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a b s t r a c t 

Generative adversarial networks (GANs) are one powerful type of deep learning models that have been suc- 
cessfully utilized in numerous fields. They belong to the broader family of generative methods, which learn to 
generate realistic data with a probabilistic model by learning distributions from real samples. In the clinical con- 
text, GANs have shown enhanced capabilities in capturing spatially complex, nonlinear, and potentially subtle 
disease effects compared to traditional generative methods. This review critically appraises the existing literature 
on the applications of GANs in imaging studies of various neurological conditions, including Alzheimer’s disease, 
brain tumors, brain aging, and multiple sclerosis. We provide an intuitive explanation of various GAN methods 
for each application and further discuss the main challenges, open questions, and promising future directions of 
leveraging GANs in neuroimaging. We aim to bridge the gap between advanced deep learning methods and neu- 
rology research by highlighting how GANs can be leveraged to support clinical decision making and contribute 
to a better understanding of the structural and functional patterns of brain diseases. 
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. Introduction 

Advances in medical imaging techniques, including magnetic
esonance imaging (MRI) and positron emission tomography (PET),
ave provided in vivo imaging-derived phenotypes capturing patterns
f brain development, aging as well as of various diseases and disorders
 Yu et al., 2018 ; Myszczynska et al., 2020 ; Rajpurkar et al., 2022 ). Em-
racing the “big data ” era, the medical imaging community has widely
dopted artificial intelligence (AI) for data analysis, from traditional
tatistical methods to machine learning (ML) models, which provides
romise toward clinical translation ( Habes et al., 2020 ; Thompson et al.,
020 ; Marek et al., 2022 ). Statistical tools such as univariate and mul-
ivariate prediction models are empowered to learn the associations
etween structural/functional variability and cognitive/psychiatric
ymptomatology in the human brain. Notably, advanced AI techniques
ave been successfully utilized in numerous clinical applications, such
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s computer-aided diagnosis, disease biomarker identification, and
ersonalized disease risk quantification, which are bound to further
evolutionize medical research and clinical practice. Among these
echniques, deep learning (DL) has drawn increasing attention in
edical imaging. DL algorithms are powerful in capturing the complex
on-linear relationships between input features, thereby extracting
ow-to-high level latent features that are predictive of the response
f interest ( Zhou et al., 2021 ; Singh et al., 2022 ; Bethlehem et al.,
022 ; Abrol et al., 2021 ; Davatzikos, 2019 ). So far, DL has been widely
dopted in medical image processing tasks such as registration, recon-
truction, segmentation, and synthesis, and analysis tasks such as disease
iagnosis, anomaly detection, and pathology and prognosis evolution
rediction. 

Generative adversarial networks (GANs), first introduced in 2014 by
oodfellow et al. (2014) have had a profound influence in DL, leading to
umerous applications. GAN is a generative method which synthesizes
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ealistic-looking features/images by learning the sample distribution
rom real data. GAN and its variants have shown great promise in im-
ge generation tasks such as image enhancement, cross-modality synthe-
is, text-to-image synthesis, and image-to-image translation ( Gui et al.,
022 ; Wang et al., 2021 a). This technique is particularly promising for
euroimaging and clinical neuroscience applications because it is capa-
le of discovering and reproducing the complex and non-linear pathol-
gy patterns from medical images and data. 

Many previous reviews of GANs focused on technical details of
mage synthesis in medical imaging ( Yi et al., 2019 ; Laino et al.,
022 ; Qu et al., 2021 ; Jeong et al., 2022 ; Sorin et al., 2020 ). How-
ver, less attention has been paid to the adoption of GANs in clini-
al neuroimaging studies. In this review, we present the current state
f GANs in neuroimaging research, in various applications including
eurodegenerative disease diagnosis, cancer and anomaly detection,
rain development modeling, dementia trajectory tracing, lesion evo-
ution prediction, and tumor growth estimation. By showcasing these
ifferent applications discussed in the literature, we demonstrate the
dvantages of GANs for neuroimaging studies, compared to tradi-
ional ML methods. We also discuss the current limitations of GANs
nd potential opportunities for adopting GANs in future neuroimaging
esearch. 

Review perspective . Our review emphasizes discovery and analysis
f imaging phenotypes associated with neurological diseases via deep
earning techniques, focusing on GANs in particular. We exclude papers
olely focusing on methodology development for tasks such as image
ynthesis, registration, segmentation, reconstruction, modality transla-
ion, and dataset enlargement. We filter research articles on Google
cholar, PubMed, and several pre-print platforms containing words
uch as ‘GAN’, ‘Generative Adversarial Network’, ‘Medical Imaging’, and
Brain’. We further screen the titles and abstracts for a thematic match.
o provide a thorough review, we build connection graphs for each in-
luded paper using Semantic Scholar in order to find additional relevant
ublications. Finally, detailed examination of the methods and results of
ach paper helped us decide if they fall in our review scope. Based on the
pplication areas of the selected papers, we divide them into two main
ategories: clinical diagnosis and disease progression. Each category is
urther split into finer tasks, which are described in the manuscript or-
anization section. 

Manuscript organization . The rest of the paper is organized as follows.
n Section 2 , we provide background knowledge on GANs and their al-
orithmic extensions for applications in neuroimaging. From Sections 3
o 4 , we comprehensively illustrate the applications of GANs in neuro-
ogical research using imaging phenotypes. We discuss clinical diagno-
is, including disease classification, with a primary focus on Alzheimer’s
isease and brain tumor detection in Section 3 . In Section 4 , we present
odeling of imaging patterns of brain change in cognitively unimpaired

rain aging and in several diseases, including Alzheimer’s disease, brain
esion evolution and tumor growth. For each application, we introduce
he background and challenges, describe the essential methodology for
ackling the problem, showcase its advantages and promises from eval-
ation results, as well as critique the limitations and pitfalls. Finally, in
ection 5 , we suggest potential promising future directions and discuss
pen questions for each neurological application utilizing GANs, based
n current issues and challenges. 

. Preliminaries on GANs 

GANs have the ability to approximate complex probability distribu-
ions and thereby generate realistic patterns or images, as well as capture
ffects of pathologic processes on imaging phenotypes. We will describe
he mechanism of the standard GAN and its usage in neuroimaging stud-
es (see Table 1 ). Then, we showcase a few GAN variants whose architec-
ures have been modified to suit specific clinical tasks, such as disease
iagnosis and prognosis. 
2 
.1. Original GAN 

GAN was first proposed by Goodfellow et al. (2014) to overcome
he intractable probabilistic computation difficulty that deep genera-
ive models, such as the deep Boltzmann machine ( Salakhutdinov and
arochelle, 2010 ), usually suffer from. There are two components in
 GAN: the generator and the discriminator, as shown in Fig. 1 A. In-
uitively, we can think of the framework mechanism as a two-player
ame – player A and player B competing with each other to produce
ake images and detect them. The game drives both parties to improve
heir techniques until the fake images are indistinguishable from the
eal images. Given a finite collection of data points 𝑥 sampled from the
atural distribution, which is unknown, we would like to learn or ap-
roximate the natural distribution from the observations. A generator is
efined to be a mapping function that projects noise variables sampled
rom a prior distribution to the data space. The prior distribution can
e uniform or Gaussian, and the generator is parametrized by differen-
iable neural networks. Given the output of the generator and the real
bservations, the discriminator, which is also parameterized by neural
etworks, outputs the probability that the input comes from a real sam-
le distribution. In this two-player game, we simultaneously train the
enerator to minimize the probability that the discriminator treats the
enerated image as fake and train the discriminator to maximize the
robability of identifying the generated image as fake. This technique is
alled adversarial training. 

At convergence, the discriminator should theoretically output 50%
robability for any input and the generator produces samples that are
ndistinguishable from the real data. One advantage of GAN is that it
an generate clear and high quality images whereas another popular
eep generative model, the variational autoencoder (VAE) ( Kingma and
elling, 2013 ), can only produce blurry figures. Thus, GANs are well-

uited for many applications in neuroimaging research, such as generat-
ng heterogeneous pathological patterns by mapping a healthy control
mage to potential reproducible disease signatures for subtype discov-
ry. GANs can also predict the evolution of brain lesions or tumors for
ersonalized disease diagnosis and prognosis. We discuss several popu-
ar variants of GANs that have been adapted for different areas of neu-
oimaging research in the next subsection. 

.2. Variants of GAN 

Based on the original GAN model, different variants were proposed
n recent years for two main purposes: solving limitations of the original
AN and adapting it to different applications. Here, we introduce the
ain variants that have been applied in the neuroimaging studies that
ill be discussed in the following sections. 

.2.1. Challenge oriented variants 

Though the original GAN model has shown promising performance
n generating realistic high-dimensional data, it still suffers from prob-
ems such as unstable optimization during training, mode collapse
learning to generate images following distributions of only a subset of
raining images), and poor quality (visually chaotic or blurry images) of
enerated data. Many GAN variants were proposed for solving these is-
ues and also proved to be helpful in generating high-quality neuroimag-
ng data ( Bowles et al., 2018 ; Han et al., 2019 ; Gao et al., 2022 ). 

Wasserstein GAN (W-GAN) . W-GAN ( Arjovsky et al., 2017 ) is one of
he important variants proposed to address unstable optimization and
ode collapse. Compared to the original GAN model, W-GAN shares
 similar min-max training procedure but has a different loss function.
ith the new loss function, the training procedure aims to minimize the
asserstein distance between distributions of generated data and real

ata, which is shown to be a better distance measure for image synthesis
roblems. The WGAN-GP ( Gulrajani et al., 2017 ) (W-GAN with gradient
enalty) model was introduced as one improvement on W-GAN for more
table training with the gradient penalty method. 
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Table 1 

Frequently applied GAN architectures in neuroimaging. Publications are ordered by year in ascending order. 

Publication Highlights 

GAN (Goodfellow et al., 2014) Original GAN 
CGAN (Mirza and Osindero, 2014) Conditional GAN 
InfoGAN (Chen et al., 2016) Interpretable representation learning 
CycleGAN (Zhu et al., 2017) Unpaired image-to-image translation 
WGAN (Gulrajani et al., 2017) Wasserstein GAN 
PGGAN (Karras et al., 2018) Progressive growing GAN 
MUNIT (Huang et al., 2018) Multi-modal unsupervised image-to-image translation 
SAGAN (Zhang et al., 2019a) Self-attention GAN 
ClusterGAN (Mukherjee et al., 2019) Clustering GAN 
Rev-GAN (van der Ouderaa and Worrall, 2019) Reversible GAN 
StyleGAN (Karras et al., 2019) Style-transfer GAN 

Fig. 1. Semantics of the original GAN and its extensions. (A) Original GAN architecture where 𝑧, 𝑥 and 𝑦 denote random noise, generated image, and real image. 𝐺
and 𝐷 represent generator and discriminator separately. Wasserstein GAN, deep convolutional GAN, and self-attention GAN share the same structure of the original 
GAN but use a different loss function, convolutional block and self-attention module, respectively. (B) Progressive growing GAN architecture. The resolution of 
each generated image 𝑥 1 , 𝑥 2 , ..., 𝑥 𝑛 and real image 𝑦 1 , 𝑦 2 , ..., 𝑦 𝑛 is increasing from left to right. The number of layers within each generator 𝐺 1 , 𝐺 2 , ..., 𝐺 𝑛 and 
discriminator 𝐷 1 , 𝐷 2 , ..., 𝐷 𝑛 is also growing accordingly. (C) Conditional GAN architecture where 𝑧 , 𝑦 , 𝑥 , 𝑥 ′ denote random noise, extra label/information, real 
data, and generated data, respectively. Concatenation of random noise 𝑧 and label 𝑦 are input to the generator and concatenation of label 𝑦 and generated/real 
data are input to the discriminator. (D) Cycle-GAN structure where 𝑥 1 , 𝑦 2 denote umpired data from two different modalities, and 𝑥 ′2 , 𝑦 

′
1 denote generated data for 

the corresponding modality. 𝐺 1 transform data from modality 𝑋 to 𝑌 , and 𝐺 2 transforms inversely. Generated data 𝑦 ′1 is reconstructed back to input 𝑥 1 through 𝐺 2 
and same for generated data 𝑥 ′2 . (E) Info-GAN structure, where 𝑧 , 𝑐, 𝑥 , 𝑥 ′ denote random noise, informative part of latent variable, real data, and generated data. 
Concatenation of 𝑧 and 𝑐 are input to the generator. Informative latent 𝑐 are reconstructed through an encoder 𝐸 from generated data 𝑥 ′ = 𝐺( 𝑧, 𝑐 ) . (F) MUNIT GAN 

structure where 𝑥 1 , 𝑦 2 , 𝑥 
′
2 , 𝑦 

′
1 denote unpaired data and generated data from two different modalities, 𝑋 and 𝑌 . 𝑐 𝑥 1 , 𝑐 𝑦 2 , 𝑠 𝑥 1 , 𝑠 𝑦 2 denote content and style variables 

derived from data from two modalities, respectively. Data 𝑥 1 is firstly decoded into content 𝑐 𝑥 1 and style variable 𝑠 𝑥 1 , respectively. Then, the content variable 𝑐 𝑥 1 is 
concatenated with a style variable from the 𝑌 modality to generate data 𝑦 ′1 through the generator 𝐺 1 . Concatenation of 𝑐 𝑥 1 and 𝑠 𝑥 1 are used as input for reconstruct 𝑥 1 
through 𝐺 2 . Same process also applies to the reverse direction. Images are taken and adapted from Goodfellow et al. (2014) , Karras et al. (2018) , Chen et al. (2016) , 
Mirza and Osindero (2014) , Zhu et al. (2017) , Huang et al. (2018) . 
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Besides variants in loss function, some other works propose to modify
odel structures for improving the quality of generated images. 

