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Abstract—This paper aims at the development and evaluation5
of a personalized insulin infusion advisory system (IIAS), able to6
provide real-time estimations of the appropriate insulin infusion7
rate for type 1 diabetes mellitus (T1DM) patients using continu-8
ous glucose monitors and insulin pumps. The system is based on a9
nonlinear model-predictive controller (NMPC) that uses a person-10
alized glucose–insulin metabolism model, consisting of two com-11
partmental models and a recurrent neural network. The model12
takes as input patient’s information regarding meal intake, glu-13
cose measurements, and insulin infusion rates, and provides glu-14
cose predictions. The predictions are fed to the NMPC, in order15
for the latter to estimate the optimum insulin infusion rates. An16
algorithm based on fuzzy logic has been developed for the on-17
line adaptation of the NMPC control parameters. The IIAS has18
been in silico evaluated using an appropriate simulation environ-19
ment (UVa T1DM simulator). The IIAS was able to handle various20
meal profiles, fasting conditions, interpatient variability, intraday21
variation in physiological parameters, and errors in meal amount22
estimations.23

Index Terms—Artificial pancreas (AP), autotuning model-24
predictive control, personalized model, type I diabetes mellitus25
(T1DM).26

I. INTRODUCTION27

I NSULIN-dependent diabetes mellitus is a metabolic disor-28

der, characterized by the disability of the body to regulate29

blood glucose (BG) levels. Particularly, it is an autoimmune30

disease in which the β-cells of the pancreas are destroyed, re-31

sulting in the absence of insulin secretion. Chronic elevation32
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of BG level leads to damage of blood vessels (angiopathy), re- 33

sulting in serious long-term complications, such as blindness, 34

neuropathy, heart disease, and kidney failure. According to the 35

diabetes control and complications trial [1], the aforementioned 36

complications can be reduced by intensive glycemic control, 37

which involves regular glucose measurements and exogenous 38

insulin administration. Latest advances in technology have led 39

to the development of continuous glucose monitors (CGMs) 40

that provide subcutaneous (sc) glucose measurements at a high 41

frequency [2], and insulin pumps for continuous sc insulin in- 42

fusion. 43

The experience with CGMs and insulin pumps, along with 44

advances in computational algorithms for the automatic estima- 45

tion and adjustment of appropriate insulin infusion rates makes 46

the development of a wearable artificial pancreas (AP) feasi- 47

ble [3]. Closed-loop glucose control systems can be categorized 48

according to the way mealtime insulin delivery is handled. In 49

“fully closed-loop” mode, insulin is delivered without informa- 50

tion about the time or size of the meal. In “semiclosed-loop” 51

control, the controller is provided with information regarding 52

the meal size and generates advice on prandial insulin. A signif- 53

icant benefit to controller performance can be obtained, when 54

meal information is provided. Although a wide range of algo- 55

rithms have been proposed [4], the most common approaches 56

are based on proportional integral derivative controller [5], [6], 57

and model-predictive controller (MPC) [7]–[16]. MPC (linear 58

and nonlinear) seems to be the most appropriate for the develop- 59

ment of AP, since it is able to handle problems related to 1) high 60

nonlinearity of the glucose–insulin metabolism, caused by sat- 61

uration and inhibition effects evidenced by chemical substrates 62

and hormones involved in enzyme dynamics and hormonal con- 63

trol effects, 2) time delays in sc–sc route due to the delayed effect 64

of infused sc insulin and food intake to the blood and, conse- 65

quently, of glucose diffusion from the blood to the sc space, 66

and the lag time between sc glucose value and glucose sensor 67

(in the case of sensors based on microdialysis or microperfu- 68

sion), and 3) noise to the sc glucose measurements. The models 69

used to develop glucose controllers based on linear MPC are 70

usually discrete linearized state-space models obtained from 71

the average original nonlinear patient’s model, which serves as 72

the in silico T1DM patient for the evaluation of the glucose 73

controllers [7], [8], [12]. However, such an approach would 74

suffer from the lack of personalization [4] and from depen- 75

dences between the predictive model integrated in the glucose 76

controller and the in silico patient model, thus limiting the re- 77

liability of the in silico evaluation of the controller. A model- 78

predictive iterative learning control has been proposed based on 79
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a data-driven linear autoregressive exogenous model (ARX) [9].80

Although this model cannot describe accurately the real rela-81

tionship between glucose and insulin in T1DM, the proposed82

control law performed well, especially in the case of repetitive83

diets. Meal detection and meal size estimation algorithms have84

been developed to improve meal glucose disturbance rejection85

when incoming meals are not announced [11]. Furthermore,86

several attempts have been made toward the development of87

glucose controllers based on nonlinear model-predictive control88

(NMPC), [10], [13] [14] and the effectiveness of the NMPC over89

the linear MPC has been studied [14]. The models used to de-90

velop glucose controllers based on NMPC are usually derived by91

compartmentalizing the various physiological components in-92

volved in the human metabolic process [10], [14]. The fact that93

some of the endocrine processes affecting glucose metabolism94

are still not fully understood may limit the effectiveness of these95

controllers. Moreover, experiments on real patients using NMPC96

have been performed [14]–[16]. Clinical trials have been con-97

ducted to investigate whether the closed-loop insulin delivery98

could control overnight BG [17], [18].99

A very important issue toward the implementation of MPC100

is its tuning. Traditionally, the MPC has a set of tuning pa-101

rameters, which add flexibility and influence its performance102

and stability. Usually, their values are adjusted either via trial103

and error procedures or by following general tuning guide-104

lines [19]. Because of the overlapping effect of the MPC pa-105

rameters, trial and error is a rather cumbersome task [20]. Fur-106

thermore, systematic approaches following tuning guidelines107

cannot be implemented online by control operators because the108

glucose metabolism is subject to severe disturbances and chang-109

ing operating conditions. In order to overcome the aforemen-110

tioned problems, an on-line adaptive strategy for MPC based111

on fuzzy logic has been proposed [20], which enables au-112

tomatic tuning of the parameters and results in good control113

performance.114

To account for the highly nonlinear nature of the glucoregu-115

latory system, this study aims at the design, development, and116

evaluation of a novel Insulin Infusion Advisory System (IIAS)117

based on NMPC, which makes use of a new personalized model118

for the simulation of glucose–insulin metabolism in type 1 dia-119

betes mellitus (T1DM). To address the day-to-day variability in120

the glucose dynamics of a T1DM individual and the interpatient121

variability, the proposed personalized approach incorporates a122

data-driven model, able to capture the glucose metabolic behav-123

ior taking into account patient specific information. Moreover,124

an automatic algorithm for the adaptation of the NMPC’s control125

parameters over time is introduced. The IIAS has been evalu-126

ated using the UVa-type T1DM simulator [21], which has been127

approved by the Food and Drug Administration as a substitute128

for animals’ trial in preclinical testing of closed-loop AP control129

algorithms.130

II. METHODOLOGY131

The proposed IIAS comprises two modules: 1) the person-132

alized glucose–insulin metabolism model; and 2) the NMPC.133

These modules along with the automatic algorithm for on-134

Fig. 1. Outline of the personalized glucose–insulin metabolism model used
by the IIAS.

line tuning of NMPC control parameters are described in the 135

following. 136

A. Personalized Glucose–Insulin Metabolism Model 137

In order to provide the controller with glucose predictions 138

ahead in time, a personalized glucose–insulin metabolism model 139

(see Fig. 1) has been developed. The model is based on the com- 140

bined use of a mathematical model (MM) module and a neural 141

network (NN) module. The MM module consists of two Com- 142

partmental Models (CMs), which simulate sc insulin kinetics 143

and glucose absorption into the blood from the gut, respectively, 144

while the NN module incorporates a recurrent neural network 145

(RNN), which models the patient’s glucose kinetics. Informa- 146

tion regarding recent sc insulin infusion rate and meal intake 147

are fed to the MM module. CMs’ outputs along with the recent 148

sc glucose measurement are applied to the RNN that provides 149

glucose predictions. 150

1) CM for sc Insulin Kinetics: Following an sc insulin in- 151

jection, the rate of appearance of insulin in plasma [Ri(t)] is 152

described by a linear CM [22]: 153

İsc1(t) = −(kd + ka1) · Isc1(t) + u(t), Isc1(0) = Isc1ss

(1)

İsc2(t) = kd · Isc1(t) − ka2 · Isc2(t), Isc2(0) = Isc2ss

(2)

Ri(t) = ka1 · Isc1(t) + ka2 · Isc2(t) (3)

where Isc1 and Isc2 represent the amount of nonmonomeric 154

and monomeric insulin in the sc space, respectively, 155

u(t)(pmol/kg/min) is the exogenous insulin infusion rate, 156

kd (0.0164 min−1) is the rate constant of insulin dissociation, 157

and ka1(0.0018 min−1) and ka2(0.0182 min−1) are the rate con- 158

stants of nonmonomeric and monomeric insulin absorption, 159

respectively. 160

2) CM for Glucose Absorption From the Gut: The 161

physiological model of glucose intestinal absorption is a 162

three-compartment nonlinear model with two compartments 163

representing the stomach (solid and liquid phases) and the 164

third compartment representing the intestine [22], [24]. The 165

model assumes a constant rate of the intestinal absorption 166
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but describes gastric emptying rate to be dependent on the167

total amount of nutrient in the stomach. Following a meal, the168

appearance rate of glucose in plasma, Ra (in mg/kg/min), is169

estimated by the following differential equations:170

Qsto(t) = Qsto1(t) + Qsto2(t), Qsto(0) = 0 (4)

Q̇sto1(t) = −kgri · Qsto1(t) + D · d(t), Qsto1(0) = 0 (5)

Q̇sto2(t) = −kempt(Qsto) · Qsto2(t) + ksto · Qsto1(t),

Qsto2(0) = 0 (6)

Q̇gut = −kabs · Qgut(t) + kempt(Qsto) · Qsto2(t),

Qgut(0) = 0 (7)

Ra(t) =
f · kabs · Qgut(t)

