
Contents lists available at ScienceDirect

Computers in Biology and Medicine

journal homepage: www.elsevier.com/locate/compbiomed

Biologically-inspired image processing in computational retina models☆

Nikos Melanitis∗,1, Konstantina S. Nikita1

Biomedical Simulations and Imaging Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece

A R T I C L E I N F O

Keywords:
RGC functions
Image processing
Feature extraction
Retina model
Retinal prosthesis

A B S T R A C T

Retinal Prosthesis (RP) is an approach to restore vision, using an implanted device to electrically stimulate the
retina. A fundamental problem in RP is to translate the visual scene to retina neural spike patterns, mimicking
the computations normally done by retina neural circuits. Towards the perspective of improved RP interven-
tions, we propose a Computer Vision (CV) image preprocessing method based on Retinal Ganglion Cells func-
tions and then use the method to reproduce retina output with a standard Generalized Integrate & Fire (GIF)
neuron model. “Virtual Retina” simulation software is used to provide the stimulus-retina response data to train
and test our model. We use a sequence of natural images as model input and show that models using the
proposed CV image preprocessing outperform models using raw image intensity (interspike-interval distance
0.17 vs 0.27). This result is aligned with our hypothesis that raw image intensity is an improper image re-
presentation for Retinal Ganglion Cells response prediction.

1. Introduction

Retinal Prosthesis (RP) is an approach to restore vision in blind
people affected by degenerative retina diseases, where, despite the
damage to retina cells, at least some Retinal Ganglion Cells (RGCs)
remain functional. RP could potentially benefit a great number of in-
dividuals with vision problems, as in the case of Retinitis Pigmentosa
which has a prevalence of approximately 1/4000 [1]. Essential steps to
transfer RP technology to standard medical care have been taken
through clinical trials [2]. Implantees with Retinitis Pigmentosa have
been able to detect luminous sources and direction of motion while
experiencing an overall improvement in their orientation and mobility
[3].

RP devices consist of [4]: (i) a camera, to capture images of the
scene, (ii) a processing unit, to process the camera images and compute
the proper retina stimulation pattern, (iii) a telemetry system to transfer
information and power between the external device and the implant,
and (iv) an implanted electrode array to stimulate the retina. ARGUS II
and Alpha IMS RP devices have received approval for medical use [4,5].
Photovoltaic RPs that do not require a camera to capture the scene are
studied in ongoing clinical trials [6]. Currently, implants process the
images in a simple intensity-based manner, translating proportionally
image intensity to stimulation intensity [7]. Progress in vision re-
storation by RP systems depends on accurate retina's input-to-output

mapping.
Retina performs complex processing of visual information, as

brightness computation, motion and edge detection [8,9], that has been
explored in neurobiological studies [8–14]. Around twenty RGC types
transmit visual information to the brain [10,13] and typically, each
RGC type is associated with a distinct transformation of the visual
scene. However, recent studies contrast this assumption and present
examples of specific RGCs with different response across different sti-
mulation conditions [15]. Although nonlinear RGC responses have been
described early in the study of retina function [12,16], they initially
received less attention, as linear RGCs [17] were initially assumed to
have the central role in vision [13].

Many functional models of the retina are comprised of linear filters
followed by a static non-linearity (linear-nonlinear or LN models) and a
spike generation mechanism that can be either probabilistic or de-
terministic [18–20]. In models that mimic information processing in the
retina, model parameters may be deduced from retina physical para-
meters [21]. A general approach that simplifies model development is
to rely on data-fitting methods to estimate model parameters
[18,20,22]. Initial fitting methods constrained training stimuli to be
drawn from a spherically symmetrical distribution [23], while more
recent methods [24] can be used with arbitrary stimuli, as natural
image sequences [20,25–27]. Additionally, recent studies have revealed
the inefficiency of linear RGC models developed with non naturalistic
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stimuli to reliably reproduce response to natural stimuli [15,26,28].
Different approaches have been used to test and evaluate models of

visual processing by the retina. The most direct approach is to re-
produce retina response [18,29]. Artificial data, i. e data generated by a
model, serve the initial validation of new research approaches
[18,29,30]. The improvement of artificial datasets has further moti-
vated the development of accurate retina models [31]. An alternative
validation option is to reproduce retina properties, as contour dis-
crimination, level of cellular activity and sensitivity to light changes
[32]. Additionally, evaluation has been based on establishing desired
method properties, such as showing real-time feasibility of image pro-
cessing methods without, however, testing the modeling assumptions
[33].

Image processing in RP has been used to enhance image features
and improve the achieved visual acuity [34,35]. Computer Vision (CV)
methods are employed to interpret the scene and then provide cues, of
visual or other form, to the user. Examples include strengthening the
image edges, detecting important regions [34], contrast and brightness
enhancement, face and object recognition [35]. However, incorporating
image processing methods in models used to generate the retina spiking
pattern, has not been adequately explored. A recent approach proposed
to preprocess the images using the Direct Cosine Transform, which ef-
ficiently encodes and compresses the visual information [36].