Deep convolutional GAN (DC-GAN) and progressive growing GAN (PG-

AN) . DC-GAN ( Radford et al., 2016 ) is one of the earliest models that
ses convolutional layers in both generator and discriminator for stable
eneration of higher quality RGB images. PG-GAN ( Karras et al., 2018 )
 Fig. 1 B), further achieves large high-resolution image generation by
rogressively increasing the number of layers during the training pro-
ess. Systematic addition of the layers in both generator and discrimi-
ator enables the model to effectively learn from coarse-level details to
ner details. 

Self-attention GAN (SA-GAN) . SA-GAN ( Zhang et al., 2019 ) leverages
 self-attention mechanism in convolutional GANs. The self-attention
odule, complementary to convolutions, helps with modeling long
3 
ange, multi-level dependencies across image regions, and thus avoids
sing only spatially local properties for generating high-resolution im-
ges. 

.2.2. Application oriented variants 

Besides addressing broader methodological challenges above, many
ther variants of GANs were developed for specific applications. Sev-
ral applications in computer vision are also of great interest to the
euroimaging community, including informative latent space and con-
itional image generation. 

.2.2.1. Informative latent space. The latent vector in the GAN model is
onventionally used as a random input for generating images, but does
ot have clear correspondence with the generated output data in an
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nterpretable way. An informative latent space will help people interpret
oth the generative model and generated data, and make better use of
hem. In the field of neuroimaging, an informative latent space can be a
ow-dimensional representation for uncovering disease related imaging
atterns ( Bowles et al., 2018 ; Yang et al., 2021 ). Therefore, there are
everal variants proposed along this direction to make the latent vector
orrespond to features of generated images in an easily interpretable
ay: 

Info-GAN and Cluster-GAN . Info-GAN ( Chen et al., 2016 ) ( Fig. 1 E)
ivides latent variable into two parts 𝑧 and 𝑐 and enables 𝑐 to ex-
licitly explain features in generated data 𝐺( 𝑧, 𝑐 ) . The model intro-
uces a parameterized approximation of inverse posterior distribution
 ( 𝑐|𝐺( 𝑧, 𝑐 )) which helps maximize the mutual information between la-

ent variables and generated data, 𝐼( 𝑐, 𝐺( 𝑧, 𝑐 ) ) . Minimization of mutual
nformation through 𝑄 ( 𝑐|𝐺( 𝑧, 𝑐 )) can also be understood as a regulariza-
ion on inverse reconstruction of latent variables from generated data.
herefore, compared with basic GAN, Info-GAN alternatively solves an

nformation-regularized minimax game. Similar to Info-GAN, Cluster-
AN ( Mukherjee et al., 2019 ) shared the idea of reconstructing latent
ariables from generated data, but employed discrete latent variables,
urther enabling clustering through the latent space. 

.2.2.2. Conditional image generation. Conditional image generation,
ncluding image-to-image translation, generates images using some
rior information instead of random input. For example, in the field
f neuroimaging, there are several works approaches focusing on trans-
ormation of neuroimages among different modalities ( Lin et al., 2021 ;
an et al., 2018 ; Wei et al., 2020 ) and generation of neuroimages based
n clinical information ( Ravi et al., 2022 ). Most of these works are re-
ated to the following variants: 

Conditional-GAN (C-GAN) . C-GAN ( Mirza and Osindero, 2014 )
 Fig. 1 C) allows extra information, 𝑦 , to be fed to both generator and
iscriminator, and thus is able to generate data x based on 𝑦 informa-
ion. 𝑦 can be specific clinical information or the corresponding image
n the source modality for image-to-image translation tasks. 

Cycle-GAN . Paired data 𝑦 are not available in many cases, espe-
ially in the neuroimaging field. Dealing with this problem, Cycle-GAN
 Zhu et al., 2017 ) ( Fig. 1 D) enables unpaired image-to-image translation
y imposing a specific cycle consistency loss for regularization besides
tandard GAN loss. The model has two mapping functions, 𝐺 and 𝐹 ,
hich transform data from source to target and from target to source
omain, respectively, while encouraging that generated output data can
e reconstructed back to the input data, i.e. 𝐹 ( 𝐺( 𝑥 ) ) ≈ 𝑥 and 𝐺( 𝐹 ( 𝑦 ) ) ≈ 𝑦 .

Reversible-GAN (Rev-GAN) . Reversible-GAN ( van der Ouderaa and
orrall, 2019 ) is an extension of Cycle-GAN. By utilizing invertible neu-

al networks, the model possesses cycle-consistencies by design without
xplicitly constructing an inverse mapping function, thus achieving both
utput fidelity and memory efficiency. 

Multimodal unsupervised image-to-image translation GAN (MUNIT-

AN) . Both Cycle-GAN and Rev-GAN assume one-to-one mapping in
mage translation, ignoring diversities in transformation directions.
UNIT-GAN ( Huang et al., 2018 ) ( Fig. 1 F) tackles this problem by first

ncoding the source data into one shared content space 𝐶, and one
omain-specific style space 𝑆. The content code of the input is com-
ined with different style codes in the target style space to generate
arget data with distinct styles. 

.3. Evaluation metrics 

A set of metrics has been used for evaluating the quality of data gen-
rated by GAN-based models. Mean square error (MSE), peak signal-to-
oise ratio (PSNR) ( Wang et al., 2004 ), and structural similarity (SSIM)
 Wang et al., 2004 ) were proposed for quantifying similarities or dis-
ances between paired data. Thus, they are typically used for compar-
ng the generated data with the ground truth images. Specifically, MSE
4 
nd PSNR measure the absolute pixel-wise distances between two im-
ges, while SSIM measures the structural similarity by considering de-
endencies among pixels. Two other metrics, Fréchet inception distance
FID) ( Heusel et al., 2017 ) and maximum mean discrepancy (MMD)
 Tolstikhin et al., 2016 ), are utilized for computing distances between
wo data distributions when there is no paired ground truth. In the ap-
lication of GAN-based models, they are often applied to measure simi-
arities between distributions of generated and real data. 

. GANs in clinical diagnosis 

Accurate disease diagnosis is necessary for early intervention that
ay potentially delay disease progression. This is especially true in the

ase of neurodegenerative diseases, which are often highly heteroge-
eous, comorbid, and progress rapidly with severe impacts on the phys-
cal and cognitive function of patients. In the last decade, there has
een pivotal progress in imaging techniques such as structural MRI,
luorodeoxyglucose-PET (FDG-PET) and resting state functional MRI
rs-fMRI), enabling more precise and accurate measurement of disease-
elated structural and functional brain change in vivo . Simultaneously,
dvanced DL methods have been developed to analyze large, high-
imensional datasets and perform tasks such as disease classification
nd anomaly detection. GANs in particular have been leveraged to im-
rove performance in both of these tasks. 

This section is organized as follows. First, we discuss the use of GANs
n disease classification frameworks with a primary focus on Alzheimer’s
isease. This is first discussed in the context of single modality imag-
ng and then multimodal imaging. Next, we discuss the use of GANs in
nomaly detection (see Table 2 ). 

.1. Disease classification 

Classification involves clustering observations into distinct groups
nd assigning class labels to these groups based on associated input
eatures. In the context of disease diagnosis, the classes could refer to
isease stages or disease subtypes, for example. Previous work in dis-
ase classification relied on traditional ML techniques, such as SVM and
ogistic regression ( Varol et al., 2017 ; Dong et al., 2016 ). GANs can
lean and analyze patterns in high-dimensional, multi-modal imaging
atasets, detecting signs of neurodegenerative processes and underlying
athology at preclinical stages. They can also synthesize whole images
cross modalities, which can be used to assist classification downstream.

While GANs can be applied to many different disease datasets, most
f the papers we discuss below focus on Alzheimer’s disease, which is
n irreversible neurodegenerative disease that debilitates cognitive abil-
ties. It is the leading cause of dementia and currently impacts five mil-
ion people in the United States ( Arvanitakis et al., 2019 ). GANs can
erive powerful imaging markers for individualized diagnosis, classifi-
ation into conversion groups, or even prediction of onset at preclinical
nd cognitively unimpaired stages. 

.1.1. Disease classification with single-modality imaging 

.1.1.1. Structural MRI. Structural imaging, including T1- and T2-
eighted MRI, helps visualize brain anatomy such as shape, position,
nd size of tissues within the brain. Features that are commonly derived
rom structural MRI include regional brain volumes from T1-weighted
cans and tissue hyperintensities from T2-weighted scans. Other brain
haracteristics such as tissue composition fractions and intracranial vol-
me can also be extracted from these imaging modalities. Volumetric
egional and whole brain atrophies derived from structural MRI are now
dentified as valid biomarkers of neurodegeneration, and have been used
or clinical assessment and diagnosis ( Frisoni et al., 2010 b). Besides di-
gnostic utility, features extracted from structural imaging have been
sed as imaging endpoints to quantify outcomes in clinical trials of dis-
ase modifying therapies ( Frisoni et al., 2010 b). 
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Table 2 

Overview of publications utilizing GANs to assist disease diagnosis. Publications are clustered by categories and ordered by year in ascending order. 

Publication Method Dataset Modality Highlights 

Disease Classification 

(Yan et al., 2018) Conditional GAN ADNI MRI, PET Amyloid PET generation and MCI prediction 
(Liu et al., 2020) GAN ADNI MRI, PET MCI conversion prediction 
(Mirakhorli et al., 2020) GNN & GAN ADNI rs-fMRI AD-related patterns extraction 
(Pan et al., 2021b) Feature-consistent GAN ADNI MRI, PET Joint synthesis and diagnosis 
(Lin et al., 2021) Reversible GAN ADNI MRI, PET Bidirectional mapping between modalities 
(Gao et al., 2021) Pyramid and Attention GAN ADNI MRI, PET Missing modality imputation 
(Yu et al., 2021) Higher-order pooling GAN ADNI MRI Semi-supervised learning 
(Pan et al., 2021a) Decoupling GAN ADNI DTI, rs-fMRI Abnormal neural circuits detection 
(Zuo et al., 2021) Hypergraph perceptual network ADNI MRI, DTI, rs-fMRI Abnormal brain connections analysis 

Tumor Detection 

(Han et al., 2019) PGGAN & MUNIT BRATS MRI Tumor image augmentation 
(Huang et al., 2019) Context-aware GAN BRATS T1, T2, FLAIR Glioma severity grading 
(Park et al., 2021) StyleGAN Private T1, T2, FLAIR IDH-mutant glioblastomas generation 

Anomaly Detection 

(Wei et al., 2019) Sketcher-Refiner GAN Private PET, DTI Myelin content in Multiple Sclerosis 
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Machine learning methods such as random forests have been pro-
osed for automated Alzheimer’s disease classification but these meth-
ds require careful feature extraction and selection ( Ramírez et al.,
010 ). Extracting features from structural MRI involves complex pre-
rocessing steps, and the following feature selection phase requires ad-
anced clinical knowledge. Supervised deep learning methods, such
s convolutional neural networks (CNN), have also been proposed
or Alzheimer’s disease classification ( Oh et al., 2019 ; Sarraf and
ofighi, 2016 ). While CNNs can implicitly extract hierarchical features
rom images, they require large amounts of labeled training data, which
re not always available ( Oh et al., 2019 ; Sarraf and Tofighi, 2016 ). 

Therefore, Yu et al. (2021) propose a 3D semi-supervised learning
ased GAN (THS-GAN) which utilizes both labeled and unlabeled T1-
eighted MRI for classifying mild cognitive impairment and Alzheimer’s
isease. THS-GAN is modified based on C-GAN, and it has a generator,
 discriminator, and a classifier. The schematic of the network architec-
ure is shown in Fig. 2 A. The generator uses 3D transposed convolutions
o generate 3D T1-weighted MRI, while the discriminator and classifier
se 3D DenseNet ( Gu, 2017 ) to extract features from high dimensional
R volumes. Specifically, the generator which is conditioned on disease

lass produces a fake image-label pair, whereas the classifier takes an
nlabeled image, predicts its corresponding disease category, and pro-
uces image-label pairs for unlabelled images. The discriminator’s job
s to identify whether an image-label pair comes from the real data dis-
ribution. When training three of them together, the generator tends
o generate more realistic images for a given disease class, the clas-
ifier tries to improve its predictive accuracy, while the discriminator
ill maximize the probability of assigning fake labels to the image-label
airs generated from the classifier and generator. During evaluation,
he model is able to learn and generate plausible images (as shown in
ig. 2 B). The method achieves 95.5% accuracy in Alzheimer’s disease
.s. healthy control classification, and 89.29% accuracy in mild cogni-
ive impairment v.s. healthy control classification. We will discuss other
AN-based techniques that use structural imaging for disease classifica-

ion in the multi-modal imaging section. 