BW
, Ra(0) = 0 (8)

where Qsto(in mg) is the amount of glucose in the stomach171

(Qsto1 , solid and Qsto2 , liquid phase), Qgut(in mg) is the172

glucose mass in the intestine, kgri(0.0558 min−1) is the rate173

of griding, kempt(Qsto) (min−1) is the rate constant of gastric174

emptying, which is a nonlinear function of Qsto [22], and175

kabs(0.057 min−1) is the rate constant of intestinal absorption.176

Moreover, f (0.90), D(in mg) and BW (in kg) represent the177

fraction of intestinal absorption which appears in plasma, the178

amount of ingested glucose, and the body weight, respectively.179

3) RNN: The use of the RNN toward the development of180

glucose–insulin metabolism model has been studied and its abil-181

ity to accurately simulate glucose kinetics taking into account182

previous insulin and meal intakes, along with recent glucose183

levels, has been proven [25].184

The RNN used in the proposed personalized glucose–insulin185

metabolism model is a fully connected multilayered perceptron186

NN with two recurrent loops, whose initial weights are set to187

unity [27], [28]. Subcutaneous glucose levels are considered188

as the state variable, while the rate of appearance of insulin in189

plasma and the glucose absorption into the blood from the gut190

as external inputs. Future glucose predictions are calculated as191

yN N (k + 1) = yN N (k) + RNN(yN N (k), Rα (k + 1), Ri(k))

(9)

where yN N (k + 1) and yN N (k) are the sc glucose level predic-192

tions at instant k+1 and k, respectively. The RNN is trained us-193

ing the Real-Time Recurrent Learning (RTRL) algorithm [29].194

RTRL is a sequential, error-correction learning-based algorithm,195

which allows the RNN to update the weights while operating.196

The teacher-force version of the RTRL [29] has been applied,197

according to which the RNN replaces the previous glucose level198

prediction with the corresponding glucose level value, when199

available, in order to produce future predictions. During the op-200

eration of the IIAS, the RNN’s weights are updated based on201

the RTRL algorithm, whenever a new glucose measurement is202

applied. This effectively enables the adaptation of the glucose–203

insulin metabolism model to the special characteristics of the204

patient and to the diurnal variation of the glucose metabolism.205

Thus, the on-line training of the RNN ensures its stable perfor-206

mance for the entire input space.207

B. NMPC 208

As already mentioned, the NMPC uses a model that provides 209

estimates of the future outputs of the system to be controlled. The 210

NMPC is based on an optimizer, which computes at each sam- 211

ple time future control movements based on the minimization 212

of an appropriate cost function. Particularly, at each instant: 1) 213

future outputs yN N (k + i), i = N1 , ..., Np are generated by the 214

prediction model; 2) a cost function of the future control move- 215

ments is minimized providing a set of future control signals; 216

and 3) only the first element of the suggested control sequence 217

is applied to the system. The procedure is repeated at the next 218

instant. 219

The definition of the cost function is critical to controller’s 220

performance. The cost function used in this paper [see (10)], 221

consists of the standard MPC formulated cost function [30] and 222

one penalty term [31]. Particularly, in (10), first and second 223

terms represent the deviations of the glucose predictions from 224

the reference glucose level r, and the changes in future insulin 225

infusion rates, respectively, while the third term consists of two 226

penalty terms, which add soft constraints (LG ≤ yN N (k + i) ≤ 227

HG) to the optimization problem. The penalty terms increase 228

the cost function whenever the glucose predictions are outside 229

the acceptable range determined by the lowest (LG) and the 230

highest (HG) desired glucose level. In (10), Np is the prediction 231

horizon, N1 is the minimum prediction horizon, Nc is the control 232

horizon, and Γe and Γu are the prediction and control weighting 233

coefficients, respectively, while ΓL ,ΓH are penalty coefficients: 234

J = Γe

Np∑

i=N1

(yN N (k + i) − r)2 + Γu

Nc∑

j=0

Δu2(k + j)

+
Np∑

i=N1

[
ΓL [min(0, yN N (k + i) − LG)]2

+ ΓH [min(0,HG − yN N (k + i))]2
]

(10)

where 235

Δu(k) = u(k) u(k 1). (11)

The cost function is minimized, subject to the constraints 236

umin ≤ u(k) ≤ umax . ((12))

Regarding the values of the aforementioned parameters, Np is 237

usually chosen to encompass all the response, which is signifi- 238

cantly affected by the current control signal (sc insulin infusion). 239

If there is no evidence about the dead time, N1 = 1. The choice 240

of Nc is usually based on a compromise between good glucose 241

control performance and minimization of on-line computation. 242

Furthermore, the selection of r, LG, HG, ΓL , and ΓH is based 243

on a compromise between ability to handle high glucose lev- 244

els (caused by meal disturbances) and simultaneously prevent 245

high values of insulin infusion rates, which would cause severe 246

hypoglycaemic episodes. 247

In this paper, an automatic tuning algorithm, similar to the 248

one proposed in [20], is adopted for the on-line update of the 249

parameters Np andΓu . These parameters play an important role 250
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Fig. 2. Fuzzy sets for (a) bound violation and (b) bound violation rate.

to the controller’s performance and stability. Although the time251

to the peak action of sc insulin is considered to be 50 min, the252

prediction horizon of 50 min is not always optimal, especially in253

the presence of meal disturbances where glucose levels change254

rapidly. This is of particular importance, since the sc glucose255

measurements are subject to inaccuracies and there are lags256

between the sc and the BG levels. The prediction weighting257

coefficient Γe is chosen to be constant in order to avoid simul-258

taneous increase of Np and Γe , which would increase on-line259

computation for the minimization of the cost function (10).260

C. On-Line Tuning Algorithm of the NMPC Control Parameters261

In order for the IIAS to rapidly reject meal disturbances262

and maintain postprandial glucose levels within the acceptable263

range, an automatic tuning algorithm has been developed. The264

tuning technique adapts on-line the NMPC control parameters265

in order to steer the closed-loop glucose response to satisfy pre-266

set time-domain specifications, which are provided by the user267

in the form of vectors of upper and lower bounds yu and yl ,268

respectively. The new values of the NMPC control parameters269

are determined by fuzzy logic rules.270

1) Overview of the Adaptation Algorithm: The proposed271

tuning method consists of two phases: the observation phase272

and the triggered phase. In the former, the future glucose profile273

is predicted, through the minimization of (10), by applying fixed274

values to the prediction horizon Pw and the control weighting275

coefficient Γuw . The obtained glucose profile is checked against276

the performance envelope. In case a bound violation occurs, the277

algorithm enters the triggered phase, otherwise the calculated278

insulin infusion rate is applied to the system and the whole pro-279

cedure is repeated at the next instant. Particularly, at each instant280

k, the steps of the tuning algorithm are as follows.281

Step 1. Produce future glucose profile using fixed NMPC282

control parameters through the minimization of the cost function283

(10). The calculated insulin infusion rate at this step is not284

applied to the patient.285

Step 2. Check whether the predicted glucose profile, exceeds286

the limits of the performance envelope, i.e., yu and yl . If the287

limits are not exceeded, go to step 8.288

Step 3. Determine the corresponding glucose prediction and289

the instant at which maximum bound violation occurs. Let this290

be at instant k + m.291

Step 4. Calculate the scaled values of the bound violation292

(A,B), and the glucose change (C) at instant k + m.293

Step 5. Determine the degree of membership of A, B, and C294

with respect to membership functions presented in Fig. 2.295

TABLE I
BASE RULES OF THE TUNING ALGORITHM

Step 6. Calculate the correction factors [wk (Np), wk (Γu )]. 296

Step 7. Set the new parameters values as 297

Np,k = Np,previous + wk (Np) and Γu,k = Γu,previous 298

(1 + wk (Γu )), where Np,previous and Γu,previous are calculated 299

during the previous triggered phase of the tuning algorithm. 300

Step 8. Compute and apply the sc insulin infusion rate. Pro- 301

ceed to the next instant k + 1 and go to step 1. 302

The initial values of Np and Γu are set to Pw and Γuw , re- 303

spectively. In the presence of a meal disturbance, the control 304

parameters are appropriately updated in order to reduce the 305

overshoot and speed up the closed-loop response. To this end, 306

Np and Γu reset to their initial values whenever a new meal 307

disturbance is applied. 308

2) Fuzzification: At the fuzzification stage, the scaled val- 309

ues of the bound violation and the glucose change at the instant 310

where maximum violation occurs are fuzzified using the fuzzy 311

sets shown in Fig. 2. Particularly, if upper-bound violation oc- 312

curs, the scaled valueA is specified as 313

A =
yN N (k + m) − yu

yu
. (13)

If lower bound is violated, the scaled valueB is specified as 314

B =
yl − yN N (k + m)

yl
(14)

where m(N1 ≤ m ≤ Np ) is the instant at which maximum vio- 315

lation occurs. The definition of AandBguarantees positive value 316

if the corresponding bound is violated and negative otherwise. 317

The fuzzy set used for the fuzzification of the bound violation is 318

shown in Fig. 2(a), and consists of two membership functions, 319

namely: (G)ood denoted as G and (H)igh denoted as H. There- 320

fore, if the upper bound is violated, then A belongs to H and B 321

to G and vice versa. 322

The scaled value of glucose change at the instant where the 323

maximum violation occurs is defined as follows: 324

C =
yN N (k + m) − yN N (k + m − 1)

yN N (k + m)
. (15)

The scaled value of glucose change is transformed into a member 325

of fuzzy sets, using the fuzzy set shown in Fig. 2(b). This fuzzy 326

set consists of three membership functions: (P)ositive, (Z)ero, 327

and (N)egative. 328

3) Inference Engine: The base rules governing the tuning 329

guidelines are given in Table I. In this Table, μΓ and μN p 330



IE
EE

Pr
oo

f

ZARKOGIANNI et al.: INSULIN INFUSION ADVISORY SYSTEM BASED ON AUTOTUNING NONLINEAR MODEL-PREDICTIVE CONTROL 5

Fig. 3. Fuzzy set for the output of MPC parameters.