In this paper, we introduce RGC models that integrate the current
understanding of RGC functions in a preprocessing feature extraction
step. We address issues of existing computational model concerning:
readily model refinement and validation against experimental data of
any RGC type, incorporation of nonlinear RGC functions, straightfor-
ward model enhancement and upgrade through fusion with more fea-
tures or advanced spike generation mechanisms, and the computational
cost that can be even further reduced through hardware implementa-
tion of CV algorithms used [37,38]. We examine RGC response char-
acteristics by cell type to extract image features that correspond
roughly to RGC functions. These novel features are subsequently fed to
spiking neuron models trained with a maximum likelihood algorithm.
Thus, the proposed approach can be flexibly applied to model different
types of biological RGCs. The ability of our model to reproduce retina
response to naturally occurring visual stimuli is enhanced by using
natural images in training. We examine properties shared between re-
sponse of nonlinear RGCs and the extracted features. We assess the
performance of our image preprocessing pipeline by comparing the
obtained results with those of RGC models fed with unprocessed (raw)
images. To examine performance variation across RGC types, we model
linear and nonlinear RGCs. The effect of image content and resolution
on performance is examined through appropriately designed studies.

2. RGCs function and feature extraction

2.1. Retinal organization

RGCs spiking response encodes the visual information that is
transmitted through the optic nerve to the brain. RGCs form parallel
information streams, each encoding a distinct representation of the
visual scene [8–11,13,14]. Each information stream is encoded by a
different RGC type, with distinctive morphology, response properties
and central projections [10]. Studies on animals (mouse, rabbit, cat,
monkey) have shown that on average around twenty different RGC
types can be identified on mammalian retinae [13]. When we examine
the Receptive Fields (RFs) of any particular RGC type collectively, we
observe that the RFs form a mosaic that covers the entire visual field,
with little overlap between individual RFs. Local retina circuits transmit
the signal generated by photoreceptors through Bipolar Cells, Hor-
izontal cells and Amacrine cells to RGCs. Each RGC type has been as-
sociated with a unique retina circuit [9].

2.2. RGC types, functions and corresponding image features

The linear RGCs display a center-surround antagonism and thus
“ON” type cells are excited while “OFF” inhibited when illumination at
the center is increased relative to the surrounding [17]. “ON-OFF” cells
are excited by “ON” and “OFF” type stimuli [39]. Cat X cells are re-
presentative linear RGCs [9].

Local edge detectors respond to edges that fall within the center of
their RF. They respond to changes in stimulation and not to static sti-
muli [14]. These cells detect a contrasting border confined to a small
region of the visual field [40].

Motion sensitive cells are excited when specific motion patterns in
the visual scene fall within their RF. Different types of motion sensitive
cells have been identified in the retina which may display center-sur-
round antagonism or selectivity in motion direction [11,40].

The simplest motion sensitive cells are general motion detectors and
respond to all moving textures regardless of other parameters [11].
Representative cells in this class are cat Y cells [13], mouse a-RGCs and
monkey Parasol cells [14].

Object motion sensitive (OMS) cells respond to differential motion.
They have a center-surround structure and are excited by center motion
but suppressed when a motion occurs simultaneously in both center and
surround regions. These cells do not have any preference regarding the
motion direction. OMS cells can detect moving objects, but will not fire
spikes when the visual scene drifts on the retina because of ocular
movements [11]. Mouse W3 cell is a representative OMS cell [13].

Direction selective (DS) cells respond selectively to motion along
their preferred axis (up, down, right, left) and exhibit center-surround
antagonism, similarly to OMS cells [13].

Uniformity detectors (UD), also known as suppressed-by-contrast
cells, maintain a constant firing rate which is suppressed by all kinds of
non-uniform stimulus [40].

In order to model various RGC functions [8,9,11,13,14] we apply
CV feature extraction methods in each image region IR with size mat-
ched to the cell's RF.

2.2.1. Linear RGCs
The RF weighting function of linear RGCs has been well approxi-

mated by the Difference of two concentric Gaussians (DoG) [17]. To
extract a DoG feature, we convolve (∗) the image I with two concentric
Gaussian filters, a center Gc and a surround Gs with spatial scales
(standard deviations σc and σs, respectively) corresponding to the RF
size of the cell:

= − ∗ = ∗ − ∗G G I G I G IDoG ( )c s c s (1)

We sample the value of the DoG filtered image at the cell's center
position. We normalize DoG response in the range [0,1] by noting that
DoG is positive in a region inside a properly defined rc, < >DoG r r( ) 0c ,
and is negative outside rc, > <DoG r r( ) 0c . We can find rc by con-
ditioning =DoG r( ) 0:
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Since image intensity is in [0,1], we get the maximum DoG response
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Finally, the integral of a DoG filter in 2 is 0 and so the minimum
DoG response is = −m M .

We also extract binary (true or false) features which are conceived
as rough estimations of whether a RGC will be activated or not, as
follows:

• >DoG T :ON
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• < −DoG T1 :OFF
• We use the logical OR (|) of the two previous binary values:

ON OFF( | )

The threshold T is set at =T 0.51 so that the condition for either ON
or OFF case is easily satisfied by any input pattern that matches the RF
weighting function.

