of the 

synchronisation percentages, mean values and statistically significant features for 

the three cross-correlation types, for low-risk and high-risk plaques. 

  Low-risk High-risk  p-value 

spCC1 50% ± 27% 56% ± 22% 0.34 

spCC2 85% ± 16% 81% ± 15% 0.08 

spCC3 75% ± 18% 79% ± 16% 0.36 

meanCC1 (s) 0.41 ± 0.20 0.41 ± 0.20 0.79 

meanCC2 (s) 0.16 ± 0.15 0.23 ± 0.14 0.02 

meanCC3 (s) 0.27 ± 0.15* 0.30 ± 0.16* 0.35 

minCC1 (s) 0.03 ± 0.07 0.02 ± 0.07 0.04 

maxCC2 (s) 0.66 ± 0.41 0.94 ± 0.27 0.00 

stdevCC2 (s) 0.19 ± 0.13 0.29 ± 0.12 0.00 

sp: synchronisation percentage, stdev: standard deviation 

* indicates significant difference (p-value<0.05) with respect to meanCC2 
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A - Selection of ROIs B - Motion estimation of selected ROIs 
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C - Examples of interrogated waveforms  

   

   
D - Examples of cross-correlation waveforms  
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