represent the rule output for Np and Γu , respectively, while LN331

(Large Negative), SN (Small Negative), ZE (Zero), SP (Small332

Positive), and LP (Large Positive), are the output fuzzy sets333

represented by sigmoid and triangular membership functions334

as shown in Fig. 3. These functions are denoted as μ5 , μ4 ,335

μ3 , μ2 , and μ1 , respectively. The base rules formulate the gen-336

eral understanding of the effect of parameters Np and Γu in337

closed-loop response. In general, according to simulation ex-338

perience [20], increasing Np at a fixed nonzero value of Γu339

results in a faster response with less overshoot. Furthermore,340

reduction of Γu speeds up the response. We chose to increase341

Np for both upper- and lower-bound violation, in order to pre-342

vent from large overshoots in glucose response—which may343

result in hyperglycaemic episodes—while speeding up the glu-344

cose response to avoid hypoglycemic episodes. Morever, since345

reduction of Γu speeds up the response, parallel reduction of Np346

should be avoided, because this would lead to more aggressive347

control performance and might result to instability.348

4) Defuzzification: At the defuzzification stage, the outputs349

of the base rules are properly processed in order to produce crisp350

values, which are used as factors to update the NMPC control pa-351

rameters. The base rules of Table I, which are in linguistic form,352

are expressed in mathematical form using a common fuzzy rule353

operation [20]. Particularly, the AND command is transformed354

into minimum operation. For example, the results of Rule 1 in355

Table I can be written as follows:356

μ4,1(Γu ) = min(μH (A), μG (B)) (16)

357

μ1,1(Np) = min(μH (A), μG (B)) (17)

where μH (A) is the degree of membership of A in the fuzzy set358

H and μj,i(•) denotes the membership degree of (•) to the jth359

output membership function with respect to rule i. Therefore,360

the center of area principle [32] is applied in order to produce the361

correction factor Γu . For the prediction horizon, the correction362

factor is calculated as363

wk (Np) =
nR∑

j=1

nf∑

i=1

μj,i(Np)δi (18)

where nR and nf represent the number of rules and the number364

of membership functions, respectively, while δi is the value for365

the center location of the activated output membership function.366

Since Np is an integer, the correction factor is rounded to the367

nearest integer.368

III. RESULTS AND DISCUSSION 369

In order to evaluate the performance and the robustness of the 370

designed IIAS, the UVa T1DM simulator [21] has been used. 371

The UVa T1DM simulator incorporates a modified version of 372

the meal model developed by Man et al. [22]–[24] to adapt for 373

T1DM subjects and insulin exogenous infusion [22]. In addition 374

to the patient model, the simulator incorporates a sensor-related 375

errors model to account for sensor noise and measurements’ 376

errors and a model for the sc insulin pump. The UVa T1DM 377

simulator simulates a sufficiently large cohort of in silico sub- 378

jects in order to cover the wide variability observed among 379

diabetic population and serves as an in silico environment for 380

preclinical testing trial. In this paper, the proposed IIAS has been 381

tested with the ten adults’ population available in the training 382

version of the UVa simulator. The ten patients are characterized 383

by a wide diversity in their parameters (e.g., body weight and 384

insulin sensitivity) and, therefore, can serve as small population 385

to evaluate the controller [8], [9]. 386

The evaluation of the IIAS is performed in two stages: 1) 387

evaluation of the predictive performance of the personalized 388

glucose–insulin metabolism model; and 2) evaluation of the 389

controller considering several simulation scenarios. 390

A. Evaluation of the Personalized Glucose–Insulin Metabolism 391

Model 392

Open-loop experiments were performed in order to generate 393

the data for the training and testing of the personalized glucose– 394

insulin metabolism models. Particularly, each in silico subject 395

was fed for one week, with 1) basal rate, which keeps the spe- 396

cific patient at its fasting state (provided by the UVa T1DM 397

simulator), 2) insulin bolus whenever carbohydrates were in- 398

gested (provided by the UVa T1DM simulator), and 3) various 399

meal profiles corresponding to breakfast, lunch, dinner, and two 400

snacks. In order to account for patient real life, meal times 401

and amounts values were randomly chosen within the follow- 402

ing ranges: {[6–8 A.M.], [12–2 P.M.], [4–4.30 P.M.], [6–8 P.M.], 403

[10–11 P.M.]} and {[40–60 g], [60–80 g], [0–10 g], [70–90 g], 404

and [0–10 g]}, respectively. Data corresponding to the first four 405

days were used for training the model, while the remaining three 406

days were used for its testing. The predictive performance of the 407

glucose–insulin metabolism model was evaluated considering a 408

prediction horizon equal to 30 min with a 5-min resolution. 409

Root-mean-squared error (RMSE) and correlation coefficient 410

(CC) corresponding to the testing dataset were calculated to 411

evaluate the performance of the glucose–insulin metabolism 412

model in terms of matching the predicted glucose with the orig- 413

inal ones. Furthermore, in order to evaluate the clinical accu- 414

racy of the glucose predictions and their effects on decisions 415

to avoid hypo- and hyperglycemic events, the continuous error 416

grid analysis [33] has been used. The estimates of point and 417

rate precision are combined in a single accuracy assessment for 418

each of the BG ranges: hypoglycemia, euglycemia, and hyper- 419

glycemia. To this end, the point error grid analysis (P-EGA) 420

and the rate error grid analysis (R-EGA) are combined in the 421

three clinically relevant regions of hypoglycemia, euglycemia, 422

and hyperglycemia. Clinically accurate glucose predictions are 423
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TABLE II
ERROR MATRIX COMBINING R-EGA AND P-EGA

considered to be within the zones A and B on both P-EGA and424

R-EGA. Clinically benign errors correspond to acceptable point425

accuracy (i.e., A or B P-EGA zones) and significant errors in426

rate accuracy (i.e., C, D, or E R-EGA zones), which are unlikely427

to lead to negative clinical consequences. Clinically significant428

errors are those that could lead to a negative clinical action and429

therapeutic consequences.430

From both the RMSE (mean± standard deviation (SD): 15.67431

± 6.03) and CC (mean ± SD: 0.78 ± 0.16), it is obvious that432

the predicted glucose profile follows the original one. Moreover,433

the error matrix combining P-EGA and R-EGA, presented in434

Table II, shows that erroneous errors are observed in the range435

of hypoglycemia.436

Although the proposed glucose–insulin metabolism model437

uses CMs for the simulation of sc insulin kinetics and glucose438

absorption from the gut, similarly with the UVa T1DM sim-439

ulator, it adopts a completely different approach based on the440

RNN to map plasma insulin to sc glucose. The latter consists the441

most essential module of the model. The previously presented442

prediction accuracy assessment refers to primarily testing the443

RNN and its effective combination with the CMs. The predic-444

tive performance of the glucose–insulin metabolism model has445

been assessed in a previous study [25], and the superiority of the446

used RNN over a feedforward neural network (FNN) has been447

demonstrated [26], using real patient data.448

B. IIAS Tuning449

The IIAS provides the estimated insulin infusion rates every450

5 min. Regarding the performance envelope, lower yl and up-451

per yu bounds were chosen to be constant and equal to 90 and452

140 mg/dl, respectively, corresponding to a rather narrow target453

range. Particularly, 90 mg/dl corresponds to the minimum BG454

level of optimal glucose control [21], while 140 mg/dl is the455

maximum 2-h postprandial BG level [8]. Moreover, LG and456

HG were set to 70 and 180 mg/dl, respectively, since, in this457

paper, BG concentrations between 70 and 180 mg/dl are con-458

sidered to be within the target range for T1DM. The values of459

the weighting coefficients ΓL ,ΓH , and Γewere chosen to be 10,460

TABLE III
IIAS TUNING

Fig. 4. Upper panel: Adult 5, sc insulin infusion rates (dashed-dotted line), BG
data (solid line), limits of performance envelop [90–140 mg/dl] (dashed-line).
Middle panel: Prediction horizon. Low panel: control weighting coefficient.

1, and 100, respectively. The rather largeΓe value causes quite 461

high insulin infusion rates, which are necessary to prevent hy- 462

perglycemic episodes after meal ingestion. Furthermore, ΓL is 463

large enough to appropriately penalize for glucose predictions 464

lower than 70 mg/dl and thus preventing from extremely high in- 465

sulin infusion rates that would lead to hypoglycemic episodes. 466

Parameter Pw is set to 10 corresponding to 50 min in order 467

for the prediction horizon to account for sc insulin action. The 468

control weighting coefficient Γuw is set to 10, which is high 469

enough to ensure stability of the glucose controller. Nc is set to 470

1 (its minimum possible value), corresponding to 5 min, in or- 471

der to minimize on-line computation and N1 = 1 (see Section 472

II-B). Moreover, umin = 0U/h while umax = 70U/h in accor- 473

dance with the maximum allowable values for patients’ safety 474

and pump’s hardware limitations [8]. The reference glucose 475

level r is set to 110 mg/dl, which corresponds to the minimum 476

value of the risk index. The numerical values of the parameters 477

are summarized in Table III. 478

In order to clearly present the evolution of the prediction hori- 479

zon Np along with the control weighting coefficient Γu over 480

time, the following simulation scenario has been studied: Adult 481

5 was fed with 50 g at time 100 min. In Fig. 4, BG levels, sc 482

insulin infusion rates along with prediction horizon, and control 483

weighting coefficient are shown. As can be observed, the tuning 484

algorithm does not always enter the triggered phase. It enters the 485

triggered phase whenever there is danger for BG levels to ex- 486

ceed the limits of the performance envelop (90–140 mg/dl), and 487
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TABLE IV
DAILY MEAL PROFILES

Fig. 5. Control results for Adult 3 under IIAS (upper panel) and fixed param-
eters NMPC (low panel). Estimated insulin infusion rates (dashed-dotted line),
BG data (solid line), glucose target range [70–180 mg/dl].

appropriately updates the NMPC parameters, managing to reset488

and maintain glucose levels within the performance envelop.489

C. Evaluation of the Controller—Simulation Scenarios490

To evaluate IIAS’s performance under realistic conditions,491

several scenarios have been simulated. Particularly, the IIAS has492

been tested for its ability to handle meal disturbances, fasting493

conditions, interpatient variability, robustness against erroneous494

estimation of carbohydrates’ amount in ingested meals, and495

intraday variation in physiological parameters. Furthermore, in496

order to study the effectiveness of the tuning algorithm, two497

simulation scenarios have been studied: with (IIAS) and without498

(fixed parameter NMPC) the tuning algorithm.499

1) Evaluation of the IIAS Against Fixed Parameter NMPC:500

Both controllers have been tested with the ten adults’ population.501

It should be noted that in the case of fixed parameter NMPC, Np502

and Γe are fixed over time and set both to 10. The simulation503

scenarios consider a two-day testing period with varying meal504

timings and amounts (see Table IV).505

The superiority of the IIAS over fixed parameter NMPC is506

shown in Figs. 5 and 6. Fig. 5 presents the estimated sc insulin507

infusion rates along with the corresponding BG levels, when508

Adult 3 is fed with the two-day meal protocol and regulated509

using the IIAS (upper panel) and the fixed parameter NMPC510

(low panel), respectively. It should be noted that the controllers511

activate either the basal or the bolus action provided from the512

insulin pumps and hold the estimated insulin dose constant be-513

tween sampling instants (per 5 min). As shown in Fig. 5, the514

application of fixed parameter NMPC caused severe hypogly-515

caemic episodes, which are defined as BG levels lower than516

Fig. 6. CVGA for the ten adults of the Uva T1DM simulator. left: IIAS (30%
in zone A and 70% in zone B). Right: NMPC (10% in zone A, 55% in zone B,
25% in zone C, and 10% in zone D).