2.2.2. Nonlinear RGCs: local edge detectors
We extract image edges using the Canny edge detector response

[41]:

∇ ∗ =G I( ) 02 (4)

Similarly to the linear RGCs, we introduce, apart from the Canny
response, a binary feature stream that is set to true whenever an edge
falls within the image area that defines the cell's RF (IR).

2.2.3. Nonlinear RGCs: motion sensitive cells
In order to add motion sensitivity to the feature based representa-

tion, we use the optical flow (OF) to produce a dense velocity field from
an image sequence [42]. We describe the OF field using the horizontal
(v) and vertical (u) components of the flow vectors. The OF im-
plementation relies on the brightness constancy constraint (BCC),
which states that a moving point has constant brightness across two
frames of the image sequence,

= + + =B p I vI uI( ) 0t x y (5)

where p denotes a point and the subscripts t x y, , denote temporal and
spatial derivatives at p. Eq. (5) is solved with respect to the unknown
v u, flow components following the standard Lukas-Kanade (LK)
method [43]. To avoid numerical instability issues, Tikhonov regular-
ization is used [44].

Research in biological vision has attempted to explain motion de-
tection in sensory systems comprised by photoreceptors through neural
circuits with time-delayed signals that are compared by a special
neuron (Reichardt detectors [45]). Biological grounding for such cir-
cuits have been found in starburst amacrine cells-bipolar cells interac-
tions [46]. We observe that BCC and Reichardt detector are based on
the same principle- that motion is a phenomenon in which an object at
one location appears elsewhere after a time delay. We use LK to com-
putationally represent motion since it is a robust and widely used
method that serves the purpose of a simple and general feature to in-
corporate motion sensitivity.

We get the mean flow vectors in IR (
⎯→⎯
fm ), in center (

→
C ) and surround

(
→
S ) subregions, to extract additional binary features, for general mo-
tion detectors, DS and OMS cell types. For DS cells specifically, we
average flow's projection on direction d (C S,d d), where d can be either
up, down, right or left. In each case, we perform cell type specific op-
erations on the computed flow and then threshold the result to get a
binary value:

• General Motion Detectors:
⎯→⎯

>f T‖ ‖m

• OMS cells:
→

−
→

>C S T‖ ‖ ‖ ‖
• DS cells: − >C S Td d

By using low threshold (T) values ( =T 0.1) we can detect any mo-
tion that occurs in accordance to the motion pattern detected by each
cell type.

2.2.4. Nonlinear RGCs: uniformity detectors
We measure uniformity in the spatial and temporal domains. We

introduce variance [47] and entropy [48] features to measure spatial
uniformity. We use image variance in IR, var I( )R and we define the

variance feature as =fv
var I

A
( )R , where = =( ) ( )A r I( )

2

2 1
2

2R , with r I( )R

being the range of intensity values of IR, and =r I( ) 1R assuming in-
tensity values are expressed in the range [0,1]. We observe that fv takes
values in [0,1]. We evaluate entropy using 256 intensity bins as

∑= −
=

f p plog ( )e
i

i i
1

256

2
(6)

The image region IR with maximum entropy is characterized by a
uniform distribution ( = = …p i, 1 256i

1
256 ), over the intensity bins.

Thus, fe takes values in the range [0,8].
Moreover, we quantify the temporal uniformity by the mean, ab-

solute, pixel-wise, difference of IR in two consecutive frames, +I I,R n R n, , 1,

∑= → − →

=
+f

N
I r I r1 | ( ) ( )|t

i

N

R n i R n i
1

, 1 ,
(7)

where N denotes the number of pixels in IR. Consequently, ft takes
values in the range [0,1].

Again, we complement the extracted uniformity features with a
binary valued feature by thresholding f f f, ,v e t. The thresholds T T T, , ,v e t

are set on the 10% of the maximum feature values. We declare IR not
uniform if any of the features surpasses its respective threshold, that is,
if the following condition holds:

> > >f T f T f T( )|( )|( )v v e e t t (8)

2.3. Proposed feature vector

The modeled RGC functions and the corresponding CV methods are
summarised in Fig. 1. Each image region (IR) that corresponds to a cell
RF is represented by a 18-dimensional feature vector that contains:

• the DoG response, sampled at the cell position (one value)

• the ON, OFF and ON/OFF binary streams (three values)

• Canny edge response averaged in IR region (one value)

• edge detector binary stream (one value)

• flow components in −x and −y image axes averaged in IR region
(two values)

• binary streams for general motion detection, DS (four values) and
OMS

• variance, entropy and temporal uniformity of region IR (three va-
lues)

• uniformity detector binary stream (one value)

3. Using RGC feature extraction in retina simulations

3.1. Reference model and dataset generation

To train and evaluate our approach, we use an artificial dataset of
retina spiking responses to natural image stimuli generated using
Virtual Retina (VR) simulator software (reference model) [21].