.1.1.2. Resting-state fMRI. Rs-fMRI measures the time series of the
lood-oxygenation-level-dependent (BOLD) fluctuations across brain
natomical regions. It relies on the underlying assumption that brain
egions that co-activate, i.e. reliably demonstrate synchronous, low-
requency fluctuations in BOLD, are more likely to be involved in sim-
lar neural processes than regions that do not co-activate. Computing
he Pearson correlations between the time series recorded in differ-
nt brain regions provides estimates of functional connectivity, which
s used to extract resting-state functional networks (rsFNs). These net-
orks show patterns of synchronous activity across a set of distributed
5 
rain areas and provide potential biomarkers for a variety of illnesses
 Damoiseaux et al., 2006 ; Horovitz et al., 2008 ; Smith et al., 2009 ).
pecifically, changes in the representation of rsFNs have been observed
n groups suffering from brain disorders such as epilepsy, schizophrenia,
ttention deficit hyperactivity disorder and major depressive disorder,
nd diseases such as Alzheimer’s and Parkinson’s ( Rajpoot et al., 2015 ;
och et al., 2015 ; Wang et al., 2013 ; Wee et al., 2012 ; Díez-Cirarda et al.,
018 ; Dansereau et al., 2017 ). Prior works in fMRI-based disease clas-
ification rely on common machine learning techniques such as support
ector machine (SVM) and nearest neighbors ( Saccà et al., 2018 ). These
echniques require careful feature engineering and feature selection to
chieve optimal performance. 

Recently, deep learning techniques such as convolutional neural net-
orks have been used for disease classification based on automatic

eature extraction ( Wen et al., 2018 ). However, due to insufficient
ata especially from rs-fMRI, these methods show poor generalizabil-
ty. To overcome the limitations of both traditional ML and DL, re-
earchers propose to use GANs to improve the classification perfor-
ance. Zhao et al. (2020) propose adapting a 2D GAN model for dis-

ase classification using rs-fMRI. They use a GAN architecture to clas-
ify individuals with mental disorders from healthy controls (HC) based
n functional connectivity (FC). FC assesses temporal relationships of
 subject’s brain functional networks by computing the pairwise cor-
elation between the spatially segregated networks ( Du et al., 2015 ).
ence, FC reflects connectivity/synchronized activity of the brain net-
orks and can be potentially used to identify fMRI-based biomarkers

or disease classification. The generator takes a noise vector as input
nd learns to generate fake FC networks. The discriminator is used to
lassify mental disorders from HC, and discriminate between real and
ake images. Finally, the model can be trained by optimizing an objec-
ive function that combines both adversarial loss and classification loss.
he model performance is evaluated on two tasks, namely major depres-
ion disorder and schizophrenia classifications. The performance of the
AN model is validated against six classification techniques including
-nearest neighbors, adaboost, naive Bayes, Gaussian processes, SVM,
nd deep neural net. The GAN model outperforms all other methods in
oth tasks, i.e., major depressive disorder classification and schizophre-
ia classification, suggesting its utility as a potentially powerful tool to
id discriminative diagnosis. 

Since the topology of brain connectomes is close to graphs, a natu-
al extension would be boosting the classification model by using both
raph structures and GANs. Mirakhorli et al. (2020) use FC to identify
bnormal changes in the brain due to Alzheimer’s disease. The technique
everages FC to represent the human brain as a graph and then uses a
raph neural network to learn structures which differentiate Alzheimer’s
isease subjects from healthy individuals. Here, a VAE which is imple-



R. Wang, V. Bashyam, Z. Yang et al. NeuroImage 269 (2023) 119898 

Fig. 2. GAN applications in disease classifi- 
cation with single- and multi-modal imaging. 
(A) Schematic of THS-GAN for Alzheimer’s dis- 
ease and mild cognitive impairment classifica- 
tions. (B) Comparison of synthesized brain MR 
images from THS-GAN and real T1-weighted 
scans with coronal, sagittal, and axial views 
for different training epochs. (C) Deviation be- 
tween real image and synthetic images gener- 
ated by Rev-GAN. In the deviation image, the 
yellow color represents large differences, and 
the dark colors denote small deviations. Images 
are taken and adapted from Lin et al. (2021) , 
Yu et al. (2021) . 
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ented by graph convolutional operators serves as a generator and a
iscriminator is used to improve the recovery of the graphs. At in-
erence, the encoder part of the VAE converts graph data into a low-
imensional space, and then abnormal signals (salience alteration of the
rain connection) can be detected by comparing the differences of the
raph properties (first-and second-order proximities) within these latent
pace features. The model achieves an average five-fold cross-validation
ccuracy of 85.2% for the three-way classification. The model also finds
hat abnormal connections of the frontal gyrus and precentral gyrus with
ther regions have a high percentage of Alzheimer’s disease risk in the
6 
arly stages and fall into the effective biomarkers category. Additionally,
he olfactory cortex, supplementary motor area, and rolandic operculum
ave a high contribution to classify mild cognitive impairment patients.
y recovering the missing connections with a generative approach and
istinguishing the abnormal partial correlations from the healthy ones,
he model provides biological-meaningful findings with high accuracy
isease classification performance. 

The studies mentioned above focus solely on functional connectivity.
ven though performing classification using single-modality data from
tructural or functional MRI provides reasonable diagnostic accuracy, it
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an be boosted by using multi-modality data since additional modalities
rovide complementary information. 

.1.1.3. Disease classification with multi-modal imaging. Multiple imag-
ng modalities, such as MRI, PET, diffusion tensor imaging (DTI), and
s-fMRI, help in capturing diverse pathology patterns that may high-
ight different disease-relevant regions in the brain. This enhances the
bility of disease classification models to distinguish diseases that are
ften comorbid, such as Alzheimer’s and Parkinson’s. However, the use
f multi-modal imaging features is particularly challenging because of
ata sharing limitations, patient dropout, and relatively limited datasets
ith all modalities. Previous studies address this issue by simply discard-

ng modality-incomplete samples ( Zhang and Shen, 2012 ; Calhoun and
ui, 2016 ; Frisoni et al., 2010 a; Jie et al., 2016 ). This approach is prone
o reducing classification accuracy and deteriorating the model’s gen-
ralizability due to the limited sample size. Instead, GANs can better
andle missing data in multi-modal datasets by generating the missing
mages and preserving sample size, thereby boosting downstream clas-
ification performance. 

Previous work shows direct and indirect relationships between func-
ional and structural pathways within the human brain ( Honey et al.,
009 ; Fukushima et al., 2018 ). These interesting studies have piv-
ted clinical research towards multi-modal integration to reliably in-
er brain connectivity. They also provided key insights into brain dys-
unction in neurological disorders such as autism ( Cociu et al., 2018 ),
chizophrenia ( Li et al., 2020 a), and attention deficit hyperactivity dis-
rder ( Qureshi et al., 2017 ). 

Pan et al. (2021 a) propose to use multi-modal imaging to de-
ect crucial discriminative neural circuits between Alzheimer’s dis-
ase patients and healthy subjects. The model can effectively extract
omplementary topology information between rs-fMRI and DTI using
 decoupling deep learning model (DecGAN). DecGAN consists of a
enerator, a discriminator, a decoupling module, and a classification
odule. The generator and discriminator modules capture the com-
lex distribution of functional brain networks without explicitly model-
ng the probability density function. The decoupling module is trained
o detect the sparse graphs which store relationships between region-
f-interest connectivity, such that the classification module can accu-
ately separate Alzheimer’s disease and the healthy ones when taking
hese sparse graphs as inputs. The method shows accurate classifica-
ion performance when discriminating HC v.s. early mild cognitive im-
airment (86.2% in accuracy), HC v.s. late mild cognitive impairment
85.7% in accuracy) and HC v.s. Alzheimer’s disease (85.2% in accu-
acy). The model also finds that limbic lobe and occipital lobe are highly
orrelated to Alzheimer’s disease pathology ( Migliaccio et al., 2015 ;
akahashi et al., 2017 ). One major limitation of this work is that the au-
hors assume the coupling between two regions is static, which conflicts
ith several recent studies that show functional connectivity is dynamic
 Hutchison et al., 2013 ; Honey et al., 2009 ; Barttfeld et al., 2015 ). More-
ver, the sample size of the study is small (236 subjects), which hinders
he generalizability and reproducibility of region-of-interests detected
y the model. Future studies could incorporate dynamic connectivity
nd detect dynamic changes predictive of Alzheimer’s disease or other
eurodegenerative diseases and disorders. 

Lin et al. (2021) use a 3D Rev-GAN ( van der Ouderaa and Wor-
all, 2019 ) for missing data imputation and then evaluate the effect of
he inclusion of GANs-generated images in Alzheimer’s disease v.s. cog-
itively unimpaired (CU) as well as stable mild cognitive impairment
.s. progressive mild cognitive impairment classification. The method
s evaluated on CN subjects, subjects with stable mild cognitive im-
airment and progressive mild cognitive impairment and subjects with
lzheimer’s disease. Hippocampus images are used in addition to the full
rain images in the experiments. Rev-GAN constructs synthetic PET im-
ges with high image quality that slightly deviates from real PET scans.
ompared to other image synthesis methods that perform more process-

ng steps to achieve higher alignment between the different modalities
7 
 Pan et al., 2018 , 2019 , 2020 ; Hu et al., 2019 ), this approach yields com-
arable PSNR and higher SSIM in PET images synthesis. In terms of MR
ippocampus images synthesis, the Rev-GAN achieves the highest SSIM
nd PSNR. The model performance drops for the full image reconstruc-
ion due to the difficulties in mapping the structure information such as
he skull of the MR image from the functional image. Overall, the use of
nly one generator to perform bidirectional image synthesis in combi-
ation with the stability of reversible architecture enables the training
f deeper networks with low memory cost. Therefore, the non-linear fit-
ing ability of the model is enhanced, resulting in the construction of
igh quality images (see Fig. 2 C). 

After imputing the missing data with GANs, Alzheimer’s disease diag-
osis and mild cognitive impairment to Alzheimer’s disease conversion
rediction are implemented using a multi-modal 3D CNN. The model
rained using real hippocampus images for one modality and fully syn-
hetic data from the other modality yields similar, sometimes superior,
erformance compared to the model using real data for both modali-
ies, and always higher performance than the model using missing data.
n terms of full images, although the quality of the generated MR full
mages is not as good as that of the generated hippocampus images,
he classification accuracy using synthetic MR full images exceeds 90%
or the Alzheimer’s disease diagnosis and 73% for the mild cognitive
mpairment to Alzheimer’s disease conversion prediction. Overall, the
rominent improvement of the classification results with the use of
AN-synthetic data reveals the ability of the image synthesis model to
onstruct images of high quality which also contain useful information
bout the disease, thus significantly contributing to Alzheimer’s diagno-
is and mild cognitive impairment conversion prediction. 

In this study, the authors use missing data synthesis to improve the
lzheimer’s disease diagnosis and the prediction of mild cognitive im-
airment to Alzheimer’s disease conversion. However, less attention has
een devoted to the FDG metabolic changes and the biological signifi-
ance of the imputed data compared to real data. Additionally, a pre-
equisite for successful MRI-to-PET mapping is that the disease affects
he tissue structure and metabolic function at the same time. Further ex-
loration of the MRI-PET relationship in diseases such as cancer where
tructural and functional changes do not occur simultaneously is needed.

To date, relatively less attention has been devoted to the generation
f amyloid PET images. Amyloid PET measures the amount of amyloid
eta protein aggregation in the brain ( Nordberg, 2004 ), which is one
f the key hallmarks of Alzheimer’s disease. However, the availability
f PET scans is extremely limited (compared to the MR scans) due to
he radioactive exposure and high cost. Yan et al. (2018) use a 3D con-
itional GAN to construct 18 F-florbetapir PET images from MR images
nd then compare the performance of their method with traditional data
ugmentation techniques, such as image rotation and flipping, in a mild
ognitive impairment classification task. The conditional GAN gener-
tor is a U-Net ( Ronneberger et al., 2015 ) based CNN with skip con-
ections and the discriminator is PatchGAN discriminator ( Zhu et al.,
017 ). The generator is not only trained to fool the discriminator but
lso to construct images as close to reality as possible. Paired PET-MRI
mages are used to train the C-GAN. Then, the trained model is applied
o generate PET images from MR images and the real PET images are
sed for the evaluation of C-GAN using SSIM metric. The SSIM reaches
.95, thus indicating the ability of the model to generate images with
igh similarity with the real images. To classify stable mild cognitive
mpairment v.s. progressive mild cognitive impairment, a residual net-
ork (ResNet) ( He et al., 2016 ) is built. The ResNet is trained using PET

mages from three scenarios: real PET images only, combined real PET
nd PET images generated using traditional augmentation techniques,
nd combined real PET and C-GAN-generated PET images. The classi-
cation performance increases with the aid of synthetic data. Between
he two approaches, the inclusion of C-GAN-generated PET images in
raining results in higher performance compared to the model that used
mages generated using traditional augmentation techniques and this re-
eals the superiority of GANs in image synthesis over traditional image
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ugmentation techniques. Medical images are different from the natu-
al ones with a certain centering, alignment and asymmetry geometry,
s well as characteristics such as contrast and brightness. Thus, com-
uter vision augmentation techniques, such as adjusting brightness or
ontrast, adding noise, might alter the semantic content of the image;
or example, the distinction between gray and white matter tissues can
e impeded when changing the contrast of the image. 