Fig. 7. BG trace for the ten adults of the UVa T1DM simulator when the
IIAS is applied. Mean response (solid curve), SD (dashed-dotted curve), and
min/max envelop (dashed curve).

60 mg/dl [9]. On the other hand, the IIAS managed to main- 517

tain BG levels within the target range (70 --180 mg/dl), while 518

achieving less fluctuations over time. 519

The control variability grid analysis (CVGA) [34], shown in 520

Fig. 6, serves as a tool to evaluate the controllers with the en- 521

tire population. Each point in the CVGA represents the lower 522

and the upper bound of 95% confidence interval of BG data for 523

one patient during one day. Zones A and B are considered to 524

represent good glucose control. CVGA demonstrates that IIAS 525

provides superior performance over the fixed parameter NMPC, 526

managing to keep all the patients inside the zones A and B. 527

Furthermore, the min/max envelop presented in Fig. 7 indicates 528

that the BG levels for the hard-to-control patients are within 529

the acceptable range 70–236 mg/dl, managing to avoid hypo- 530

glycemic episodes and severe hyperglycemic episodes (above 531

280 mg/dl). 532

Moreover, numerical metrics of average glycemia, percentage 533

within the target range (70–180 mg/dl), risk associated with ex- 534

treme glucose deviations [35] (low blood glucose index (LBGI), 535

high blood glucose index (HBGI), and total risk index), are used 536

to provide more details about the controller performance. In Ta- 537

ble V, the obtained numerical results, when the IIAS is applied 538

on all 10 patients, are presented. It can be seen that most of the 539

time, BG levels are kept within the target range, while the risk 540

indices (LBGI, HBGI, and total risk index) have low values, 541

showing that tight glycemic control is achieved. 542

2) Robustness to Meal Estimation Errors: Since the pro- 543

posed IIAS is informed about the carbohydrates amount of the 544

upcoming meal, its ability to handle meal estimation errors is 545

of utmost importance. To this end, the IIAS has been tested 546
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TABLE V
CONTROL PERFORMANCE OF THE IIAS AND THE OPEN-LOOP PREADJUSTED TREATMENT

against overestimation errors (OEE) and underestimation errors547

(UEE) up to 40%. Table V demonstrates the mean values and the548

SDs of the numerical metrics over the results obtained for the549

ten adults. Although certain hypoglycemic and hyperglycemic550

episodes occurred, none of them was severe. It is noteworthy551

that the IIAS is able to handle meal estimation errors and reg-552

ulate properly insulin infusion rate, in order to keep glucose553

within the target range most of the time.554

3) Robustness Against Intraday Variation in Physiological555

Parameters: One of the critical challenges for a glucose con-556

trol algorithm is robustness against intraday variation in phys-557

iological parameters. In order to represent diurnal metabolic558

variations, time variation of the in silico patient-specific phys-559

iological parameters was considered, as drawn from a normal560

distribution with SD of 10%. This distribution was chosen to561

capture the expected variation in insulin sensitivity [36]. In Ta-562

ble V, the obtained numerical results over the ten adults are563

presented. The IIAS achieved good glucose control, managing564

to maintain BG levels within the acceptable range for 95.17%565

of the total time, avoiding severe hypoglycemic and hyper-566

glycemic episodes. Furthermore, the risk indices are low, prov-567

ing the IIAS’ ability to handle intraday variation in physiological568

parameters.569

D. Comparison of the IIAS With Other Glucose Controllers570

In order to prove the efficacy of the IIAS, its performance has571

been compared with that of other open-loop and closed-loop572

glucose controllers.573

1) Open-Loop Preadjusted Treatment: The open-loop574

preadjusted treatment is supported by the UVa T1DM simulator.575

The ten in silico adults of the simulator followed a protocol of576

meals presented in Table IV. A matching insulin bolus and a577

basal rate were provided by the UVa T1DM simulator for each578

in silico adult and the results obtained by applying the open-579

loop preadjusted treatment are presented in Table V. It can be580

observed that the IIAS achieves better glucose control.581

2) Adaptive Basal Therapy: Since the basal rate provided582

by the UVa T1DM simulator is nonoptimal, the IIAS has been583

compared with adaptive basal therapy [37]. The latter suggests584

adaptation of the basal rate as a gain multiplier based on the cur-585

TABLE VI
COMPARISON OF THE IIAS WITH THE ADAPTIVE BASAL THERAPY [37]

rent CGM glucose value and its rate of change. Identical meals 586

used in [37] provided input to the ten in silico adults, which were 587

regulated by the IIAS. In particular, the ten in silico adults fol- 588

lowed a one-day meal scenario of 40, 75, 60 g of carbohydrates 589

at 7:00 A.M., 12:00 A.M., and 6:00 P.M., respectively. Results ob- 590

tained from the application of the IIAS and the adaptive basal 591

therapy are presented in Table VI in terms of hyperglycemia 592

and severe hypoglycemia (<60 mg/dl) along with risk indices. 593

It can be observed that the IIAS provides better glucose control 594

performance. 595

3) Artificial Pancreatic β-Cell Based on Zone-MPC: In or- 596

der to justify the use of the proposed nonlinear approach to 597

improve glucose control, the IIAS has been compared with an ar- 598

tificial pancreatic β-cell based on zone-MPC that uses mapped- 599

input data and is adjusted automatically by linear difference 600

personalized models [38]. The ten in silico adults followed the 601

three meal scenario used in [38]—consisting of 75, 75, and 50 g 602

of carbohydrates at 7 A.M., 1 P.M., and 8 P.M., respectively—and 603

were regulated by the IIAS. The obtained results are presented 604

in Table VII. It should be noted that no severe hypoglycemic 605

(<60 mg/dl) and hyperglycemic episodes (>280 mg/dl) have 606

been observed during the operation of the IIAS- and zone-MPC- 607

based glucose controllers. As discussed in [38], a single severe 608

hypoglycemic event occurred during the operation of the MPC 609

with set point at 110 mg/dl. When the in silico adults were reg- 610

ulated by the IIAS, the mean glucose value was closer to the 611

desired glucose level, while the average SD of the mean glucose 612

value was lower, indicating lower variability in glucose con- 613

trol performance among the in silico adults. Furthermore, lower 614
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TABLE VII
COMPARISON OF THE IIAS WITH THE ARTIFICIAL PANCREATIC B-CELL [38]

percentage of hyperglycemia was observed during the operation615

of the IIAS. The obtained improved glucose control performance616

is related to higher on-line computation.617

Summarizing, the use of a data-driven model for the sim-618

ulation of the blood glucose–insulin kinetics (real-time self-619

adaptive NN) permits personalization of the system and effi-620

cient handling of a changing environment. It is important to621

note that the incorporation of the RNN makes the model capa-622

ble of simulating glucose–insulin kinetics taking into account623

patient specific information related to ingested carbohydrates,624

sc insulin infusion rate, and glucose records from CGMS that625

are usually available in clinical practice. The metabolic behav-626

ior of a specific patient is captured through the real-time update627

of the RNN’s weights. Whenever a new glucose measurement628

is applied to the model, the RNN’s weights are appropriately629

adapted in order to adjust to the new metabolic behavior. Ac-630

cording to above, the RNN consists the most essential module of631

the personalized glucose–insulin metabolism model. Thus, the632

similarities of the latter with the UVa T1DM simulator regard-633

ing the use of CMs for the sc insulin kinetics and the glucose634

absorption from the gut do not limit the reliability of the pre-635

sented assessment of the IIAS performance. This is of particular636

importance since the IIAS has demonstrated robustness against637

intraday variation in physiological parameters. Moreover, the638

tuning algorithm for the real-time update of the NMPC control639

parameters greatly improved controller’s performance, demon-640

strating its importance toward the tuning of glucose controllers641

based on MPC.642

Clinical evaluation of the IIAS on real T1DM patients is in643

progress. Future research activities are focused on the optimiza-644

tion of the proposed IIAS and its complete integration into a645

telecommunication platform for the efficient management and646

treatment of patients with T1DM [39].647

IV. CONCLUSION648

A novel IIAS based on NMPC has been proposed in order to649

estimate optimal insulin infusion rates. The proposed approach650

introduces 1) a personalized model based on the combined use651

of CMs and an RNN for the simulation of glucose–insulin652

metabolism and 2) an automatic algorithm for the on-line adap-653

tation of NMPC parameters. The performance of the IIAS has654

been in silico evaluated using the ten adults’ population, avail-655

able in the training version of the UVa T1DM simulator. The656

obtained results demonstrate that the proposed IIAS is robust657

with respect to its ability to handle various conditions char- 658

acterized by sensor errors, lags, meal disturbances, large meal 659

estimation errors, interpatient variability, and intraday variation 660

in physiological parameters. 661
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An Insulin Infusion Advisory System Based on
Autotuning Nonlinear Model-Predictive Control