VR is a layered model in three stages ((i)outer plexiform layer, (ii)
contrast gain control in bipolar cells (BCs), (iii)inner plexiform layer
and RGCs) that follows retina's organization in cellular layers. At sev-
eral locations of the model, linear spatio-temporal shaping is im-
plemented through temporal exponentials or exponential cascades and
spatial two-dimensional Gaussians. Additionally, a first order differ-
ential equation with time-dependent coefficients (i.e. “time-constant”)
is implemented in BC layer. VR is validated by reproducing experi-
mental recordings (responses to gratings, multi-sinus analysis) of bio-
logical RGCs (cat X and cat Y cells). Model parameters' values are either
taken from the literature or are manually set to produce good results on
all the examined experiments. Cat X, cat Y, parvo and magno cell
parameters are provided [21].

In Fig. 2, we present three frames of the used input sequence, which
shows two persons walking down a road, provided by VR software re-
lease. The sequence is comprised of 56 frames of size ×160 128 pixels.
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In order to improve model training and testing, we increase the dataset
size by tiling each frame with nc RGCs with non-overlapping RFs, thus
increasing nc-times the sequence length. The reference data takes the
form of nc spike streams, each one associated with an IR that corre-
sponds to the RF of a VR-simulated RGC. We use VR to simulate two
different RGC types (Section 4.2). In all cases we use 70% of the input
sequence as training set and 30% as testing set. Some features (e.g flow)
cannot be extracted on the first frame of a sequence, which is discarded.

RF size in VR is determined by the spatial extent of the Gaussian
filters used. To establish the spatial correspondence between reference
(VR) cells and our models, we parse VR parameters and define RF size
as a square with edges of σ6 VR (± σ3 VR around the center), where σVR is

the maximum standard deviation used in VR Gaussian filters. Details on
RF size and dataset size are provided in Section 4.

The reference model (VR) used is stochastic and we quantify its
intrinsic variability (IV) with the following procedure: for any given
input image sequence V, we run VR with Input V ten times and get the
spiking trains (output) …S S, ,1 10. Then, we estimate Virtual Retina IV
for sequence V as the mean pairwise distance of spike trains

∑=
≠

IV
N

d S S1 ( , )
i j

i j
(9)

Fig. 1. Top: Pipeline to transform an Image to more relevant information streams. The graph shows current implementation. Features (stage 1) and Detectors' outputs
(stage 2) are fed to models for RGC spiking pattern computation Bottom: Schematic representation of feature extraction. The input is transformed to feature maps
which are then filtered, sampled at RGC positions or manipulated through boolean operators (see Section 2) to produce the final representation by 18 scalar features.

Fig. 2. The input sequence we use in our simulations. We take the sequence from Ref. [21]. The sequence has 56 frames. We tile each frame with nc non overlapping
RGCs, thus producing a total of ⋅n56 c input “points” (nc depends on RGC RF size).
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3.2. Spiking neuron model: description and training

Retina response is obtained using a Generalized Integrate & Fire
(GIF) spiking neuron model [49] fed with the extracted CV features. We
train the model using a Maximum-Likelihood (ML) estimation algo-
rithm [24] using artificial data generated as described in Section 3.1.
The GIF neuron response is given by the following equations [49]:

= − − + + +dV
dt τ

V t V I t I t I t1 ( ( ) ) ( ) ( ) ( )l stim sp nse (10)

=
→

∗ →I t k s t( ) ( )stim (11)

=
→

∗ →I h r t( )sp (12)

where
→ →
k h, are convolutional filters, which are expressed in raised

cosines bases, →s t( ) is the stimulus (input) vector, →r t( ) is a vector of

recent spiking history matched to the size of
→
h , Isp is a feedback term

and Inse a random input, which consists of Gaussian noise with standard
deviation σn. Spikes occur whenever >V t( ) 1 and then V t( ) is reset to
zero. V is an internal, real valued model parameter which corresponds
to cell's membrane potential. By adjusting

→ →
k h, extent in time, we can

model RGCs that display either transient or sustained temporal re-
sponses.

The parameters that are adjusted in training are the spatio-temporal
filter weights (

→ →
k h, in eqs. (11) and (12) and neuron firing parameters:

leakage voltage, integrator time-constant and noise standard deviation
(V τ σ, ,l n in eq. (10)). We evaluate the GIF model likelihood function,

⎛

⎝
⎜

⎧
⎨⎩

→ → ⎫
⎬⎭

⎞

⎠
⎟P k h V τ σspikes stim| , , , , ,l n , that expresses the probability of

observing a set of spike times (spikes) given a set of stimuli (stim) and

a setting of parameters (
→ →
k h V τ σ, , , ,l n). We fit model parameters by

optimizing the likelihood of observed responses.

3.3. Simulation pipeline

Our pipeline is outlined in Fig. 3. In order to assess the performance
we examine spike train similarity using two complementary measures
[50,51], Interspike-Interval (ISI) and SPIKE distance [52,53]. We
evaluate the distance of the two spiking responses generated by the
introduced and reference model and compare to the reference model IV.