Hu et al. (2022) extend the MR-to-PET synthesis framework by de-
eloping a 3D end-to-end network, called bidirectional mapping GAN
BMGAN). This model adopts 3D Dense U-Net, a variant of U-Net
 Çiçek et al., 2016 ) that leverages the dense connections of DenseNet
 Gu, 2017 ), as the generator to synthesize brain PET images from MR
mages. The densely connected paths between layers in DenseNet tackle
he vanishing gradient problem, foster feature propagation and informa-
ion flow, and reduce the number of network parameters. One advan-
age of BMGAN is that it sets up an invertible connection between the
rain PET images and the latent vectors. The model does not only learn
 forward mapping from the latent vector to the PET images as tradi-
ional GANs, but also learns a backward mapping that returns the PET
mages back to the latent space by training an encoder simultaneously.
his mechanism enables the synthesis of perceptually realistic PET im-
ges while retaining the distinct features of brain structures across indi-
iduals. Beside the high-quality generated images, the effectiveness of
hese images in disease diagnosis has been demonstrated by performing
lzheimer’s disease v.s. normal classification. The classification perfor-
ance (AUC) using the BMGAN synthesized PET images is better than

hose generated by state-of-the-art medical imaging cross-modality syn-
hesis models such as CGAN and PGAN ( Dar et al., 2019 ). 

.1.1.4. Joint image synthesis and classification paradigm. Many impu-
ation methods for multi-modality neuroimaging datasets usually treat
mage synthesis and disease diagnosis as two separate tasks ( Lin et al.,
021 ; Yan et al., 2018 ; Pan et al., 2021 a). This ignores the fact that
ifferent modalities may identify different relevant regions in the brain
elevant to the disease being studied. Performing image synthesis and
lassification in a joint framework enables deep learning networks to
everage correlations across input modalities. 

Gao et al. (2022) propose a 3D task-induced pyramid and atten-
ion GAN (TPA-GAN) to generate missing PET data given the paired
RI. The pyramid convolution layers can capture multilevel features of
RI while the attention module eliminates redundant information and

ccelerates convergence of the network. The task-induced discriminator
elps generate images that retain information specific for disease clas-
ification. Then, a pathwise-dense CNN (PT-DCN) gradually learns and
ombines the multimodal features from both real and imputed images
owards the final disease classification. The pathwise transfer blocks
onsist of a concatenation layer, convolution layer, batch normalization
nd ReLU activation layer, and a larger convolution layer. These blocks
re used to communicate information across the two paths of PET and
RI, making full use of complementary information in these two modal-

ties. Under SSIM, PNSR and MDD metrics, the TPA-GAN outperforms
everal baseline methods, including a CycleGAN variant developed by
an et al. (2018) for generation of PET images using MRI. In the experi-
ents, the authors use ADNI-1 for training and ADNI-2 for testing, which

ould be an issue if the imaging data is not harmonized appropriately
cross scanner-changes, acquisition protocols, and subject demograph-
cs. In the future, cross-study transfer learning or domain adaptation
echniques can be investigated to alleviate the problem. The following
ork leverages this idea to improve the power of a sample-size limited

linical study. 
Pan et al. (2021 b) extend on the joint synthesis-classification method

eveloped by Gao et al. (2022) by maximizing image similarity within
odalities. They propose a disease-image-specific deep learning (DSDL)

ramework for joint neuroimage synthesis and disease diagnosis using
ncomplete multi-modality neuroimages. First, disease characteristics
pecific to a given image modality are implicitly modeled and out-
8 
ut by a disease-image-specific network (DSNet), which takes whole-
rain images as input. A feature-consistency GAN (FGAN) then im-
utes the missing images. The FGAN encourages feature maps between
airs of synthetic and real images to be consistent while preserving
he disease-image-specific information, using the outputs generated by
SNet. Therefore, the FGAN is correlated with DSNet and synthesizes

he missing modalities in a diagnosis-oriented manner, resulting in bet-
er performance. Specifically, the DSNet achieves an diagnostic perfor-
ance of 94.39% with only MRI and 94.92% with MRI and PET when
sing AUROC as the metric. 

The joint neuroimage synthesis and representation learning (JSRL)
ramework proposed by Liu et al. (2020) offers a few advantages com-
ared to the previous works. The model integrates image synthesis and
epresentation learning into a unified framework where the synthe-
ized multimodal representations are used as inputs for representation
earning. The framework leverages transfer learning for prediction of
onversion in subjects with subjective cognitive decline, which is the
elf-reported experience of worsening confusion or memory loss. JSRL
onsists of two major components: a GAN for synthesizing missing neu-
oimaging data, and a classification network for learning neuroimage
epresentations and predicting the progression of subjective cognitive
ecline. These two subnetworks share the same feature encoding mod-
le, encouraging the generated data to be prediction-oriented. The un-
erlying association among multimodal images can be effectively mod-
led for accurate prediction with an AUROC of 71.3%. In summary, this
ethod focuses on improving the classification of subjective cognitive
ecline subjects using incomplete multimodal neuroimaging data. Since
ubjective cognitive decline is one of the earliest noticeable symptoms
f Alzheimer’s disease and related dementias, the classification is clini-
ally useful to begin targeted interventions earlier in these subjects. This
ork is among the first multimodal neuroimaging-based studies for sub-

ective cognitive decline conversion prediction, which avoids the need
o individually extract MRI and real or synthetic PET features as in pre-
ious works. JSRL leverages transfer learning by harnessing a large scale
DNI database to model a smaller scale database on subjective cognitive
ecline, which significantly increases the power of this study. 

While many studies apply GANs for image synthesis and classifica-
ion in neurodegenerative diseases, GANs have broader application in
eurology, including detection of brain tumors and imaging anomalies.
hese applications are discussed in the next section. 

.2. Tumor and anomaly detection 

.2.1. Supervised tumor detection 

Brain tumors, abnormal proliferations of cells in the brain, comprise
 large portion of deaths related to cancer worldwide ( Lapointe et al.,
018 ). Tumor detection and classification is an active research area in
he medical imaging community; however, available imaging data for
his research purpose remains relatively limited ( Bakas et al., 2018 ). To
ackle this problem, many of the following recent works leverage the
enerative abilities of GANs for dataset enrichment and augmentation. 

Han et al. (2019) demonstrate the use of GANs in improving the
erformance of a brain tumor detection network. They propose a two-
tep method for enriching the training dataset via data augmentation by
enerating additional samples of normal and pathologic images. They
se an initial 2D noise-to-image GAN to produce the anatomical content
nd rough attributes of a scan and sequentially an unpaired image-to-
mage translation network to refine these images. 

Park et al. (2021) utilize StyleGAN to create synthetic images while
reserving the morphologic variations to improve the diagnostic accu-
acy of isocitrate dehydrogenase (IDH) mutant gliomas. The 2D GAN
odel was trained on normal brains and IDH-mutant high-grade as-

rocytomas to generate the corresponding contrast-enhanced (CE) T1-
eighted and fluid-attenuated inversion recovery (FLAIR) images. The
uthors further develop a diagnostic model from the morphologic char-
cteristics of both realistic and synthetic data to validate that the
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ynthetic data generated by GAN can improve molecular prediction for
DH status of glioblastomas. 

While these approaches show initial promise, GAN-based dataset en-
ichment has not been thoroughly studied for brain tumors. For exam-
le, GANs might not be able to capture the sample distribution of highly
eterogeneous tumor data when only limited data is available. Given
his challenge, GAN-based unsupervised anomaly detection offers dis-
inct advantages for tumor detection. 

.2.2. Anomaly detection 

Anomaly detection, the identification of scans that deviate from the
ormative distribution, offers a path toward identifying pathology even
hen the anomalous group is not explicitly defined. Anomaly detection
as most often been used for the detection and segmentation of tumors
nd lesions ( Nguyen et al., 2023 ; Bengs et al., 2021 ). Prior approaches
or anomaly detection are not suited for use at the image level and often
se regional summary measures from segmented brain regions to iden-
ify abnormalities from scans. For example, one-class SVM is used to
efine the normative group allowing outliers to be identified ( El Azami
t al., 2013 ; Retico et al., 2016 ). These methods have shown promise
n specific cases but are sensitive to the selection of summary measures
sed to represent the scan. In general, anomaly detection models are
rained using both healthy and anomalous brain scans or healthy scans
nly. Focusing more on the latter case, GAN-based anomaly detection
n neuroimaging stems from the ability of GANs to model the normative
istribution of brains accurately. When substantial deviations from the
xpected distribution occur, the model can infer the presence of abnor-
alities, which has been leveraged in neuroimaging for lesion and tumor
etection. In 2017, AnoGAN ( Schlegl et al., 2017 ) gained popularity as
n anomaly detection method using only normative samples to define
ts detection criteria. AnoGAN uses a generator to learn the mapping
rom a low-dimensional latent space to normal 2D images, defining nor-
al/healthy regions in the latent space. When a new image is encoun-

ered, the latent representation whose reconstruction matches the new
mage most closely would be selected via backpropagation-guided sam-
ling. Since the generator is only trained on normal samples, the learned
atent space cannot adequately represent the variation of anomalous
cans, and thereby the reconstructed images from anomalous images of-
en differed in the anomalous regions (see Fig. 3 ). If deviation between
he reconstructed and original image is observed, the image would then
e marked as anomalous. 

Similarly, Nguyen et al. (2023) develop an unsupervised brain tu-
or segmentation/detection method leveraging GAN-based image in-
ainting technique – the reconstruction of partially obscured areas of
n image from the surrounding context. If the network is trained on
ealthy images, anomalous regions of an image will be in-painted. The
ethod performed well in images with smaller, local anomalies as the

urrounding context contained enough information for the in-painting
f a healthy region. Training in this scenario is performed by randomly
asking a part of an image and asking the generator to recreate the miss-

ng portion based on the unmasked regions. During inference, the target
mage is masked in many different positions and then reconstructed by
he network. If there exists deviation between the reconstructed and
riginal images in several subsets of the masked images, this subject
s likely to be marked as an anomaly. By repeatedly masking various
arts of the scan, the authors are able to generate a tumor segmen-
ation mask. The authors report an improvement of tumor segmenta-
ion performance over AnoGAN with a Dice score from 38% to 77%.
engs et al. (2021) implement a similar idea of unsupervised anomaly
etection to detect brain tumors using VAE-based image in-painting. The
uthors demonstrate an improvement over prior 2D methods in brain
umor segmentation with a Dice score from 25% to 31%. Although im-
ge in-painting methods have shown promise for abnormality detection,
hey have two major limitations. Firstly, they do not perform well when
he abnormality is large or has a global effect on the scan; secondly, the
9 
lgorithms may produce false positives in regions where normal anatom-
cal variation is high, because there might be multiple acceptable ways
f in-painting a region only based on its surrounding appearance. 

GAN-based methods have offered a unique way to identify deviations
rom the healthy distribution. In particular, GAN-based unsupervised
nomaly detection shows promising performance when pathology data
s limited and difficult to acquire. There are a variety of potential clinical
nd research-based applications for such methods. It is foreseeable that
hese methods will be useful in triaging scans, with critical or time sen-
itive pathology, for a radiologist to read. While most published works
ave focused on identifying gross abnormalities, such as stroke and tu-
or lesions, it remains to be seen how well similar approaches perform

n identifying subtler pathology. Within the domain of anomaly and tu-
or detection, GANs have also shown promise in enriching training data

n cases with limited or missing data. 

. GANs in brain aging and modeling disease progression 

To understand how a patient’s brain changes due to pathology, it is
mportant to first understand how the brain evolves in the absence of
athology. This motivates the need for methods that specifically tackle
he problems with modeling healthy brain aging, and how GANs can
e utilized to simulate subject specific brain aging ( Xia et al., 2021 ).
dditionally, modeling abnormal disease specific brain changes is also
f clinical significance. Disease progression modeling can help screen for
eople at risk of developing neurological conditions and also help plan
reventative measures or treatment options. This section will discuss
he challenges in modeling healthy and abnormal brain changes and
otivate the need and utility of GANs in disease prognosis. We will also

eview various existing GAN models that are designed to model healthy
nd abnormal brain changes (see Table 3 ). 