1

2
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and Konstantina S. Nikita*, Senior Member, IEEE

3

4

Abstract—This paper aims at the development and evaluation5
of a personalized insulin infusion advisory system (IIAS), able to6
provide real-time estimations of the appropriate insulin infusion7
rate for type 1 diabetes mellitus (T1DM) patients using continu-8
ous glucose monitors and insulin pumps. The system is based on a9
nonlinear model-predictive controller (NMPC) that uses a person-10
alized glucose–insulin metabolism model, consisting of two com-11
partmental models and a recurrent neural network. The model12
takes as input patient’s information regarding meal intake, glu-13
cose measurements, and insulin infusion rates, and provides glu-14
cose predictions. The predictions are fed to the NMPC, in order15
for the latter to estimate the optimum insulin infusion rates. An16
algorithm based on fuzzy logic has been developed for the on-17
line adaptation of the NMPC control parameters. The IIAS has18
been in silico evaluated using an appropriate simulation environ-19
ment (UVa T1DM simulator). The IIAS was able to handle various20
meal profiles, fasting conditions, interpatient variability, intraday21
variation in physiological parameters, and errors in meal amount22
estimations.23

Index Terms—Artificial pancreas (AP), autotuning model-24
predictive control, personalized model, type I diabetes mellitus25
(T1DM).26

I. INTRODUCTION27

I NSULIN-dependent diabetes mellitus is a metabolic disor-28

der, characterized by the disability of the body to regulate29

blood glucose (BG) levels. Particularly, it is an autoimmune30

disease in which the β-cells of the pancreas are destroyed, re-31

sulting in the absence of insulin secretion. Chronic elevation32
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of BG level leads to damage of blood vessels (angiopathy), re- 33

sulting in serious long-term complications, such as blindness, 34

neuropathy, heart disease, and kidney failure. According to the 35

diabetes control and complications trial [1], the aforementioned 36

complications can be reduced by intensive glycemic control, 37

which involves regular glucose measurements and exogenous 38

insulin administration. Latest advances in technology have led 39

to the development of continuous glucose monitors (CGMs) 40

that provide subcutaneous (sc) glucose measurements at a high 41

frequency [2], and insulin pumps for continuous sc insulin in- 42

fusion. 43

The experience with CGMs and insulin pumps, along with 44

advances in computational algorithms for the automatic estima- 45

tion and adjustment of appropriate insulin infusion rates makes 46

the development of a wearable artificial pancreas (AP) feasi- 47

ble [3]. Closed-loop glucose control systems can be categorized 48

according to the way mealtime insulin delivery is handled. In 49

“fully closed-loop” mode, insulin is delivered without informa- 50

tion about the time or size of the meal. In “semiclosed-loop” 51

control, the controller is provided with information regarding 52

the meal size and generates advice on prandial insulin. A signif- 53

icant benefit to controller performance can be obtained, when 54

meal information is provided. Although a wide range of algo- 55

rithms have been proposed [4], the most common approaches 56

are based on proportional integral derivative controller [5], [6], 57

and model-predictive controller (MPC) [7]–[16]. MPC (linear 58

and nonlinear) seems to be the most appropriate for the develop- 59

ment of AP, since it is able to handle problems related to 1) high 60

nonlinearity of the glucose–insulin metabolism, caused by sat- 61

uration and inhibition effects evidenced by chemical substrates 62

and hormones involved in enzyme dynamics and hormonal con- 63

trol effects, 2) time delays in sc–sc route due to the delayed effect 64

of infused sc insulin and food intake to the blood and, conse- 65

quently, of glucose diffusion from the blood to the sc space, 66

and the lag time between sc glucose value and glucose sensor 67

(in the case of sensors based on microdialysis or microperfu- 68

sion), and 3) noise to the sc glucose measurements. The models 69

used to develop glucose controllers based on linear MPC are 70

usually discrete linearized state-space models obtained from 71

the average original nonlinear patient’s model, which serves as 72

the in silico T1DM patient for the evaluation of the glucose 73

controllers [7], [8], [12]. However, such an approach would 74

suffer from the lack of personalization [4] and from depen- 75

dences between the predictive model integrated in the glucose 76

controller and the in silico patient model, thus limiting the re- 77

liability of the in silico evaluation of the controller. A model- 78

predictive iterative learning control has been proposed based on 79

0018-9294/$26.00 © 2011 IEEE
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a data-driven linear autoregressive exogenous model (ARX) [9].80

Although this model cannot describe accurately the real rela-81

tionship between glucose and insulin in T1DM, the proposed82

control law performed well, especially in the case of repetitive83

diets. Meal detection and meal size estimation algorithms have84

been developed to improve meal glucose disturbance rejection85

when incoming meals are not announced [11]. Furthermore,86

several attempts have been made toward the development of87

glucose controllers based on nonlinear model-predictive control88

(NMPC), [10], [13] [14] and the effectiveness of the NMPC over89

the linear MPC has been studied [14]. The models used to de-90

velop glucose controllers based on NMPC are usually derived by91

compartmentalizing the various physiological components in-92

volved in the human metabolic process [10], [14]. The fact that93

some of the endocrine processes affecting glucose metabolism94

are still not fully understood may limit the effectiveness of these95

controllers. Moreover, experiments on real patients using NMPC96

have been performed [14]–[16]. Clinical trials have been con-97

ducted to investigate whether the closed-loop insulin delivery98

could control overnight BG [17], [18].99

A very important issue toward the implementation of MPC100

is its tuning. Traditionally, the MPC has a set of tuning pa-101

rameters, which add flexibility and influence its performance102

and stability. Usually, their values are adjusted either via trial103

and error procedures or by following general tuning guide-104

lines [19]. Because of the overlapping effect of the MPC pa-105

rameters, trial and error is a rather cumbersome task [20]. Fur-106

thermore, systematic approaches following tuning guidelines107

cannot be implemented online by control operators because the108

glucose metabolism is subject to severe disturbances and chang-109

ing operating conditions. In order to overcome the aforemen-110

tioned problems, an on-line adaptive strategy for MPC based111

on fuzzy logic has been proposed [20], which enables au-112

tomatic tuning of the parameters and results in good control113

performance.114

To account for the highly nonlinear nature of the glucoregu-115

latory system, this study aims at the design, development, and116

evaluation of a novel Insulin Infusion Advisory System (IIAS)117

based on NMPC, which makes use of a new personalized model118

for the simulation of glucose–insulin metabolism in type 1 dia-119

betes mellitus (T1DM). To address the day-to-day variability in120

the glucose dynamics of a T1DM individual and the interpatient121

variability, the proposed personalized approach incorporates a122

data-driven model, able to capture the glucose metabolic behav-123

ior taking into account patient specific information. Moreover,124

an automatic algorithm for the adaptation of the NMPC’s control125

parameters over time is introduced. The IIAS has been evalu-126

ated using the UVa-type T1DM simulator [21], which has been127

approved by the Food and Drug Administration as a substitute128

for animals’ trial in preclinical testing of closed-loop AP control129

algorithms.130

II. METHODOLOGY131

The proposed IIAS comprises two modules: 1) the person-132

alized glucose–insulin metabolism model; and 2) the NMPC.133

These modules along with the automatic algorithm for on-134

Fig. 1. Outline of the personalized glucose–insulin metabolism model used
by the IIAS.

line tuning of NMPC control parameters are described in the 135

following. 136

A. Personalized Glucose–Insulin Metabolism Model 137

In order to provide the controller with glucose predictions 138

ahead in time, a personalized glucose–insulin metabolism model 139

(see Fig. 1) has been developed. The model is based on the com- 140

bined use of a mathematical model (MM) module and a neural 141

network (NN) module. The MM module consists of two Com- 142

partmental Models (CMs), which simulate sc insulin kinetics 143

and glucose absorption into the blood from the gut, respectively, 144

while the NN module incorporates a recurrent neural network 145

(RNN), which models the patient’s glucose kinetics. Informa- 146

tion regarding recent sc insulin infusion rate and meal intake 147

are fed to the MM module. CMs’ outputs along with the recent 148

sc glucose measurement are applied to the RNN that provides 149

glucose predictions. 150

1) CM for sc Insulin Kinetics: Following an sc insulin in- 151

jection, the rate of appearance of insulin in plasma [Ri(t)] is 152

described by a linear CM [22]: 153

İsc1(t) = −(kd + ka1) · Isc1(t) + u(t), Isc1(0) = Isc1ss

(1)

İsc2(t) = kd · Isc1(t) − ka2 · Isc2(t), Isc2(0) = Isc2ss

(2)

Ri(t) = ka1 · Isc1(t) + ka2 · Isc2(t) (3)

where Isc1 and Isc2 represent the amount of nonmonomeric 154

and monomeric insulin in the sc space, respectively, 155

u(t)(pmol/kg/min) is the exogenous insulin infusion rate, 156

kd (0.0164 min−1) is the rate constant of insulin dissociation, 157

and ka1(0.0018 min−1) and ka2(0.0182 min−1) are the rate con- 158

stants of nonmonomeric and monomeric insulin absorption, 159

respectively. 160

2) CM for Glucose Absorption From the Gut: The 161

physiological model of glucose intestinal absorption is a 162

three-compartment nonlinear model with two compartments 163

representing the stomach (solid and liquid phases) and the 164

third compartment representing the intestine [22], [24]. The 165

model assumes a constant rate of the intestinal absorption 166
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but describes gastric emptying rate to be dependent on the167

total amount of nutrient in the stomach. Following a meal, the168

appearance rate of glucose in plasma, Ra (in mg/kg/min), is169

estimated by the following differential equations:170

Qsto(t) = Qsto1(t) + Qsto2(t), Qsto(0) = 0 (4)

Q̇sto1(t) = −kgri · Qsto1(t) + D · d(t), Qsto1(0) = 0 (5)

Q̇sto2(t) = −kempt(Qsto) · Qsto2(t) + ksto · Qsto1(t),

Qsto2(0) = 0 (6)

Q̇gut = −kabs · Qgut(t) + kempt(Qsto) · Qsto2(t),

Qgut(0) = 0 (7)