For comparison purposes, we train GIF spiking neuron models,
using two different visual input representations (Fig. 3):

• Features: extracted from IR using the methods introduced in Section
2

• Raw intensity values

To compare the above “features” and “raw” approaches on equal
grounds, we downsample the input images to achieve identical di-
mensionality of the two input representations, so that →s t( ) is a 18-
dimensional vector that contains either feature values or intensities

respectively.
We swept GIF parameters that are not adjusted in training, speci-

fically the number of filters' (
→ →
k h, ) basis functions and filters’ temporal

extent, to create a population of models and then select the optimal-
performing models. For each filter, we first determine its endpoints
e e,1 2. The raised cosine basis then has its first base function centered at
e1 and its last centered at e2. We then sweep the number of base func-
tions, nk and nh respectively, increasing them up to the maximum
number of independent functions. For each dataset (see sets in Section
4.2-4.4) and cell type case (linear and nonlinear cells, see Section 4.2),
sweeping e e n n, , ,k h1 2 values resulted in training approximately 90
models.

We need to choose endpoints so that the time dependence in the GIF
model, which is expressed through filters

→ →
k h, , corresponds to VR time

dependence, which can be approximately estimated from the time
constants of the successive temporal convolutions implemented in VR.
Since, temporal filters that peak at >τ 0, are also implemented in VR
models, we additionally tested using >e 01 . We also tested using e1

values in the feedback filter
→
h that correspond to the VR refractory

period. Raised cosines basis has the ability to represent fine temporal
structure near e1 but is smooth near e2 [49].

We automate model selection by enforcing the following conditions:

• We reject models with performance worse thanTtr in training set and
Tte in testing set. This step is intended to quickly discard poorly
performing models

• For each trained model, we compare to an untrained model with the
exact same filter size and base dimensionality but with randomly
selected filter weights and other model parameters. We reject all
trained models that perform equally or worse than their untrained
counterpart, either in training or testing set. Overfitting or in-
appropriate parameters (e e n n, , ,k h1 2 ) may diverge training and lead
to worse than random testing set performance. By applying this
condition we detect such occurrences and discard such models

• Finally, we examine whether the models' spiking output carries in-
formation about the input sequence. We reject models that sustain a
constant firing rate, regardless of the stimulus presented. We also
compare to a “mean-rate” model that fires spikes at a constant rate,
equal to the mean firing rate of the reference spiking train. We reject
models that perform equally or worse than a mean-rate model

4. Results

4.1. Uniformity features exhibit properties of uniformity RGCs response

To establish the correspondence between our feature extraction
procedure and biological retina processing, we examine properties de-
scribed in an electrophysiological study of cat RGC responses to sinu-
soidal gratings [54]. We focus on CV uniformity features which have
not been used in previous studies. We show that uniformity features
display the three following RGC properties: the constant supression of

Fig. 3. Left: Training Pipeline. (i) The images are processed to extract features (Section 2). These features are used as input to a GIF model (Section 3.2) which
produces the retina spiking output. To determine GIF model parameters, we use data fitting methods. (ii) Alternatively, raw images are directly fed to a GIF model
Right: Performance evaluation is based on distance metrics between GIF model spiking response and VR spiking response.
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cell's mean firing rate over a limited band of spatial frequencies, the
monotonic dependence of suppression on contrast, where stronger
contrasts induce stronger supression, and the sinusoidal modulation of
response to gratings whose contrast reverses sinusoidally [54]. The
stimuli used were sinusoidal spatial gratings. RF size was set at

×100 100 pixels.
The relationship between gratings’ spatial frequency and response is

shown in Figs. 4b and 5. We observe constant uniformity feature values
( fv), in the spatial frequency band that can be sensed in our experi-
mental setting, in agreement to the reduced firing rate of uniformity
RGCs over a spatial frequency band [54]. The two spatial frequency cut-
offs naturally arise, as when frequency increases, aliasing occurs by
sampling the pattern at pixel positions, while when the frequency de-
creases, the pattern displays no variation within the extent of a single
RF.

We present fv values of both static (Fig. 4b) and drifting (Fig. 5)
sinusoidal gratings. We observe that fv values show small variation
within the band the cell can sense (central region), but increase
monotonically asTs surpasses RF's size. The small oscillations in Figs. 4b
and 5 are caused by fv variations when RF contains a non-integer
number of spatial pattern periods (Fig. 4c). In the case of static gratings,
taking periods = …T 3 130s pixels, so that the maximum fv value occurs
in the central Ts region, we get an average = ±f 0.5153 0.0176v . Con-
cerning drifting gratings, we examine fv for = …T 1 500s pixels. We in-
creased Ts to 500 pixels to illustrate the upper plateau in fv values
( ≈f 0.9v ) that occurs in larger Ts values. We give the mean fv values at
each Ts, which are relevant to the steady state mean firing rate in Ref.
[54]. We similarly observe small variations in fv, = ±f 0.5063 0.0067v ,
as Ts varies within the band the cell can sense, = …T 3 130s pixels.

We reproduce in Fig. 6 the monotonic decrease in mean FR as
contrast increases [54]. We used a sinusoidal grating with period

=T 10s pixels, however the result was independent of Ts value. Again
the pattern was shifted across the RF and fv averaged over a full pattern
shift.