.1. Brain aging 

The human brain undergoes morphological and functional changes
ith age. Deviations from these normative brain changes might be in-
icative of an underlying pathology. Neuroimaging techniques such as
tructural and functional MRI have been successfully applied ( Kim et al.,
021 ) to measure and assess these brain changes. Modeling brain ag-
ng trajectories and simulating future brain states can be valuable in a
umber of applications including early detection of neurological condi-
ions and imputation for missing data in longitudinal studies. In prior
ork, researchers developed common atlas models ( Habas et al., 2010 ;
uizinga et al., 2018 ; Dittrich et al., 2014 ) as spatio-temporal references
f brain development and aging. One of the main challenges with this
pproach is that individuals might exhibit unique brain aging trajecto-
ies based on their lifestyle and health status. However, common atlas
odels might not preserve this inter-subject variability resulting in in-

ccurate modeling. In recent years, GANs have been proposed to combat
his issue and generate subject-specific brain aging image synthesis. 

Xia et al. (2021) designed a conditional GAN that synthesizes subject-
pecific brain images given a target age and health condition. Their
nique model learns to synthesize older brain MR scans from a subject’s
urrent brain scan without relying on any longitudinal scans to guide
he synthesis. As depicted in Fig. 4 A, their model consists of a generator
hat is conditioned on the target health state and the difference between
urrent age and target age of the subject. The generator takes a 2D T1-
eighted MRI and synthesizes brain images that correspond to target
ge and health state (control/mild cognitive impairment/Alzheimer’s
isease) while preserving subject identity. On the other hand, the dis-
riminator ensures that the generated images correspond to the target
ge and health state by learning the joint distribution of the brain image,
arget age, and target health state. To preserve individual brain char-
cteristics of the subjects during modeling, the authors train the GAN
odel with a combination loss function that has three elements: an ad-

ersarial loss ( 𝐿 is a Wasserstein loss with gradient penalty) that
𝐺𝐴𝑁 
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Fig. 3. GAN applications in neuroimaging-based anomaly detection. (A) Schema of AnoGAN. Training is performed on health subjects to learn 𝑧, a latent space 
representing the data distribution. Inference is performed by sampling from 𝑧 to generate image 𝑥 ′, such that the difference between 𝑥 ′ and the anomalous image 𝑥 𝑎 
is minimized. (B) Illustration of the latent space distribution produced by AnoGAN. Images are taken and adapted from Schlegl et al. (2017) . 

Table 3 

Overview of publications utilizing GANs to assist brain development and disease progression analysis. Publications are clustered by categories and ordered by year 
in ascending order. 

Publication Method Dataset Modality Highlights 

Brain Aging 

Xia et al. (2021) Transformer GAN Cam-CAN, ADNI MRI Synthesize aging brain without longitudinal data 
Peng et al. (2021) Perceptual GAN IBIS T1, T2 Infant brain longitudinal imputation 

Alzheimer’s Progression 

Bowles et al. (2018) WGAN ADNI MRI Disentangle visual appearance of AD using latent encoding 
Wegmayr et al. (2019) Recursive GAN ADNI, AIBL MRI Conversion prognosis from MCI to AD 
Zhao et al. (2020b) Multi-information GAN ADNI, OASIS MRI Progression Stage classification 
Yang et al. (2021) Cluster & Info-GAN ADNI, BLSA MRI AD subtypes imaging patterns discovery 
Ravi et al. (2022) Conditional GAN ADNI MRI Spatiotemporal, biologically-informed constrained 

Lesion Evolution 

Rachmadi et al. (2020) Multi-discriminator GAN Private T1, T2, FLAIR White matter hyperintensities evolution prediction 
Wei et al. (2020) Conditional Attention GAN Private MRI, PET Myelin content prediction in multiple sclerosis 

Tumor Growth 

Elazab et al. (2020) Stacked Conditional GAN Private, BRATS T1, T2, FLAIR Glioma growth prediction 
Kamli et al. (2020) GAN TCIA, ADNI T1, T2, FLAIR Glioblastoma tumors growth prediction 
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ncourages the model to generate realistic brain images, an identity-
reservation loss ( 𝐿 𝐼𝐷 ) that encourages network to preserve the sub-
ect’s unique characteristics during image generation, and finally a re-
onstruction loss ( 𝐿 𝑟𝑒𝑐 ) that encourages the network to reconstruct input
hen the generator is conditioned on the same age and health state as

he input. Fig. 4 B shows the results of the conditional GAN in synthesiz-
ng images of the brain at multiple target ages. Although the predicted
pparent age of synthesized images in Fig. 4 B is very close to the target
ge, one limitation of the method is that the subject identity might not be
reserved during image synthesis. The authors only incorporate age and
ealth state in the modeling process, but other factors such as gender
10 
nd genotype can help model finer subject details that might help pre-
erve subject identity. Additionally, the model was trained to synthesize
lder brain scans from younger brain scans but not vice-versa. Model-
ng the opposite will not only strengthen the usability of the model for
mputing missing timepoints but also provide a more robust model that
reserves subject identity. Another major limitation is that the model
ses a 2D design, to improve visual quality of the generated brain im-
ges, 3D architectures can be adapted to model the brain as a whole
olume. The subsequent paper tackles some of these limitations. 

Unlike the 2D model presented by Xia et al. (2021) ,
eng et al. (2021) introduce 3D models that longitudinally predict
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Fig. 4. GAN applications in modeling healthy brain aging. (A) Schematic of the conditional GAN model for modeling the brain aging process across the whole 
lifespan. 𝑥 𝑖 ∶ generator input; ℎ 0 ∶ target age vector; 𝑎 𝑑 ∶ age difference between current age 𝑎 𝑖 and target age 𝑎 0 ; �̂� 0 ∶ generator output; 𝑣 1 , 𝑣 2 , 𝑣 

′
1 , 𝑣 

′
2 : latent 

embedding. Generator synthesizes brain image of target age and health state, and judge network gives a discrimination score of whether the image given to the 
discriminator is real or fake. 𝐿 𝐼𝐷 , 𝐿 𝑟𝑒𝑐 , 𝐿 𝐺𝐴𝑁 refer to identity loss, reconstruction loss and adversarial loss, respectively. (B) Examples of healthy brain aging modeling 
using the GAN described in (A). Bottom panel shows the images synthesized at different target ages 𝑎 0 , and the top panel shows the absolute difference between 
input image 𝑥 𝑖 and synthesized image �̂� 0 . (C) Schematic of the perceptual adversarial network (PGAN). (D) Multi-modal perceptual adversarial network (MPGAN) 
architecture. 𝑥, 𝑥 𝑇 1 , 𝑥 𝑇 2 ∶ input 3D MR volume; 𝐺( 𝑥 ) , 𝐺 𝑇 1 ( 𝑥 𝑇 1 , 𝑥 𝑇 2 ) , 𝐺 𝑇 2 ( 𝑥 𝑇 1 , 𝑥 𝑇 2 ) ∶ generated output; 𝑦, 𝑦 𝑇 1 , 𝑦 𝑇 2 ∶ real 3D MR volume; 𝐷, 𝐷 𝑇 1 , 𝐷 𝑇 2 ∶ 
discriminator networks; 𝜙 ∶ feature extraction network; 𝐿 𝑉 𝑅 , 𝐿 𝑃 , 𝐿 𝑎𝑑𝑣 refer to voxel-wise reconstruction loss, perceptual loss, and adversarial loss. Images are taken 
and adapted from Xia et al. (2021) , Peng et al. (2021) . 
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rain volumes in infants during their first year of life. The first model
hey introduce is a single-input-single-output model called perceptual
dversarial network (PGAN). As depicted in Fig. 4 C, PGAN has a 3D
-Net ( Çiçek et al., 2016 ) as the generator which aids in volumetric
rocessing. The generator takes T1 or T2 weighted brain images from
n initial timepoint and learns to generate corresponding longitudinal
rain images. The discriminator learns to discriminate the fake images
rom the real images using adversarial loss 𝐿 𝐺𝐴𝑁 . Additionally, a
oxel-wise reconstruction loss 𝐿 𝑉 𝑅 encourages the voxel intensities of
he generated images to be close to the corresponding voxel intensities
f the ground truth images. Since the voxel-wise reconstruction loss
ight over-smooth the generated images an additional loss function

alled perceptual loss 𝐿 𝑃 is introduced. Perpetual loss helps preserve
he sharpness of the generated images. Since MRI sequences capture
omplementary features of the brain, the authors propose a second
odel called multi-contrast perceptual adversarial network (MPGAN).
11 
his model extends the PGAN architecture to incorporate multiple
odality inputs and outputs, thereby learning complimentary features

rom both T1- and T2-weighted brain images. As depicted in Fig. 4 D,
PGAN has two generators based on a 3D U-Net architecture, but

nlike PGAN, the 3D U-Net has a shared encoder that takes T1- and
2-weighted images at a given time point as input, and two independent
ecoders that synthesize the longitudinal T1- and T2-weighted brain
mages, respectively. Two discriminator networks learn to discriminate
etween real and fake T1- and T2-weighted images. The models are
valuated on an infant brain imaging dataset with T1- and T2-weighted
olumes available at 6 months and 12 months of life. The model
erformance is measured on two tasks: predicting six month images
rom twelve month images as well as predicting twelve month images
rom six month images. A major limitation of this work is that it’s
onstrained to modeling two timepoints since paired images are used
o train and model brain aging at 6 and 12 months of life. Hence the
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odel cannot synthesize brain images over the whole lifespan, to do so
ould require scanning subjects across their whole lifespan. This leads
s back to a recurring problem in modeling the brain aging process:
odels might require longitudinal data for training, which may be

nfeasible to acquire. 
Brain aging is a complex process and each individual presents a

nique brain aging trajectory that is influenced by their age, genetic
ode, demographics, and any underlying neuropathy. GANs allow for
ubject specific synthesis of the aging brain, but there is no guarantee
hat the subject identity is preserved during synthesis. Hence, future
esearch needs to focus on integrating multiomic, imaging, and clinical
ata for brain aging synthesis while ensuring the preservation of subject
dentity. 

.2. Alzheimer’s disease progression 

The human brain deviates from normative brain aging when under-
ying disease processes affect its structure and function. Disease progres-
ion models trained on longitudinal imaging data can characterize the
uture course of the disease progression, making them valuable for clin-
cal trial management, treatment planning and prognosis. Traditional
L algorithms have been widely applied for modeling Alzheimer’s dis-

ase progression, with a focus on extrapolating biomarker metrics and
ognitive scores. For example, Zhou et al. (2012) propose a least ab-
olute shrinkage and selection operator (LASSO) formulation to predict
lzheimer’s disease patients’ cognitive scores at different time points.
ecently, disease progression modeling is not only approached as a re-
ression task, but also a generative task where models generate realistic
igh-dimensional image data. Researchers leverage the ability of GANs
o synthesize realistic images and other data in general, in order to simu-
ate future states of Alzheimer’s disease ( Bowles et al., 2018 ; Yang et al.,
021 ; Ravi et al., 2022 ). Generating realistic high dimensional data in
he medical field is far from being considered a trivial task, due to the
omplexity and irregular availability of longitudinal and annotated data.
ANs have been predominantly used in disease progression modeling
ecause of their superior ability in learning sharp distributions from
raining data and producing high resolution images, compared to other
enerative techniques ( Bowles et al., 2018 ; Yang et al., 2021 ; Ravi et al.,
022 ; Xia et al., 2021 ; Peng et al., 2021 ). 

For example, Ravi et al. (2022) present a 4D-degenerative adversar-
al neuroimage net (4D-DANI-Net), with the goal of generating high res-
lution, longitudinal 3D MRIs that mimic the personalized neurodegen-
ration using spatiotemporal and biologically-informed constraints. The
D-DANI-Net is composed of three main blocks:a preprocessing block, a
rogression block, and a 3D super resolution block. The preprocessing
lockremoves irrelevant variations in the data. The progression model-
ng block is implemented using the degenerative adversarial neuroimage
DANI) net ( Ravi et al., 2019 ) (see Fig. 5 A). A conditional autoencoder
CAD), a set of adversarial networks and a set of biological constraints
re the main elements of DANI net. The CAD is responsible for produc-
ng the longitudinal 2D MRI with the use of the biological constraints
n the optimization and a discriminator that is going to compare the
ake longitudinal data produced by the CAD with the real ones. Mul-
iple DANI-Nets are trained, one for every 2D MR slice, and all these
ANI nets compose the progression model of the 4D-DANI-Net. In order

o unify the low resolution images produced by the DANI nets, the au-
hors employ the 3D super-resolution block that produces the 3D high
esolution MR image. The final block is the super resolution one that
ransforms the low-resolution images, produced by the DANI nets, into
he 3D high resolution MR image. In Fig. 5 B, there are qualitative results
hat showcase the ability of 4D-DANI-Net to produce MR scans over time
hat correspond in different ages of the same subject. 