Ra(t) =
f · kabs · Qgut(t)

BW
, Ra(0) = 0 (8)

where Qsto(in mg) is the amount of glucose in the stomach171

(Qsto1 , solid and Qsto2 , liquid phase), Qgut(in mg) is the172

glucose mass in the intestine, kgri(0.0558 min−1) is the rate173

of griding, kempt(Qsto) (min−1) is the rate constant of gastric174

emptying, which is a nonlinear function of Qsto [22], and175

kabs(0.057 min−1) is the rate constant of intestinal absorption.176

Moreover, f (0.90), D(in mg) and BW (in kg) represent the177

fraction of intestinal absorption which appears in plasma, the178

amount of ingested glucose, and the body weight, respectively.179

3) RNN: The use of the RNN toward the development of180

glucose–insulin metabolism model has been studied and its abil-181

ity to accurately simulate glucose kinetics taking into account182

previous insulin and meal intakes, along with recent glucose183

levels, has been proven [25].184

The RNN used in the proposed personalized glucose–insulin185

metabolism model is a fully connected multilayered perceptron186

NN with two recurrent loops, whose initial weights are set to187

unity [27], [28]. Subcutaneous glucose levels are considered188

as the state variable, while the rate of appearance of insulin in189

plasma and the glucose absorption into the blood from the gut190

as external inputs. Future glucose predictions are calculated as191

yN N (k + 1) = yN N (k) + RNN(yN N (k), Rα (k + 1), Ri(k))

(9)

where yN N (k + 1) and yN N (k) are the sc glucose level predic-192

tions at instant k+1 and k, respectively. The RNN is trained us-193

ing the Real-Time Recurrent Learning (RTRL) algorithm [29].194

RTRL is a sequential, error-correction learning-based algorithm,195

which allows the RNN to update the weights while operating.196

The teacher-force version of the RTRL [29] has been applied,197

according to which the RNN replaces the previous glucose level198

prediction with the corresponding glucose level value, when199

available, in order to produce future predictions. During the op-200

eration of the IIAS, the RNN’s weights are updated based on201

the RTRL algorithm, whenever a new glucose measurement is202

applied. This effectively enables the adaptation of the glucose–203

insulin metabolism model to the special characteristics of the204

patient and to the diurnal variation of the glucose metabolism.205

Thus, the on-line training of the RNN ensures its stable perfor-206

mance for the entire input space.207

B. NMPC 208

As already mentioned, the NMPC uses a model that provides 209

estimates of the future outputs of the system to be controlled. The 210

NMPC is based on an optimizer, which computes at each sam- 211

ple time future control movements based on the minimization 212

of an appropriate cost function. Particularly, at each instant: 1) 213

future outputs yN N (k + i), i = N1 , ..., Np are generated by the 214

prediction model; 2) a cost function of the future control move- 215

ments is minimized providing a set of future control signals; 216

and 3) only the first element of the suggested control sequence 217

is applied to the system. The procedure is repeated at the next 218

instant. 219

The definition of the cost function is critical to controller’s 220

performance. The cost function used in this paper [see (10)], 221

consists of the standard MPC formulated cost function [30] and 222

one penalty term [31]. Particularly, in (10), first and second 223

terms represent the deviations of the glucose predictions from 224

the reference glucose level r, and the changes in future insulin 225

infusion rates, respectively, while the third term consists of two 226

penalty terms, which add soft constraints (LG ≤ yN N (k + i) ≤ 227

HG) to the optimization problem. The penalty terms increase 228

the cost function whenever the glucose predictions are outside 229

the acceptable range determined by the lowest (LG) and the 230

highest (HG) desired glucose level. In (10), Np is the prediction 231

horizon, N1 is the minimum prediction horizon, Nc is the control 232

horizon, and Γe and Γu are the prediction and control weighting 233

coefficients, respectively, while ΓL ,ΓH are penalty coefficients: 234

J = Γe

Np∑

i=N1

(yN N (k + i) − r)2 + Γu

Nc∑

j=0

Δu2(k + j)

+
Np∑

i=N1

[
ΓL [min(0, yN N (k + i) − LG)]2

+ ΓH [min(0,HG − yN N (k + i))]2
]

(10)

where 235

Δu(k) = u(k) u(k 1). (11)

The cost function is minimized, subject to the constraints 236

umin ≤ u(k) ≤ umax . ((12))

Regarding the values of the aforementioned parameters, Np is 237

usually chosen to encompass all the response, which is signifi- 238

cantly affected by the current control signal (sc insulin infusion). 239

If there is no evidence about the dead time, N1 = 1. The choice 240

of Nc is usually based on a compromise between good glucose 241

control performance and minimization of on-line computation. 242

Furthermore, the selection of r, LG, HG, ΓL , and ΓH is based 243

on a compromise between ability to handle high glucose lev- 244

els (caused by meal disturbances) and simultaneously prevent 245

high values of insulin infusion rates, which would cause severe 246

hypoglycaemic episodes. 247

In this paper, an automatic tuning algorithm, similar to the 248

one proposed in [20], is adopted for the on-line update of the 249

parameters Np andΓu . These parameters play an important role 250
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Fig. 2. Fuzzy sets for (a) bound violation and (b) bound violation rate.

to the controller’s performance and stability. Although the time251

to the peak action of sc insulin is considered to be 50 min, the252

prediction horizon of 50 min is not always optimal, especially in253

the presence of meal disturbances where glucose levels change254

rapidly. This is of particular importance, since the sc glucose255

measurements are subject to inaccuracies and there are lags256

between the sc and the BG levels. The prediction weighting257

coefficient Γe is chosen to be constant in order to avoid simul-258

taneous increase of Np and Γe , which would increase on-line259

computation for the minimization of the cost function (10).260

C. On-Line Tuning Algorithm of the NMPC Control Parameters261

In order for the IIAS to rapidly reject meal disturbances262

and maintain postprandial glucose levels within the acceptable263

range, an automatic tuning algorithm has been developed. The264

tuning technique adapts on-line the NMPC control parameters265

in order to steer the closed-loop glucose response to satisfy pre-266

set time-domain specifications, which are provided by the user267

in the form of vectors of upper and lower bounds yu and yl ,268

respectively. The new values of the NMPC control parameters269

are determined by fuzzy logic rules.270

1) Overview of the Adaptation Algorithm: The proposed271

tuning method consists of two phases: the observation phase272

and the triggered phase. In the former, the future glucose profile273

is predicted, through the minimization of (10), by applying fixed274

values to the prediction horizon Pw and the control weighting275

coefficient Γuw . The obtained glucose profile is checked against276

the performance envelope. In case a bound violation occurs, the277

algorithm enters the triggered phase, otherwise the calculated278

insulin infusion rate is applied to the system and the whole pro-279

cedure is repeated at the next instant. Particularly, at each instant280

k, the steps of the tuning algorithm are as follows.281

Step 1. Produce future glucose profile using fixed NMPC282

control parameters through the minimization of the cost function283

(10). The calculated insulin infusion rate at this step is not284

applied to the patient.285

Step 2. Check whether the predicted glucose profile, exceeds286

the limits of the performance envelope, i.e., yu and yl . If the287

limits are not exceeded, go to step 8.288

Step 3. Determine the corresponding glucose prediction and289

the instant at which maximum bound violation occurs. Let this290

be at instant k + m.291

Step 4. Calculate the scaled values of the bound violation292

(A,B), and the glucose change (C) at instant k + m.293

Step 5. Determine the degree of membership of A, B, and C294

with respect to membership functions presented in Fig. 2.295

TABLE I
BASE RULES OF THE TUNING ALGORITHM

Step 6. Calculate the correction factors [wk (Np), wk (Γu )]. 296

Step 7. Set the new parameters values as 297

Np,k = Np,previous + wk (Np) and Γu,k = Γu,previous 298

(1 + wk (Γu )), where Np,previous and Γu,previous are calculated 299

during the previous triggered phase of the tuning algorithm. 300

Step 8. Compute and apply the sc insulin infusion rate. Pro- 301

ceed to the next instant k + 1 and go to step 1. 302

The initial values of Np and Γu are set to Pw and Γuw , re- 303

spectively. In the presence of a meal disturbance, the control 304

parameters are appropriately updated in order to reduce the 305

overshoot and speed up the closed-loop response. To this end, 306

Np and Γu reset to their initial values whenever a new meal 307

disturbance is applied. 308

2) Fuzzification: At the fuzzification stage, the scaled val- 309

ues of the bound violation and the glucose change at the instant 310

where maximum violation occurs are fuzzified using the fuzzy 311

sets shown in Fig. 2. Particularly, if upper-bound violation oc- 312

curs, the scaled valueA is specified as 313

A =
yN N (k + m) − yu

yu
. (13)

If lower bound is violated, the scaled valueB is specified as 314

B =
yl − yN N (k + m)

yl
(14)

where m(N1 ≤ m ≤ Np ) is the instant at which maximum vio- 315

lation occurs. The definition of AandBguarantees positive value 316

if the corresponding bound is violated and negative otherwise. 317

The fuzzy set used for the fuzzification of the bound violation is 318

shown in Fig. 2(a), and consists of two membership functions, 319

namely: (G)ood denoted as G and (H)igh denoted as H. There- 320

fore, if the upper bound is violated, then A belongs to H and B 321

to G and vice versa. 322

The scaled value of glucose change at the instant where the 323

maximum violation occurs is defined as follows: 324

C =
yN N (k + m) − yN N (k + m − 1)

yN N (k + m)
. (15)

The scaled value of glucose change is transformed into a member 325

of fuzzy sets, using the fuzzy set shown in Fig. 2(b). This fuzzy 326

set consists of three membership functions: (P)ositive, (Z)ero, 327

and (N)egative. 328

3) Inference Engine: The base rules governing the tuning 329

guidelines are given in Table I. In this Table, μΓ and μN p 330
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Fig. 3. Fuzzy set for the output of MPC parameters.