Concerning sinusoidal modulation of response, we turn to the
temporal uniformity feature ft , to examine the time profile of the re-
sponse to sinusoidally contrast reversing static gratings and reproduce
the sinusoidal response modulation observed in Ref. [54]. Previously,
we focused on the mean response, while we now concentrate on the
time evolution of the response.

Contrast is defined as = −
+C M m

M m , where M m, are the maximum and
minimum intensities respectively. Thus, a sinusoidally contrast rever-
sing grating is described by

= ⋅ = ⎛
⎝

− ⎞
⎠

S x t C t x t π x( , ) ( ) sin sin
2

sin
(13)

where x denotes the spatial variable (Fig. 4a). Considering that ft is
defined as the sum of the rectified differences over the RF area, we get

∑= − + = ⋅ ⎛
⎝

+ ⎞
⎠

f S x t S x t T A t T| ( , ) ( , Δ )| sin Δ
2t

x (14)

where A is a constant, the sum over x covers the RF region and +t t T, Δ
are the two time points compared in ft computation. Thus, ft time
course assumes a rectified sine form, in agreement to the experimental

Fig. 4. Left: Sinusoidal gratings used as stimulus. The spatial periodTs increases from =T 1s pixel (leftmost) to =T 100s pixels (rightmost). Center: Uniformity feature
fv of static sinusoidal gratings with respect to gratings' spatial period. Right: The leftmost grating fits exactly in the RF area. Four full periods cover the RF area. For
the rightmost spatial grating, approximately 3.5 periods cover the RF area.

Fig. 5. Uniformity feature fv of drifting sinusoidal gratings as a function of
spatial period. At each spatial periodTs, we drifted the grating over the cell's RF
and averaged fv values.

Fig. 6. Average fv values of drifting sinusoidal gratings with varying contrast.
The sinusoidal grating has a spatial period =T 10s pixels.
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observations of [54].

4.2. Feature extraction evaluation on a natural image sequence

We examine the integration of CV processing pipeline to models of
linear and nonlinear RGCs and compare to RGC models which use raw
image intensity as their input. We use the input sequence of Fig. 2. In
each frame, we create a grid of RGCs, so that neighboring RGCs have
non-overlapping RFs that cover, like tiles, the total frame area. RGC
tiling is illustrated in Fig. 7. We refer to the datasets of this section as
“Full” datasets.

We model the two main cat RGC types, cat X and cat Y cells [17,21]:

• cat X (linear) cells whose response demonstrates linearity of sum-
mation within their RFs, as described in Section 2.2.1

• cat Y (nonlinear) cells, whose response exhibits motion sensitivity
(Section 2.2.3), demonstrating nonlinear spatial summation, as in-
dicated by experimentally identified response properties [21]. One
such property is the strong excitation of cat Y cells whenever there is
change in the stimulus, even if the stimulus contrast is reduced to
low levels

Cat X and cat Y cells have been previously modelled in VR software
[21].

In cat X cells “Full” set, RF is ×18 18 pixels and =n 35c cells are
instantiated in each frame which results in a total sequence length of
1925 RFs. In cat Y cells “Full” set, RF is ×18 18 pixels and =n 30c

which results in a total sequence length of 1650 RFs. We trained linear
cell models for 35 training algorithm iterations and increased the
iterations to 50 in nonlinear cell models, to capture their more complex
response properties which are also indicated by the additional proces-
sing stages in VR cat Y cell model compared to cat X cell models.

Using the automatic model selection method (Section 3.3), we get
the results shown in table 1. We set =T 0.30tr , based on observed VR IV,
and =T 0.40te , as we anticipate worse testing set performance. We use
these T T,tr te values in all our simulations presented in this paper. In
table 1, ns is the total number of models whose performance satisfied
the conditions of the model selection method (see Section 3.3) and ISI,
SPIKE values quantify the performance of the best performing (out of
the ns selected) model in each cell type and dataset case. The reference
model's IV is valuable in the interpretation of model performance. If GIF
model spiking output has a distance to reference model's spike train
lower than the model's IV, then the GIF model response is indis-
tinguishable from reference model responses.

We present the top performing models trained for each cell type (cat
X and cat Y) and input representation (CV features or raw image in-
tensity). We additionally include in Table 1 the performance of ‘Half’
models, in which we reduce RF size (see Section 4.3), and of ‘User’

models, in which we modify the input sequence (see Section 4.4).
Regarding our results in Table 1, we note that the models that used

CV features performed better than those that used raw intensity input.
Furthermore, the improvement was more profound in the case of cat Y
cells compared to cat X cells. This is an expected result, because the
synaptic pooling of Y cells [21] increased nonlinearity of response and
cannot be well approximated by fitting the GIF neuron's filter weights,
when the input is the raw image intensity.

4.3. The effect of RF size on model performance

Next, we examine the effect of image resolution and RF size (in
pixels) on the performance. We repeat the simulations of Section 4.2,
but this time we reduce every cell's RF size by a scale factor of 0.5
(“Half” dataset). In cat X and cat Y “Half” sets, =n 121c cells are in-
stantiated in each frame which results in a total sequence length of
6655 RFs. Again, we trained cat X cell models for 35 iterations and cat Y
models for 50 iterations. In Table 1, we present the corresponding
performance on the new “Half” dataset.