In the same spectrum of simulating Alzheimer’s disease progression
ut in 2D space, Bowles et al. (2018) built a progression model for
lzheimer’s disease that leverages the imaging arithmetic and isolates

he features in the latent space that correspond to Alzheimer’s pathol-
12 
gy. The core model is W-GAN along with a re-weighting scheme. The
e-weighting scheme increases the weighting of those real images that
re misclassified. This forces the discriminator to better represent the
ost extreme parts of the images, which in turn forces the generator to
roduce images from this region. Using imaging arithmetic and the la-
ent encodings that correspond to Alzheimer’s disease features one can
imulate scans with Alzheimer’s with different grades of severity. For
xample, by adding the latent encoding of Alzheimer’s, with a specific
caling, in the MR scan of a cognitive normal subject one can see en-
arged ventricles and cortical atrophy in the output MRI. However, this
aper makes several potentially problematic assumptions. They have as-
umed that the progression is a linear process over time. Furthermore,
hey hypothesized that morphological changes across all subjects with
lzheimer’s disease are symmetric. Additionally, this methodology is
eveloped using a small window size, 64 by 64 which therefore makes
t unrealistic for a use case scenario. 

Yang et al. (2021) present an alternative GAN-based approach for
lzheimer’s disease progression analysis built on tabular volumetric
ata. Firstly, they worked on disentangling the structural heterogeneity
f the diseased brain and then with meta-analysis connected the cross-
ectional patterns to longitudinal data. They propose semi-supervised
lustering GAN (SMILE-GAN), a method that manages to disentangle
athologic neuroanatomical heterogeneity and define subtypes of neu-
odegeneration. In general, SMILE-GAN learns mappings from cognitive
nimpaired individuals to dementia patients in a generative approach.
hrough this approach, SMILE-GAN captures disease effects that con-
ribute to brain anatomy changes and avoids learning non-disease re-
ated variations such as covariate effects. Technically, the model learns
ne-to-many mappings from the CN group, 𝑋, to the patient (PT) group
 . The goal is to learn a mapping function 𝑓 ∶ 𝑋 ×𝑍 → 𝑌 which gen-
rates fake PT data from real CN data. The subtype variable 𝑧 is used
s an additional input to the mapping function 𝑓 , along with the CN
can 𝑥 . Along with the mapping function, the model also trains the
iscriminator 𝐷 to distinguish real PT data 𝑦 from synthesized PT 𝑦 ′.
he optimal number of clusters is determined using cross-validation
nd evaluating for reproducibility of the results. These clusters define a
our-dimensional coordinate system that captures major neuroanatomi-
al patterns which are visualized in Fig. 6 B. 

This work goes on to connect the identified clusters with longitu-
inal progression pathways. Yang et al. (2021) provide an alternative
nd robust way to model progression, by identifying patterns of atro-
hy. No assumptions on imaging data distribution and its independence
rom confounding factors and variability make it a powerful model that
ould potentially be used in subtyping of other heterogeneous diseases.
urthermore, with more representative data such a method can poten-
ially identify more intricate subtypes that now are covert due to its
imited instances in the current datasets. 

Modeling the progression of Alzheimer’s is a challenging task due to
he complexity, availability, and the multiple modalities, ranging from
maging ones such as MRI and PET to genomic and clinical informa-
ion. Understanding the underlying biological processes and trying to
omprehend potential factors that connect these modalities is the way
o interpret and build knowledge for heterogeneous diseases such as
lzheimer’s. A future challenge and research opportunity is to develop
AN models incorporating high resolution genomic information as sin-
le nucleotide polymorphisms (SNPs). Exploring a pathway between
enomic data and imaging signatures will shed light on Alzheimer’s en-
ophenotypes and such knowledge is valuable for potential future treat-
ents. 

.3. Progression of brain lesions 

MRI-visible brain lesions, such as white matter hyperintensities and
ultiple sclerosis lesions, reflect white matter or gray matter damage

aused by chronic ischaemia associated with cerebral small vessel dis-
ase or inflammation that results from the malfunction of the immune
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Fig. 5. GAN applications in generating disease progression scans from a single time point. (A) Schematic of DANI net. The input to DANI net is a T1 MR image from 

subject 𝑝 at age 𝜃 with diagnosis 𝑑. The output of the decoder is a set of longitudinal scans. Several loss functions (reconstruction loss 𝐿 𝑟𝑒𝑐 , biological constraints 
𝐿 𝑏𝑖𝑜 , discriminator losses 𝐿 𝐷 𝑧 and 𝐿 𝐷 𝑏 ) are combined together to train DANI net using a single time point of subject 𝑝 . (B) Longitudinal MRIs synthesized using 
4D-DANI-Net for a 69 years old cognitive normal subject from three orientations. The blue box indicates the input MRI and other images are synthesized MR scans 
from the model. Two magnified regions are illustrated at the bottom panel. Images are taken and adapted from Ravi et al. (2019) . 
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ystem ( Wardlaw et al., 2017 ; Bodini et al., 2016 ). Since white mat-
er hyperintensities play a key role in aging, stroke, and dementia, it
s important to quantify white matter hyperintensities using measures
uch as volume, shape and location. These measures are associated with
he presence and severity of clinical symptoms that support diagnosis,
rognosis, and treatment monitoring ( Kuijf et al., 2019 ). We can observe
he hyperintense regions clearly in T2-weighted and FLAIR brain MRI.
he evolution of white matter hyperintensities over a period of time
an be characterized as volume decrease (regress), volume stability, or
olume increase (progress). It is challenging to predict the evolution
f white matter hyperintensities because its influence factors such as
ypertension and aging are poorly understood ( Wardlaw et al., 2013 ).
hite matter hyperintensities evolution prediction is under-explored in

he literature, though other lesion progression, e.g. ischemic stroke le-
ion, has been modeled using a non-linear registration method called
ongitudinal metamorphosis ( Rekik et al., 2014 ). 

Rachmadi et al. (2020) predict the evolution of white matter hyper-
ntensities by generating a “disease evolution map ” using 2D GANs. In
he study, the baseline and follow-up scans are represented with irregu-
arity maps which describe the abnormal level in voxel resolution. Fur-
13 
her, the disease evolution maps are obtained by subtracting the baseline
rregularity maps from the follow-up irregularity maps. To model the
volution process of white matter hyperintensities, a generator, which
s implemented with an autoencoder namely U-Net ( Ronneberger et al.,
015 ), is introduced to project an irregularity map at baseline to its cor-
esponding disease evolution map in the follow-up year. A discriminator
s used to classify if the disease evolution map came from the genera-
or or the real scans. To enforce anatomically realistic modifications to
he follow-year irregularity maps, another discriminator is introduced to
dentify the irregularity maps at follow-up year from those follow-year
enerated maps which is obtained by summing up the generator input
nd output. The model schematic is shown in Fig. 7 A. The GAN model
an accurately predict a subject’s white matter hyperintensities volume
n the follow-up year with 1.19 ml error in average, and its classifi-
ation accuracy on whether each white matter hyperintensities subject
ill regress or progress is 72% without accessing any ground-truth la-
els. The qualitative assessment of the disease evolution maps are shown
n Fig. 7 B with red color indicating progress and blue color indicating
egress. Since this is a very early attempt in tackling white matter hyper-
ntensities dynamic prediction, there are several limitations in this work.
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Fig. 6. GAN applications in disease subtypes discovery (four-dimensional coordinate system developed by SMILE-GAN). (A) Voxel-wise statistical comparison (one- 
sided t -test) between cognitive normal subjects and subjects that predominantly belong to each of the four Alzheimer’s disease neuroanatomical patterns. (B) 
Visualization of subjects that belong to the four subtype clusters in a diamond plot. Images are taken and adapted from Yang et al. (2021) . 
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irstly, the model requires manual white matter hyperintensities labels
rom both baseline and follow-up sessions, which is not practical and
edious for human experts. Secondly, the method depends on the qual-
ty of the extracted irregularity map which tends to overestimate white
atter hyperintensities in the optical radiation and underestimate it in

he frontal lobe. 
Multiple sclerosis is one of the most prevalent autoimmune disor-

ers which affects the central nervous system ( Carass et al., 2017 ).
ith a relatively young age onset, multiple sclerosis has multiple symp-

oms such as vision loss, dizziness, and cognitive decline ( Carass et al.,
017 ). To better understand the physiopathology of multiple sclerosis,
ET with [ 11 C] Pittsburgh Compound-B radiotracer has been proposed
o visualize and measure the myelin which insulates and protects the
xon in the central nervous system, loss and repair in multiple sclero-
is lesions ( Stankoff et al., 2011 ). Specifically, the loss of myelin sur-
ounding the axon leads to the axon degeneration called demyelination.
n the contrary, new myelin sheath generation can repair the dam-
ged axon, namely remyelination. However, PET is an invasive and
xpensive imaging technique which is only available in limited hos-
itals around the world. Recently, a lot of interest has been drawn in
redicting the PET-derived myelin evolution in multiple sclerosis from
on-invasive and low-cost MRI. Although many studies ( Burgos et al.,
014 ; Huynh et al., 2016 ) utilize traditional machine learning tools,
uch as structured random forest, for image modality prediction and
rtifact reduction, they seldom focus on the underlying pathology dy-
amics. Wei et al. (2020) propose to predict the dynamic of myelin con-
ent changes, represented by the distribution volume ratio parametric
ap, using a two-stage conditional 3D GAN with attention regulariza-

ion for multiple sclerosis lesions. At the first stage, a conditional GAN
s utilized to map noise variable sampled from standard Gaussian dis-
ribution to PET image domain, where both the generator and the dis-
riminator are conditioned on four multi-sequential MRIs from the same
atient, including magnetization transfer ratio map (MTR) and three
TI measures: fractional anisotropy (FA), radial diffusivity (RD), and
xial diffusivity (AD). Next, the second stage generator takes in both
he multi-sequential MR images and the output from the first stage gen-
rator and produces a refined PET image. The other discriminator tries
o distinguish between the generator output and the ground-truth PET
14 
mage conditioned on the four multi-sequential MR images. To model
he spatially sparse lesion relationships, self-attention layers have been
ncorporated in the network architecture. The detailed model structure
s shown in Fig. 7 C. To validate the network, PET images of 18 multiple
clerosis patients are generated from both baseline and follow-up multi-
equence MRIs. Compared with the true longitudinal [ 11 C] PIB PETs,
he Dice coefficient for the masks of demyelination and remyelination
oxels in the GAN generated predictions are 71% and 69% on average
eparately. Visual assessments of the lesional myelin content changes
re demonstrated in Fig. 7 D. However, there are several shortcomings
n this work. Firstly, the lesion segmentation masks used in the model
re manually pre-defined, which is not practical for clinical usage. Sec-
ndly, the method utilizes multi-sequence MRIs as input for better PET
ynthesis quality. Incomplete inputs will cause performance degrada-
ion. Finally, the model has been only validated on a small, single-center
ataset. 

In this section, we introduced GAN-based tools which are developed
or brain lesion progression estimation. Although these studies show
romising potential in accurately predicting the dynamics of white mat-
er hyperintensities and multiple sclerosis lesions with generative mod-
ls, they suffer from problems in real-world deployment. For example,
anually annotated lesion masks should be replaced by automated seg-
entation algorithms to reduce human labor cost. Additionally, lon-

itudinal analysis benefits from the rich information from multi-modal
ata. In practice, however, the scarcity of complete multi-sequence MRIs
or each patient induces another challenge. Finally, reproducibility and
eplicability are huge issues for machine learning research in small-scale
atasets. We will provide potential solutions to these shortcomings in
he discussion section. 

.4. Brain tumor growth 

Glioblastoma multiforme tumors, the most common and aggressive
ype of primary brain tumors, have high intra-tumor heterogeneity,
eading to treatment failure and reduced survival ( Sottoriva et al., 2013 ).
edical imaging techniques such as MRI, DTI, and PET are commonly

sed in clinical practice for the detection, diagnosis and examination
f gliomas. Leveraging multiple time points of these imaging modali-
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Fig. 7. GAN applications in brain lesion (white matter hyperintensities and multiple sclerosis) evolution prediction. (A) Schematic of the GAN for white matter 
hyperintensities evolution prediction. (B) Disease evolution map examples produced by GAN and the derived irregularity map from two time points. (C) Two-stage 
conditional GAN for [ 11 C] PIB PET images generation from multi-sequence MR images for myelin content in multiple sclerosis dynamic prediction. (D) Examples 
of myelin content changes indicating demyelination (red color) and remyelination (blue color) from both GAN outputs and real PET images. Images are taken and 
adapted from Wei et al. (2020) , Rachmadi et al. (2020) . 
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ies can provide rich information for predicting tumor evolution. Im-
ortantly, the study of brain tumor growth is critical for the clinical
iagnosis of the disease, particularly for treatment planning, tumor ag-
ressiveness quantification and progression prediction ( Fathi Kazerooni
t al., 2019 ; Kazerooni and Davatzikos, 2021 ). 