represent the rule output for Np and Γu , respectively, while LN331

(Large Negative), SN (Small Negative), ZE (Zero), SP (Small332

Positive), and LP (Large Positive), are the output fuzzy sets333

represented by sigmoid and triangular membership functions334

as shown in Fig. 3. These functions are denoted as μ5 , μ4 ,335

μ3 , μ2 , and μ1 , respectively. The base rules formulate the gen-336

eral understanding of the effect of parameters Np and Γu in337

closed-loop response. In general, according to simulation ex-338

perience [20], increasing Np at a fixed nonzero value of Γu339

results in a faster response with less overshoot. Furthermore,340

reduction of Γu speeds up the response. We chose to increase341

Np for both upper- and lower-bound violation, in order to pre-342

vent from large overshoots in glucose response—which may343

result in hyperglycaemic episodes—while speeding up the glu-344

cose response to avoid hypoglycemic episodes. Morever, since345

reduction of Γu speeds up the response, parallel reduction of Np346

should be avoided, because this would lead to more aggressive347

control performance and might result to instability.348

4) Defuzzification: At the defuzzification stage, the outputs349

of the base rules are properly processed in order to produce crisp350

values, which are used as factors to update the NMPC control pa-351

rameters. The base rules of Table I, which are in linguistic form,352

are expressed in mathematical form using a common fuzzy rule353

operation [20]. Particularly, the AND command is transformed354

into minimum operation. For example, the results of Rule 1 in355

Table I can be written as follows:356

μ4,1(Γu ) = min(μH (A), μG (B)) (16)

357

μ1,1(Np) = min(μH (A), μG (B)) (17)

where μH (A) is the degree of membership of A in the fuzzy set358

H and μj,i(•) denotes the membership degree of (•) to the jth359

output membership function with respect to rule i. Therefore,360

the center of area principle [32] is applied in order to produce the361

correction factor Γu . For the prediction horizon, the correction362

factor is calculated as363

wk (Np) =
nR∑

j=1

nf∑

i=1

μj,i(Np)δi (18)

where nR and nf represent the number of rules and the number364

of membership functions, respectively, while δi is the value for365

the center location of the activated output membership function.366

Since Np is an integer, the correction factor is rounded to the367

nearest integer.368

III. RESULTS AND DISCUSSION 369

In order to evaluate the performance and the robustness of the 370

designed IIAS, the UVa T1DM simulator [21] has been used. 371

The UVa T1DM simulator incorporates a modified version of 372

the meal model developed by Man et al. [22]–[24] to adapt for 373

T1DM subjects and insulin exogenous infusion [22]. In addition 374

to the patient model, the simulator incorporates a sensor-related 375

errors model to account for sensor noise and measurements’ 376

errors and a model for the sc insulin pump. The UVa T1DM 377

simulator simulates a sufficiently large cohort of in silico sub- 378

jects in order to cover the wide variability observed among 379

diabetic population and serves as an in silico environment for 380

preclinical testing trial. In this paper, the proposed IIAS has been 381

tested with the ten adults’ population available in the training 382

version of the UVa simulator. The ten patients are characterized 383

by a wide diversity in their parameters (e.g., body weight and 384

insulin sensitivity) and, therefore, can serve as small population 385

to evaluate the controller [8], [9]. 386

The evaluation of the IIAS is performed in two stages: 1) 387

evaluation of the predictive performance of the personalized 388

glucose–insulin metabolism model; and 2) evaluation of the 389

controller considering several simulation scenarios. 390

A. Evaluation of the Personalized Glucose–Insulin Metabolism 391

Model 392

Open-loop experiments were performed in order to generate 393

the data for the training and testing of the personalized glucose– 394

insulin metabolism models. Particularly, each in silico subject 395

was fed for one week, with 1) basal rate, which keeps the spe- 396

cific patient at its fasting state (provided by the UVa T1DM 397

simulator), 2) insulin bolus whenever carbohydrates were in- 398

gested (provided by the UVa T1DM simulator), and 3) various 399

meal profiles corresponding to breakfast, lunch, dinner, and two 400

snacks. In order to account for patient real life, meal times 401

and amounts values were randomly chosen within the follow- 402

ing ranges: {[6–8 A.M.], [12–2 P.M.], [4–4.30 P.M.], [6–8 P.M.], 403

[10–11 P.M.]} and {[40–60 g], [60–80 g], [0–10 g], [70–90 g], 404

and [0–10 g]}, respectively. Data corresponding to the first four 405

days were used for training the model, while the remaining three 406

days were used for its testing. The predictive performance of the 407

glucose–insulin metabolism model was evaluated considering a 408

prediction horizon equal to 30 min with a 5-min resolution. 409

Root-mean-squared error (RMSE) and correlation coefficient 410

(CC) corresponding to the testing dataset were calculated to 411

evaluate the performance of the glucose–insulin metabolism 412

model in terms of matching the predicted glucose with the orig- 413

inal ones. Furthermore, in order to evaluate the clinical accu- 414

racy of the glucose predictions and their effects on decisions 415

to avoid hypo- and hyperglycemic events, the continuous error 416

grid analysis [33] has been used. The estimates of point and 417

rate precision are combined in a single accuracy assessment for 418

each of the BG ranges: hypoglycemia, euglycemia, and hyper- 419

glycemia. To this end, the point error grid analysis (P-EGA) 420

and the rate error grid analysis (R-EGA) are combined in the 421

three clinically relevant regions of hypoglycemia, euglycemia, 422

and hyperglycemia. Clinically accurate glucose predictions are 423
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TABLE II
ERROR MATRIX COMBINING R-EGA AND P-EGA

considered to be within the zones A and B on both P-EGA and424

R-EGA. Clinically benign errors correspond to acceptable point425

accuracy (i.e., A or B P-EGA zones) and significant errors in426

rate accuracy (i.e., C, D, or E R-EGA zones), which are unlikely427

to lead to negative clinical consequences. Clinically significant428

errors are those that could lead to a negative clinical action and429

therapeutic consequences.430

From both the RMSE (mean± standard deviation (SD): 15.67431

± 6.03) and CC (mean ± SD: 0.78 ± 0.16), it is obvious that432

the predicted glucose profile follows the original one. Moreover,433

the error matrix combining P-EGA and R-EGA, presented in434

Table II, shows that erroneous errors are observed in the range435

of hypoglycemia.436

Although the proposed glucose–insulin metabolism model437

uses CMs for the simulation of sc insulin kinetics and glucose438

absorption from the gut, similarly with the UVa T1DM sim-439

ulator, it adopts a completely different approach based on the440

RNN to map plasma insulin to sc glucose. The latter consists the441

most essential module of the model. The previously presented442

prediction accuracy assessment refers to primarily testing the443

RNN and its effective combination with the CMs. The predic-444

tive performance of the glucose–insulin metabolism model has445

been assessed in a previous study [25], and the superiority of the446

used RNN over a feedforward neural network (FNN) has been447

demonstrated [26], using real patient data.448

B. IIAS Tuning449

The IIAS provides the estimated insulin infusion rates every450

5 min. Regarding the performance envelope, lower yl and up-451

per yu bounds were chosen to be constant and equal to 90 and452

140 mg/dl, respectively, corresponding to a rather narrow target453

range. Particularly, 90 mg/dl corresponds to the minimum BG454

level of optimal glucose control [21], while 140 mg/dl is the455

maximum 2-h postprandial BG level [8]. Moreover, LG and456

HG were set to 70 and 180 mg/dl, respectively, since, in this457

paper, BG concentrations between 70 and 180 mg/dl are con-458

sidered to be within the target range for T1DM. The values of459

the weighting coefficients ΓL ,ΓH , and Γewere chosen to be 10,460

TABLE III
IIAS TUNING

Fig. 4. Upper panel: Adult 5, sc insulin infusion rates (dashed-dotted line), BG
data (solid line), limits of performance envelop [90–140 mg/dl] (dashed-line).
Middle panel: Prediction horizon. Low panel: control weighting coefficient.

1, and 100, respectively. The rather largeΓe value causes quite 461

high insulin infusion rates, which are necessary to prevent hy- 462

perglycemic episodes after meal ingestion. Furthermore, ΓL is 463

large enough to appropriately penalize for glucose predictions 464

lower than 70 mg/dl and thus preventing from extremely high in- 465

sulin infusion rates that would lead to hypoglycemic episodes. 466

Parameter Pw is set to 10 corresponding to 50 min in order 467

for the prediction horizon to account for sc insulin action. The 468

control weighting coefficient Γuw is set to 10, which is high 469

enough to ensure stability of the glucose controller. Nc is set to 470

1 (its minimum possible value), corresponding to 5 min, in or- 471

der to minimize on-line computation and N1 = 1 (see Section 472

II-B). Moreover, umin = 0U/h while umax = 70U/h in accor- 473

dance with the maximum allowable values for patients’ safety 474

and pump’s hardware limitations [8]. The reference glucose 475

level r is set to 110 mg/dl, which corresponds to the minimum 476

value of the risk index. The numerical values of the parameters 477

are summarized in Table III. 478

In order to clearly present the evolution of the prediction hori- 479

zon Np along with the control weighting coefficient Γu over 480

time, the following simulation scenario has been studied: Adult 481

5 was fed with 50 g at time 100 min. In Fig. 4, BG levels, sc 482

insulin infusion rates along with prediction horizon, and control 483

weighting coefficient are shown. As can be observed, the tuning 484

algorithm does not always enter the triggered phase. It enters the 485

triggered phase whenever there is danger for BG levels to ex- 486

ceed the limits of the performance envelop (90–140 mg/dl), and 487
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TABLE IV
DAILY MEAL PROFILES

Fig. 5. Control results for Adult 3 under IIAS (upper panel) and fixed param-
eters NMPC (low panel). Estimated insulin infusion rates (dashed-dotted line),
BG data (solid line), glucose target range [70–180 mg/dl].

appropriately updates the NMPC parameters, managing to reset488

and maintain glucose levels within the performance envelop.489

C. Evaluation of the Controller—Simulation Scenarios490

To evaluate IIAS’s performance under realistic conditions,491

several scenarios have been simulated. Particularly, the IIAS has492

been tested for its ability to handle meal disturbances, fasting493

conditions, interpatient variability, robustness against erroneous494

estimation of carbohydrates’ amount in ingested meals, and495

intraday variation in physiological parameters. Furthermore, in496

order to study the effectiveness of the tuning algorithm, two497

simulation scenarios have been studied: with (IIAS) and without498

(fixed parameter NMPC) the tuning algorithm.499

1) Evaluation of the IIAS Against Fixed Parameter NMPC:500

Both controllers have been tested with the ten adults’ population.501

It should be noted that in the case of fixed parameter NMPC, Np502

and Γe are fixed over time and set both to 10. The simulation503

scenarios consider a two-day testing period with varying meal504

timings and amounts (see Table IV).505

The superiority of the IIAS over fixed parameter NMPC is506

shown in Figs. 5 and 6. Fig. 5 presents the estimated sc insulin507

infusion rates along with the corresponding BG levels, when508

Adult 3 is fed with the two-day meal protocol and regulated509

using the IIAS (upper panel) and the fixed parameter NMPC510

(low panel), respectively. It should be noted that the controllers511

activate either the basal or the bolus action provided from the512

insulin pumps and hold the estimated insulin dose constant be-513

tween sampling instants (per 5 min). As shown in Fig. 5, the514

application of fixed parameter NMPC caused severe hypogly-515

caemic episodes, which are defined as BG levels lower than516

Fig. 6. CVGA for the ten adults of the Uva T1DM simulator. left: IIAS (30%
in zone A and 70% in zone B). Right: NMPC (10% in zone A, 55% in zone B,
25% in zone C, and 10% in zone D).