We compare the results on the datasets of this section (“Half” da-
tasets), to those of Section 4.2 (“Full” datasets). In the case of cat X cells
with “features” input, we have an improvement in “Half” set compared
to “Full” set. This result can be attributed to the larger volume of data in
“Half” set, which similarly leads to a slight performance improvement
in both cat X and cat Y models with raw intensity input. In the case of
cat Y cells with “features” input, we note that the “Half” set perfor-
mance is slightly worse.

These results on cat X and cat Y performance show that cat Y cells
are more dependent on CV features and that great reductions in image
resolution compromise feature extraction. Image processing methods
(e.g edge detection) did not improve the recognition of low resolution
images (less than ×25 25 pixels) in subjects with normal vision [55].
Moreover, edge detection methods in low resolution images perform
worse than unprocessed images in picture recognition problems [56].

Below we summarize our findings on:

1. Linear and nonlinear cells: Linear (cat X) cells response depends
more on image filters (DoG) and so is not as dependent on RF size as
nonlinear (cat Y) cells, which depend on CV methods with docu-
mented resolution dependency [55,56].

2. Dataset Size: As each individual RF occupies a smaller area in “Half”
sets, more non-overlapping RFs are used to cover the same image
area. As a consequence, we instantiate a larger number of RGCs in
different image coordinates. A larger dataset can contribute to im-
proved model training

3. Raw input: The models that get raw input, are not affected by de-
creased image resolution, which is only relevant to feature extrac-
tion methods. However, the larger dataset (see also previous point

Fig. 7. Left: RGCs tile each frame. The RFs are noted as blue rectangles overlayed on the image frame. Each blue point, represents an RGC position. See Section 4.2.
Right: An example of user selected RFs, in which we reject background-only RFs. Red “x” signs denote rejected RFs. See Section 4.4.
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2), can provide performance gains for these models as well. Thus,
we have a slight performance improvement in “Half” sets

4.4. Removing background-only instances from the dataset

In this section, we examine the relationship between model per-
formance and training sequence content. We again use the dataset and
RF size we used in Section 4.2, but reject RFs with static and back-
ground scenes and only keep RFs with actions, that is RFs with chan-
ging content. We call this new Dataset “User” (as it was interactively
user-selected). The selection process which is illustrated in Fig. 7 results
in a sequence length of 357 RFs in cat X “User” set and a length of 331
RFs in cat Y “User” set. We adapted to the smaller size of “User” da-
tasets and trained all models for 35 iterations.

The obtained results are summarised in Table 1. For both cat X and
cat Y cells, “User” datasets show significant performance improvements
over “Full” sets, in terms of ISI distance and number of selected models.

5. Discussion

In this work, we show that CV algorithms can be integrated to retina
models towards improving the models’ performance. Instead of relying
exclusively on data fitting methods to reliably reproduce retina re-
sponse, we use studies on retina [8,9,11,13,14] to guide the selection of
CV methods. We tested the effectiveness of CV processing in modeling
the retina and demonstrated that performance degrades with low image
resolution and improves when background input instances are rejected.

We verified the correspondence between uniformity features and
properties of uniformity RGC response, for contrast dependence
(Fig. 6), bandpass suppression in spatial frequency (Figs. 4b and 5) and
response to sinusoidally contrast reversing gratings, and thus demon-
strated the potential of our feature extraction pipeline to be in-
corporated in improved retina models that capture known retina re-
sponse properties. We used both static gratings, to demonstrate the
response variation to instantaneous inputs as spatial frequency varies,
and drifting gratings, averaging feature values over a full drift across
the RF, to capture the total input that is represented by the mean,
steady-state, firing rate. To make distinct properties of feature extrac-
tion from properties of neuron models or other modules of retina
models, we examined uniformity features directly and refrained from
using the features in spike generation models. We highlight and analyze
more thoroughly uniformity features in response to (i)the lack of lit-
erature correlating entropy, variance and intensity temporal variations
to UD response and (ii)the availability of descriptions of UD response to
various stimuli [54].

The introduced features reproduce the general principles of RGC

functions and do not attempt to reproduce in detail the exact biological
behaviour of a specific RGC. We do not attempt to use image processing
towards detailed biophysical models of RGCs which relate membrane
potentials to spikes, our aim is to build a computational model that
translates images to RGC spikes. If the image representation using
features mimics in great detail a specific biological function, it would be
difficult to use this representation in models of different cells.
Moreover, features are the input to our neuron model, not its final
output, so features are not required to represent in great detail the
biological functions.

The incorporation of our preprocessing pipeline leads to improved
models for nonlinear and linear RGCs. The improvement is curbed in
linear RGC models, as VR filters for linear RGCs can be approximated to
an extent by GIF parameters. In VR models of nonlinear (Y) cells the
internal variable that represents RGC input current is spatially
Gaussian-averaged before the final spike generation layer, a process
that is paralleled by the RF-wide averaging we apply after the various
Image processing operators to extract the final features.