Previous work on brain tumor growth modeling mainly rely on com-
lex mathematical formulations such as a system of partial differential
quations to capture the effects of the invasion and diffusion of tumor
ells ( Elazab et al., 2018 ). However, these models are often insufficient
o represent various growth processes due to their limited number of
arameters. Additionally, the estimations of model parameters are also
ifficult for each individual without leveraging broader knowledge of tu-
or patterns in the cohort. A Bayesian approach has also been proposed

y Angeli et al. (2018) for the prediction of patient-specific tumor cell
ensity from MRI and PET modalities. But this work was designed for
ersonalized radiotherapy treatment planning by only using the cross-
15 
ectional dataset instead of longitudinal dataset, which does not en-
ble the investigation of tumor growth pattern as time progresses. Deep
earning-based methods have also been developed for tumor growth
tudies. For example, Zhang et al. (2020) propose a spatial-temporal
onvolutional long short-term memory method to capture the temporal
ynamics of pancreatic tumors from multiple time points of CT images,
hile the method has not been applied to study cerebral tumors. To ad-
ress the above limitations, GANs have been leveraged for its ability to
enerate realistic data and have been lately applied in the prediction of
rain tumor growth. 

Elazab et al. (2020) propose a novel method using stacked 3D GANs
GP-GAN) for the growth prediction of glioma. The framework consists
f 𝑛 − 1 stacked GANs where 𝑛 denotes the number of time points. The
enerators are initialized by tumor boundaries and tissue feature maps
FMs), while FMs have semantic labels for white matter, gray matter
nd CSF. As shown in Fig. 8 A, within each GAN block, T1 MR images
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Fig. 8. GAN applications in brain tumor growth pre- 
diction. (A) GP-GAN architecture for glioma growth 
prediction. 𝑥 𝑔𝑖 ∶ generated image at time point 𝑖 ; 𝐺 𝑖 : 
generator at time point 𝑖 ; 𝐷 𝑖 : discriminator at time 
point 𝑖 . (B) Growth prediction for subjects with low- 
grade glioma (left) and high-grade glioma (right) at 
different time points via GP-GAN. GT: ground truth; 
Pre: prediction. (C) Schematic of SMIG model. The 
model is trained to 1) generate an abnormal brain 
based on a healthy brain from ADNI dataset and tu- 
mor volume from TCIA; 2) change tumor location. 
𝑥 𝑅 ∶ image represents a healthy brain or tumor in 
real location; 𝑥 𝑉 ∶ tumor volume provided by TCIA; 
𝑥 𝐺 ∶ generated image; 𝐺: generator; 𝐷: discriminator. 
(D) SMIG model applications on single patient images 
from BraTS dataset. Images are taken and adapted 
from Elazab et al. (2020) , Kamli et al. (2020) . 
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nd FMs are fed into the generator 𝐺 𝑖 for every time point 𝑡 𝑖 . The FMs
an help guide the generator to better estimate the tumor boundary at
he next time point. Meanwhile, the discriminator 𝐷 𝑖 is trained to dis-
inguish between the generated tumor boundary and the ground truth.
he entire GP-GAN can thus be progressively trained in an end-to-end
ashion for jointly training all the network parameters. The training will
16 
nable generator 𝐺 𝑖 +1 to construct a good estimation of the tumor at the
ext time point from the current input. The objective function for train-
ng the network includes two loss terms as Dice and 𝐿 1 norm losses,
hich are beneficial for the generated images to be more similar to the
round truth at 𝑡 𝑖 +1 and for the model to be less affected by artifacts. GP-
AN further adapts a modified 3D U-Net architecture for the generators,
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hich has the advantage of skip connections to integrate hierarchical
eatures to better generate the images. Fig. 8 B shows growth prediction
esults for subjects with low-grade glioma and high-grade glioma at dif-
erent time points via GP-GAN. GP-GAN outperforms the other state-of-
he-art reaction diffusion-based and deep learning-based tumor growth
odeling methods, as measured by Dice coefficients and Jaccard index

f 78.97% and 88.26%. For clinical applications, this method can po-
entially facilitate the computer-aided prognosis of brain tumors, while
ore detailed investigations are required, such as in vivo experiments for

alidation. However, there exist noticeable limitations to this method.
irstly, the current tumor growth study may not develop a more refined
odel for various segmented parts of the tumor, such as edema, tumor

ore and necrosis. This detailed tumor modeling by considering differ-
nt tumor regions could generate more accurate and clinically relevant
umor growth prediction since different tumor parts could exhibit dis-
inct growth patterns. Additionally, the refined model could potentially
ring in a larger number of parameters, as required by modeling differ-
nt tumor regions. This will increase the difficulty of training and the
ikelihood of overfitting, especially on medical imaging datasets with
imited sample size. 

Due to privacy concerns and the obstacles in establishing a large
ata consortium across multiple institutions, data shortage is another
ajor challenge in studying brain tumor growth. Since GANs are com-
only used to generate realistic data, Kamli et al. (2020) propose a syn-

hetic medical image generator (SMIG) based on 3D GAN to generate
nonymised MRI for data augmentation. The objective of the proposed
odel is to tackle the issues of data privacy, imbalanced data and insuffi-

ient training samples, which could result in poor performance in terms
f classification accuracy and sensitivity. In particular, SMIG creates dif-
erent types of synthetic MR images, e.g., the generation of the abnormal
rain based on the healthy brain and tumor volume, as well as chang-
ng tumor to a new location from the input of original image and tumor
olume, as shown in Fig. 8 C. Thus, SMIG is superior to traditional data
ugmentation techniques by providing different images with rich tumor
nformation instead of applying geometric transformation to the original
mage. Fig. 8 D shows examples of the application of the SMIG model on
ingle patient images from the BraTS dataset. Additionally, the authors
evelop a tumor growth predictor (TGP) model based on an end-to-end
NN for tumor growth prediction. The prediction model is motivated
y the lack of deep learning-based models for investigating tumor vol-
me growth prediction as well as the availability of synthetic data from
MIG. The TGP network takes the first patient scan as the input and
redicts the scan after 90 days (i.e., tumor volume). The network archi-
ecture consists of an encoder-decoder framework. The encoder extracts
eatures into a low-dimensional latent representation, and the decoder
roduces the final output as the same size of input. The results demon-
trate that a high accuracy for the tumor prediction can be obtained as
9.9%, 71.7% and 72.3% of recall, precision and Dice coefficient due to
he increased sample size generated by the SMIG model. Therefore, the
dvantages of the SMIG model include privacy protection by generating
ynthetic data for research, medical data anonymising, which enables
he future data sharing across multiple institutions and low-cost dataset
eneration procedure with high-quality MRIs. Nevertheless, there are
ew limitations of the paper. Firstly, the model has not been trained on
ther datasets for methodological validation. Secondly, the method has
ot integrated a mathematical model of glioblastoma growth in the TGP
odule. 

The possibility of applying GAN for brain tumor growth prediction
as been demonstrated in the reviewed papers. There are several di-
ections for future works. Firstly, an extension of the current research
an be the integration of multi-modal neuroimaging data, which should
mprove the prediction performance by leveraging rich information for
lioblastoma from different medical imaging data sources. Secondly, the
ataset collection for a larger sample size is of central significance for
AN-based methods. Data augmentation techniques and patch-based

raining strategy can also be considered to remedy the data shortage. Al-
17 
ernatively, the models should also be validated on animal experiments
o evaluate the feasibility for human subjects in clinical scenarios. 

. Discussion and future directions 

GAN-based techniques have shown great promise in disease classi-
cation, anomaly and tumor detection, healthy brain aging modeling,
lzheimer’s disease progression, and brain lesion evolution, as well as
rain tumor growth modeling. Here, we briefly summarize the develop-
ent of the adoption of GANs in neuroimaging and clinical neuroscience

pplications and provide future perspectives correspondingly. 
Disease classification . GANs can identify patterns in high-dimensional,

ulti-modal imaging datasets and detect disease biomarkers at early
tages. They can also enrich the dataset by synthesizing other modal-
ties, and thereby boost classification performance through leveraging
he complementary information provided by different modalities. In this
ection, we discussed the use of GANs in disease classification with a
rimary focus on Alzheimer’s disease. We firstly examined GAN-based
odels on performing disease classification using single-modality data

uch as structural T1-weighted MRI and rs-fMRI ( Zhao et al., 2020 ;
irakhorli et al., 2020 ). Additionally, we investigated disease classi-
cation frameworks using multi-modal imaging data where GANs are
sed for missing data imputation such as PET images, which are usually
carcely available due to high cost and radioactive exposure, synthesis
rom MRI ( Gao et al., 2022 ; Lin et al., 2021 ; Yan et al., 2018 ; Liu et al.,
020 ; Hu et al., 2022 ). Functional measures are often studied in iso-
ation but might provide important insights on behavior and cognitive
bility, which are clinical markers of disease progression. In the future,
e can potentially improve disease classification and diagnosis perfor-
ance of neurodegenerative disease by leveraging both structural MRI

nd resting-state functional connectivity network components and re-
ating the learned representations with cognitive measures. 

Tumor detection . Tumor detection is a challenging task for machine
earning systems due to the highly heterogeneous presentation of brain
umors as well as the relatively limited amount of labeled data available
 Bakas et al., 2018 ). GANs have shown promise in tumor detection tasks,
n both supervised and unsupervised anomaly detection ( Han et al.,
019 ; Park et al., 2021 ; Schlegl et al., 2017 ; Nguyen et al., 2023 ). In
erms of dataset enrichment for supervised learning, GANs have diffi-
ulty modeling the heterogeneity of tumor data, given the limited sam-
le size. On the other hand, GAN-based unsupervised anomaly detection
nly requires data from healthy subjects and is, instead, better suited to
his problem. So far, many approaches have been proposed in GAN-
ased anomaly detection, but standardized benchmarks for principled
valuation and comparison are still absent. 

Brain aging . In contrast to group/cohort analysis, where a one-size-
ts-all approach is used to capture a homogenous pattern of brain ag-

ng for all subjects within a group ( Huizinga et al., 2018 ), GAN mod-
ls reviewed in this section ( Xia et al., 2021 ; Peng et al., 2021 ) help
n capturing individual-level neuroanatomical variation which is con-
itioned on each subject’s baseline brain anatomy, age, and diagnosis.
ince many factors in addition to age and disease can influence brain
hanges, ( Franz et al., 2023 ) a stratified approach for brain age mod-
ling is necessary, which can further accommodate additive effects of
onfounding factors, such as genotype and lifestyle. However, GANs are
ften susceptible to mode collapse. Thus, learning individualized brain
evelopment is a non-trivial problem that requires careful model selec-
ion and training, as well as descriptive quantitative metrics to measure
enerative performance. 

Disease progression . In this section, we discussed models that leverage
ANs to simulate disease effects or stages using structural brain images
nd covariates, such as diagnosis and age ( Ravi et al., 2022 ). To simplify
he disease effects models, unrealistic assumptions are usually made in
he literature. GAN has shown its ability in disentangling the structural
eterogeneity of Alzheimer’s disease in a baseline setting where assump-
ions are not necessary ( Yang et al., 2021 ). However, capturing disease
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ffects in a longitudinal setting is non-trivial. Thus, extending these algo-
ithms for longitudinal analysis is a potential promising future direction
f modeling disease progression. 

Lesion progression . We discussed two pioneering GAN-based studies
n predicting the progression of white matter hyperintensities and multi-
le sclerosis separately in this section ( Wei et al., 2020 ; Rachmadi et al.,
020 ). Longitudinal analysis is a challenging task especially at image
evel. Instead of directly estimating the dynamics of the brain lesions,
uthors from both works take the shortcut by leveraging GANs to gen-
rate the evolution maps from baseline scan to follow-up scan. These
arly attempts show the potential of GANs in tackling voxel-level lesion
ynamics prediction which is clinically important for doctors’ treatment
ecision making. Given the small sample size from both studies, GANs
re very likely to be over-fitted to the training data as other deep learn-
ng methods in general. Thus, large-scale consortia need to be estab-
ished to cover the diverse populations world-wide for unbiased preci-
ion medicine. 

Tumor growth . Accurate prediction of brain tumor growth from non-
nvasive medical imaging scans is critical for disease prognosis and treat-
ent planning. In this section, two GAN-based methods have demon-

trated their ability in both predicting the glioma growth at a future
ime point and generating realistic tumor images for data augmenta-
ion ( Elazab et al., 2020 ; Kamli et al., 2020 ). In terms of longitudinal
rediction, the study shows GANs empirically outperform other tumor
rowth models in the regime of limited sample size. In the data en-
ichment study, the tumor volume prediction task largely benefits from
he increase of training dataset. These efforts illustrate the advantages
f GANs in capturing the tumor growth characteristics by generating
ynthetic tumor scans. However, thorough validation of tumor growth
rediction using GANs is necessary to evaluate the reliability of the
odel deployment at the clinical setting. Additionally, multimodal neu-

oimaging features might help in improving the growth prediction per-
ormance. Lastly, GANs-based tumor growth prediction algorithms can
urther facilitate survival prediction of the patients. 