Fig. 7. BG trace for the ten adults of the UVa T1DM simulator when the
IIAS is applied. Mean response (solid curve), SD (dashed-dotted curve), and
min/max envelop (dashed curve).

60 mg/dl [9]. On the other hand, the IIAS managed to main- 517

tain BG levels within the target range (70 --180 mg/dl), while 518

achieving less fluctuations over time. 519

The control variability grid analysis (CVGA) [34], shown in 520

Fig. 6, serves as a tool to evaluate the controllers with the en- 521

tire population. Each point in the CVGA represents the lower 522

and the upper bound of 95% confidence interval of BG data for 523

one patient during one day. Zones A and B are considered to 524

represent good glucose control. CVGA demonstrates that IIAS 525

provides superior performance over the fixed parameter NMPC, 526

managing to keep all the patients inside the zones A and B. 527

Furthermore, the min/max envelop presented in Fig. 7 indicates 528

that the BG levels for the hard-to-control patients are within 529

the acceptable range 70–236 mg/dl, managing to avoid hypo- 530

glycemic episodes and severe hyperglycemic episodes (above 531

280 mg/dl). 532

Moreover, numerical metrics of average glycemia, percentage 533

within the target range (70–180 mg/dl), risk associated with ex- 534

treme glucose deviations [35] (low blood glucose index (LBGI), 535

high blood glucose index (HBGI), and total risk index), are used 536

to provide more details about the controller performance. In Ta- 537

ble V, the obtained numerical results, when the IIAS is applied 538

on all 10 patients, are presented. It can be seen that most of the 539

time, BG levels are kept within the target range, while the risk 540

indices (LBGI, HBGI, and total risk index) have low values, 541

showing that tight glycemic control is achieved. 542

2) Robustness to Meal Estimation Errors: Since the pro- 543

posed IIAS is informed about the carbohydrates amount of the 544

upcoming meal, its ability to handle meal estimation errors is 545

of utmost importance. To this end, the IIAS has been tested 546
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TABLE V
CONTROL PERFORMANCE OF THE IIAS AND THE OPEN-LOOP PREADJUSTED TREATMENT

against overestimation errors (OEE) and underestimation errors547

(UEE) up to 40%. Table V demonstrates the mean values and the548

SDs of the numerical metrics over the results obtained for the549

ten adults. Although certain hypoglycemic and hyperglycemic550

episodes occurred, none of them was severe. It is noteworthy551

that the IIAS is able to handle meal estimation errors and reg-552

ulate properly insulin infusion rate, in order to keep glucose553

within the target range most of the time.554

3) Robustness Against Intraday Variation in Physiological555

Parameters: One of the critical challenges for a glucose con-556

trol algorithm is robustness against intraday variation in phys-557

iological parameters. In order to represent diurnal metabolic558

variations, time variation of the in silico patient-specific phys-559

iological parameters was considered, as drawn from a normal560

distribution with SD of 10%. This distribution was chosen to561

capture the expected variation in insulin sensitivity [36]. In Ta-562

ble V, the obtained numerical results over the ten adults are563

presented. The IIAS achieved good glucose control, managing564

to maintain BG levels within the acceptable range for 95.17%565

of the total time, avoiding severe hypoglycemic and hyper-566

glycemic episodes. Furthermore, the risk indices are low, prov-567

ing the IIAS’ ability to handle intraday variation in physiological568

parameters.569

D. Comparison of the IIAS With Other Glucose Controllers570

In order to prove the efficacy of the IIAS, its performance has571

been compared with that of other open-loop and closed-loop572

glucose controllers.573

1) Open-Loop Preadjusted Treatment: The open-loop574

preadjusted treatment is supported by the UVa T1DM simulator.575

The ten in silico adults of the simulator followed a protocol of576

meals presented in Table IV. A matching insulin bolus and a577

basal rate were provided by the UVa T1DM simulator for each578

in silico adult and the results obtained by applying the open-579

loop preadjusted treatment are presented in Table V. It can be580

observed that the IIAS achieves better glucose control.581

2) Adaptive Basal Therapy: Since the basal rate provided582

by the UVa T1DM simulator is nonoptimal, the IIAS has been583

compared with adaptive basal therapy [37]. The latter suggests584

adaptation of the basal rate as a gain multiplier based on the cur-585

TABLE VI
COMPARISON OF THE IIAS WITH THE ADAPTIVE BASAL THERAPY [37]

rent CGM glucose value and its rate of change. Identical meals 586

used in [37] provided input to the ten in silico adults, which were 587

regulated by the IIAS. In particular, the ten in silico adults fol- 588

lowed a one-day meal scenario of 40, 75, 60 g of carbohydrates 589

at 7:00 A.M., 12:00 A.M., and 6:00 P.M., respectively. Results ob- 590

tained from the application of the IIAS and the adaptive basal 591

therapy are presented in Table VI in terms of hyperglycemia 592

and severe hypoglycemia (<60 mg/dl) along with risk indices. 593

It can be observed that the IIAS provides better glucose control 594

performance. 595

3) Artificial Pancreatic β-Cell Based on Zone-MPC: In or- 596

der to justify the use of the proposed nonlinear approach to 597

improve glucose control, the IIAS has been compared with an ar- 598

tificial pancreatic β-cell based on zone-MPC that uses mapped- 599

input data and is adjusted automatically by linear difference 600

personalized models [38]. The ten in silico adults followed the 601

three meal scenario used in [38]—consisting of 75, 75, and 50 g 602

of carbohydrates at 7 A.M., 1 P.M., and 8 P.M., respectively—and 603

were regulated by the IIAS. The obtained results are presented 604

in Table VII. It should be noted that no severe hypoglycemic 605

(<60 mg/dl) and hyperglycemic episodes (>280 mg/dl) have 606

been observed during the operation of the IIAS- and zone-MPC- 607

based glucose controllers. As discussed in [38], a single severe 608

hypoglycemic event occurred during the operation of the MPC 609

with set point at 110 mg/dl. When the in silico adults were reg- 610

ulated by the IIAS, the mean glucose value was closer to the 611

desired glucose level, while the average SD of the mean glucose 612

value was lower, indicating lower variability in glucose con- 613

trol performance among the in silico adults. Furthermore, lower 614
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TABLE VII
COMPARISON OF THE IIAS WITH THE ARTIFICIAL PANCREATIC B-CELL [38]

percentage of hyperglycemia was observed during the operation615

of the IIAS. The obtained improved glucose control performance616

is related to higher on-line computation.617

Summarizing, the use of a data-driven model for the sim-618

ulation of the blood glucose–insulin kinetics (real-time self-619

adaptive NN) permits personalization of the system and effi-620

cient handling of a changing environment. It is important to621

note that the incorporation of the RNN makes the model capa-622

ble of simulating glucose–insulin kinetics taking into account623

patient specific information related to ingested carbohydrates,624

sc insulin infusion rate, and glucose records from CGMS that625

are usually available in clinical practice. The metabolic behav-626

ior of a specific patient is captured through the real-time update627

of the RNN’s weights. Whenever a new glucose measurement628

is applied to the model, the RNN’s weights are appropriately629

adapted in order to adjust to the new metabolic behavior. Ac-630

cording to above, the RNN consists the most essential module of631

the personalized glucose–insulin metabolism model. Thus, the632

similarities of the latter with the UVa T1DM simulator regard-633

ing the use of CMs for the sc insulin kinetics and the glucose634

absorption from the gut do not limit the reliability of the pre-635

sented assessment of the IIAS performance. This is of particular636

importance since the IIAS has demonstrated robustness against637

intraday variation in physiological parameters. Moreover, the638

tuning algorithm for the real-time update of the NMPC control639

parameters greatly improved controller’s performance, demon-640

strating its importance toward the tuning of glucose controllers641

based on MPC.642

Clinical evaluation of the IIAS on real T1DM patients is in643

progress. Future research activities are focused on the optimiza-644

tion of the proposed IIAS and its complete integration into a645

telecommunication platform for the efficient management and646

treatment of patients with T1DM [39].647

IV. CONCLUSION648

A novel IIAS based on NMPC has been proposed in order to649

estimate optimal insulin infusion rates. The proposed approach650

introduces 1) a personalized model based on the combined use651

of CMs and an RNN for the simulation of glucose–insulin652

metabolism and 2) an automatic algorithm for the on-line adap-653

tation of NMPC parameters. The performance of the IIAS has654

been in silico evaluated using the ten adults’ population, avail-655

able in the training version of the UVa T1DM simulator. The656

obtained results demonstrate that the proposed IIAS is robust657

with respect to its ability to handle various conditions char- 658

acterized by sensor errors, lags, meal disturbances, large meal 659

estimation errors, interpatient variability, and intraday variation 660

in physiological parameters. 661
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