We introduce an automated model selection method which also
takes into consideration biological plausibility and model general-
ization, by comparing trained neuron models to neurons firing at a
constant rate or to randomly instantiated neuron models, respectively.
The number of selected models (ns) can be used as an additional mea-
sure of performance, as robust models are expected to sustain their
performance in a neighborhood of GIF model parameters.

Following recent evidence that multiple computations are per-
formed by RGCs of a single type, which challenge the “one function per
RGC type” paradigm [15], we apply the same CV preprocessing pipeline
in models of both linear and nonlinear RGCs. Since our approach is
data-driven, it is straightforward to model different RGCs using ap-
propriate datasets. In previous approaches (e.g VR [21]), the values of
model parameters were determined manually requiring knowledge
about both the RGC types studied and the methods used.

Our aim is to reproduce RGC image encoding to neural spikes. This
diverges from efficient image coding which facilitates unique re-
construction of the encoded images. Retina output has been described
both as performing efficient coding and as performing nonlinear lossy
feature extraction [57]. Our model could be possibly improved towards
faithful image reconstruction, by encoding the images to m different
spike streams, each associated with an appropriately selected RGC type,
similarly to the way multiple RGC types tile the visual field.

Currently RP approaches stimulate RGCs in a non-selective manner
and consequently our preprocessing pipeline may only be utilized to-
wards more accurate models of a single RGC type. However, the non-
selective RGC stimulation poses important limitations concerning the
acuity of RP-attained vision and induces important perceptual

Table 1
Performance of the Best model trained for cat X (linear) or cat Y (nonlinear) cells and each input representation (Computer Vision features (Feature) or unprocessed
image intensity (Raw)). In “Half” sets, RF is scaled by a factor of 0.5. In “User” sets, background RFs are rejected.

Set Cell Input ISI distance IV (ISI) SPIKE distance IV (SPIKE) Selected models (ns)

Training Set Testing Set Training Set Testing Set

Full X Feature 0.17 0.24 0.05 0.09 0.11 0.07 12
Raw 0.17 0.30 0.05 0.09 0.13 0.07 10

Y Feature 0.12 0.17 0.04 0.08 0.09 0.08 13
Raw 0.22 0.27 0.04 0.11 0.12 0.08 12

Half X Feature 0.17 0.18 0.05 0.09 0.09 0.07 12
Raw 0.17 0.28 0.05 0.09 0.12 0.07 9

Y Feature 0.12 0.20 0.04 0.08 0.09 0.07 12
Raw 0.14 0.25 0.04 0.08 0.11 0.07 13

User X Feature 0.18 0.16 0.06 0.09 0.07 0.07 32
Raw 0.18 0.23 0.06 0.10 0.07 0.07 46

Y Feature 0.14 0.13 0.05 0.08 0.07 0.07 58
Raw 0.17 0.22 0.05 0.09 0.09 0.07 58
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distortions [58]. Thus, selective RGC stimulation either by electrical
pulses [59] or optogenetic stimulation strategies [60] is actively pur-
sued and will, in the long term, make relevant the modeling of separate
RGC populations in improved RP interventions. Additionally, improved
retina models will allow for a deeper understanding of perceptual dis-
tortions in RP that are induced whenever retina is stimulated in an
unnatural way [61].

While artificial data have been used to validate retina models
[18,29] and neuron models [30], biological data can enhance the va-
lidity of the approach. In a study of prediction mechanisms on the re-
tina, some results were only revealed with the use of a biological da-
taset [26]. Similarly, in a study investigating common retina population
spiking patterns, or “codewords” [28], many more codewords (50)
were found on the biological data, compared to only six “codewords”
found on LN models fit to the same data.

In future steps, we may test our approach on different RGC cell
types, and explore how well we can model each different cell type. In a
recently published dataset [39], two-photon calcium imaging was used
to record from more than 11000 individual RGCs, which are also as-
signed to specific cell types. The recent development and deployment of
such advanced experimental techniques makes feasible the recording of
RGC type specific cell responses to natural image stimuli.

Keeping the same feature extraction process, we may change the
spike generation procedure using ad hoc, biologically-based modeling
approaches or suitable, general approximation methods. The features
themselves, or the retina spiking output, can also be used as inputs in
different tasks (navigation [16,62], face detection [62]), as in biologi-
cally inspired computer vision [63,64] where biological solutions are
mimicked in CV algorithms.

Finally, the introduced CV features could be combined with con-
volutional neural networks (CNNs) [65] to improve RGC response
prediction. In the past, CNNs have been utilized in models of the pri-
mary visual cortex [66]. Image processing and deep learning have been
combined in various biomedical [67–69] and CV applications applying
feature fusion methods [70].

6. Conclusions

We have introduced a Computer Vision image preprocessing
method to model RGC functions and reproduced retina spiking output
with a GIF neuron model. We show that methods developed over the
last decades in the Computer Vision field, can be transferred to the area
of retinal implants to simulate retina computations. We have demon-
strated that the use of features as input improves performance over raw
image intensity, defending our hypothesis that raw image intensity is an
improper visual input representation. Additionally, we have shown that
low image resolution can degrade CV features performance and that
model performance is improved when background-only inputs are re-
jected.
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