Besides these early successes, there are still limitations and chal-
enges in developing diagnosis and longitudinal progression prediction
odels using these GAN-based methods. Here we discuss some potential

ssues and open questions to be addressed in the future. 
Cross-study robustness . In order for deep learning models to be

linically useful, generalizability across multi-study datasets with di-
erse populations is important. GAN-based techniques perform well
n single-site and single-study datasets, but previous research sug-
ests that pooling data from multiple centers can reduce their statis-
ical power and generalizability ( Onofrey et al., 2023 ; Wang et al.,
022 a; Li et al., 2020 b). Data harmonization methods ( Fortin et al.,
017 ; Pomponio et al., 2020 ; Wang et al., 2021 b; Moyer et al., 2020 ;
adua et al., 2020 ; Shishegar et al., 2021 ) offer a potential solution to

ackle this challenge. For example, ComBat ( Fortin et al., 2017 ) is a lin-
ar mixed model that removes confounding site effects while preserv-
ng biological-relevant information in the data. Alternatively, models
rained on a single-study can be adapted to unseen datasets with sev-
ral strategies. The adversarial-robustness approach, for example, uti-
izes the discriminator from GAN to enforce the feature extractor to
earn representations that are indistinguishable from the source study
model trained on) and the target study (unseen site). Similar to ComBat,
ANs have also been used to explicitly “harmonize ” scans across sites
t image level ( Dewey et al., 2020 ; Zuo et al., 2021 ). In particular, un-
aired image-to-image translation methods have demonstrated promise
n mapping scans across sites while preserving anatomical and predic-
ive signals ( Bashyam et al., 2021 ; Modanwal et al., 2020 ; Gao et al.,
019 ). 

Biological relevance . GAN-based methods must generate biologically-
elevant outputs for them to be useful. Current evaluation metrics
 Heusel et al., 2017 ; Tolstikhin et al., 2016 ) for GAN-based models pri-
arily focus on measuring distances between real and generated images
ithout verifying the preservation of basic underlying biological infor-
18 
ation. Specific metrics or evaluation procedures should be designed
nd utilized when we apply GAN-based models for synthesizing biomed-
cal images. For example, one can compare the ability of both real and
enerated images to predict a variety of significant biological and clin-
cal characteristics, including age, sex, cognitive performances, etc. Be-
ond post-hoc evaluation analyses, leveraging multi-modal data besides
euroimaging data during the training procedure has a better chance of
enerating biologically meaningful brain images. Given the growing ev-
dence linking genetic variants and brain phenotypes ( Wen et al., 2022 a,
022 b; Zhao et al., 2021 ), it will be interesting to incorporate genetic
ata into model frameworks in order to generate imaging patterns or
stimate disease effects underpinned by genetic differences or other bi-
logical mechanisms. 

Disease heterogeneity . Neurological and neuropsychiatric diseases are
ften heterogeneous in neuroimaging and clinical phenotypes. GAN-
ased methods ( Yang et al., 2021 ; Gu et al., 2022 ; Yang et al., 2022 )
ave been applied to estimate various disease effects on neuroimag-
ng features, and distill them into low-dimensional representations,
hich explain cognitive and clinical differences as well as possess dis-

riminant and prognostic signals. However, the majority of these ap-
roaches cluster imaging data into discrete subtypes with variations
ontributed by both disease heterogeneity and severity. It is still chal-
enging to efficiently model continuous disease progression processes
nd to parse disease severity and heterogeneity from imaging data in-
ependently ( Yang et al., 2022 ). Moreover, most of the recent meth-
ds only handle regional volume features derived from neuroimaging
ata. The GAN model can be potentially applied to voxel-wise data
nd learn heterogeneity from subtle imaging features. Lastly, existing
ethods were primarily trained with neuroimaging data only, while
ost hoc analyses were performed to further discover potentially as-
ociated genetic and clinical characteristics. A direct derivation of ge-
etically driven disease subtypes or imaging signatures might provide
ore biological insights into disease heterogeneity and offer promise

n precision medicine, targeted clinical trial recruitment, and drug
iscovery. 

Model interpretability . The interpretability of machine learning meth-
ds is critical in explaining how pathological processes affect the struc-
ures of human brains ( Li et al., 2021 ). However, nonlinear activation
unctions complicate the interpretation of deep learning-based mod-
ls. Many algorithms have been proposed for addressing this problem,
ncluding saliency map ( Simonyan et al., 2013 ), class activation map
 Zhou et al., 2016 ), etc. GAN-based methods offer another potential ap-
roach for model interpretation via data generation. For instance, in the
ontext of modeling heterogeneous disease processes, GAN-based gener-
tive methods could explicitly synthesize a variety of patients’ imaging
ata from healthy controls’ data based on latent variables ( Yang et al.,
021 ; Xia et al., 2021 ; Gu et al., 2022 ; Yang et al., 2022 ). Comparisons
f generated patient’s data with input control’s data, both visually and
uantitatively, help in interpreting imaging patterns represented by the
atent variables and dissect various neuroanatomical changes influenced
y distinct underlying disease effects. 

Fairness-aware learning . Unbalanced representation of demograph-
cs in the training data is another challenge when performing super-
ised/unsupervised learning using generative models. These models
an amplify the bias in data and lead to undesirable performances to-
ards underrepresented groups, such as females and African Ameri-

ans ( Larrazabal et al., 2020 ; Seyyed-Kalantari et al., 2021 ; Wang et al.,
022 b). This leads to concerns of health care equity and algorithmic fair-
ess of ML-based diagnostic systems. Recently, several fairness-aware
lgorithms have been developed to tackle this challenge by using ac-
essible demographic information or reweighting schemes for under-
epresented samples. For example, FairGAN ( Xu et al., 2018 ) utilizes
 conditional GAN to generate balanced samples across demographic
ttributes and disease categories. Similarly, causal FairGAN ( Xu et al.,
019 ) embeds a causal mechanism into the generator of a GAN to sim-
late complex data generating processes with multiple confounders. 
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Table 4 

Computational complexity and reproducibility of disease diagnosis-specific GANs publications. Publications are clustered 
by categories and ordered by year in ascending order. 

Publication Method GPU Time (hr) Code Pre-trained Model 

Disease Classification 

(Yan et al., 2018) Conditional GAN N/A N/A N/A 
(Liu et al., 2020) GAN N/A N/A N/A 
(Mirakhorli et al., 2020) GNN & GAN N/A N/A N/A 
(Pan et al., 2021b) Feature-consistent GAN N/A N/A N/A 
(Lin et al., 2021) Reversible GAN N/A N/A N/A 
(Gao et al., 2021) Pyramid and Attention GAN N/A N/A N/A 
(Yu et al., 2021) Higher-order pooling GAN N/A N/A N/A 
(Pan et al., 2021a) Decoupling GAN N/A N/A N/A 
(Zuo et al., 2021) Hypergraph perceptual network 8 N/A N/A 

Tumor Detection 

(Han et al., 2019) PGGAN & MUNIT N/A N/A N/A 
(Huang et al., 2019) Context-aware GAN N/A N/A N/A 
(Park et al., 2021) StyleGAN N/A N/A N/A 

Anomaly Detection 

(Wei et al., 2019) Sketcher-Refiner GAN N/A N/A N/A 

Table 5 

Computational complexity and reproducibility of brain development and disease progression analysis-specific GANs publications. Publications are clustered by 
categories and ordered by year in ascending order. 

Publication Method GPU Time 
(hr) 

Code Pre-trained Model 

Brain Aging 

Xia et al. (2021) Transformer GAN N/A https://github.com/xiat0616/BrainAgeing N/A 
Peng et al. (2021) Perceptual GAN N/A https://github.com/liying-peng/MPGAN N/A 

Alzheimer’s Progression 

Bowles et al. (2018) WGAN N/A N/A N/A 
Wegmayr et al. (2019) Recursive GAN 144 https://github.com/vwegmayr/brain-aging N/A 
Zhao et al. (2020b) Multi-information GAN N/A N/A N/A 
Yang et al. (2021) Cluster & Info-GAN N/A https://github.com/zhijian-yang/SmileGAN N/A 
Ravi et al. (2022) Conditional GAN 72 https: 

//github.com/daniravi/Brain- MRI- Simulator 
N/A 

Lesion Evolution 

Rachmadi et al. (2020) Multi-discriminator GAN N/A https://github.com/febrianrachmadi/dep- gan- im https://github.com/febrianrachmadi/dep- gan- im 

Wei et al. (2020) Conditional Attention 
GAN 

N/A N/A N/A 

Tumor Growth 

Elazab et al. (2020) Stacked Conditional GAN N/A N/A N/A 
Kamli et al. (2020) GAN N/A N/A N/A 
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Multi-view learning . Multi-modal MR images help in boosting the
odel prediction performance, but the incompleteness of the inputs,
hich is very common in practice, might be detrimental to the algo-

ithm. Models should be robust to the situation when there are several
bsences of MR sequences from the patients to reduce the scanning ex-
ense. 

3D volume v.s. 2D image synthesis . During the GAN design process,
ne important decision is whether to model the brain imaging data as a
D volume or a sequence of 2D images or slices. The methodologies re-
iewed in this paper have used both 2D ( Xia et al., 2021 ; Rachmadi et al.,
020 ) as well as 3D ( Yu et al., 2021 ; Peng et al., 2021 ) designs. The ad-
antage of using 3D designs is that the GAN learns to synthesize whole
rain volumes, thereby capturing 3-dimensional spatial features that can
id the disease classification or progression analysis. On the other hand,
D designs are limited to capturing slice-level features that might not be
ufficient for certain applications. For example, tumor growth modeling
nvolves modeling volumetric changes of the tumor over time, hence a
D design was adapted for this problem ( Elazab et al., 2020 ). However,
D GANs require large training data since the number of training param-
ters of the model explodes due to high dimensionality of the dataset.
oreover, computational and memory expenses increase significantly

s the new dimension comes in. This might limit the adoption of 3D de-
19 
igns for certain applications where sufficient training data is not avail-
ble. Another direct consequence of using 3D models is that they can be
omputationally expensive as they require optimization of larger neural
etworks ( Singh et al., 2020 ). 

Clinical deployment . Translating machine learning models from the
esearch stage to clinical practice for assisting decision making, is a
ritical step. However, these models, which are often developed un-
er ideal conditions, face several challenges. Firstly, unlike research-
riented data that have passed quality check, clinical data are noisy and
ften incomplete, in terms of available sequences or modalities. Simi-
ar to other machine learning models, GAN-based methods should be
obust to noisy input and be able to handle missing values. Secondly,
istribution mismatch commonly happens between training (model de-
elopment) and testing (model inference) data. We have discussed this
hallenge and potential solutions in the “cross-study robustness ” section.
hirdly, deep learning models are usually developed with GPUs, which
re not available in hospitals in general, to speed up the training and
nference process. To achieve efficient model inference, cloud-based ser-
ices, which have well-established machine learning infrastructure, are
otential choices for hospitals to fill the gap of computing hardware and
rogramming expertise. Finally, the results produced by the GAN-based
odels should be easily interpretable for the doctors and practitioners.

https://github.com/xiat0616/BrainAgeing
https://github.com/liying-peng/MPGAN
https://github.com/vwegmayr/brain-aging
https://github.com/zhijian-yang/SmileGAN
https://github.com/daniravi/Brain-MRI-Simulator
https://github.com/febrianrachmadi/dep-gan-im
https://github.com/febrianrachmadi/dep-gan-im
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e have briefly discussed this concern in the “model interpretability ”
ection. 

Complexity and reproducibility . Both model and computational com-
lexities of GAN-based methods are significantly greater than the tradi-
ional machine learning algorithms. For example, it can take from a few
ours to a few days in GPU hours to train GANs as shown in Tables 4
nd 5 . The high computational cost of GANs brings us the high-
imensional and realistic-looking synthesized images which are not pos-
ible by using traditional generative models. Although deep learning al-
orithms suffer from poor interpretability issues due to the non-linear
apping in general, GAN-based methods help in providing explainable

isualizations on the model predictions where we discuss more in the
Model interpretability ” section. Reproducibility is another important
actor in evaluating the research work and their potential clinical use.
nfortunately, as shown in Tables 4 and 5 , only a few publications have

hared their code and only one of them released the pre-trained model.
he research community of machine learning in medical imaging should
ake the responsibility to release code and pre-trained parameters in or-
er to encourage replicable research and accelerate the transition from
esearch stage to clinical practice. 

. Conclusions 

In this review, we present the wide and successful adoption of a
eep learning technique, namely generative adversarial networks, in
euroimaging and clinical neuroscience applications by briefly intro-
ucing the mechanism of GANs and showcasing their promises in sev-
ral clinically meaningful tasks, including disease diagnosis, anomaly
nd tumor detection, brain development modeling, Alzheimer’s progres-
ion estimation, lesion dynamics prediction, and tumor growth predic-
ion. Based on the model architecture and experimental setup designs
f each study covered in this review, we analyze the advantages and
itfalls of these algorithms from both technical soundness and clinical
ractice perspectives. In addition, given the gap between the current sta-
us of methodology development and clinical needs, we provide several
imely future promising directions, such as algorithm reproducibility,
nterpretability, and fairness, which are critical in potential deployment
f machine learning models. 
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