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Abstract— Objective: Artificial intelligence and machine learning 
are transforming many fields including medicine. In diabetes, 
robust biosensing technologies and automated insulin delivery 
therapies have created a substantial opportunity to improve 
health. While the number of manuscripts addressing the topic of 
applying machine learning to diabetes has grown in recent years, 
there has been a lack of consistency in the methods, metrics, and 
data used to train and evaluate these algorithms. This manuscript 
provides consensus guidelines for machine learning practitioners 
in the field of diabetes, including best practice recommended 
approaches and warnings about pitfalls to avoid.  Methods: 
Algorithmic approaches are reviewed and benefits of different 
algorithms are discussed including importance of clinical 
accuracy, explainability, interpretability, and personalization. We 
review the most common features used in machine learning 
applications in diabetes glucose control and provide an open-
source library of functions for calculating features, as well as a 
framework for specifying data sets using data sheets. A review of 
current data sets available for training algorithms is provided as 
well as an online repository of data sources. Significance: These 
consensus guidelines are designed to improve performance and 
translatability of new machine learning algorithms developed in 
the field of diabetes for engineers and data scientists.  

Index Terms— diabetes, machine learning, artificial 
intelligence, deep learning, decision support, automated insulin 
delivery, glucose prediction, data science, feature engineering 

I. INTRODUCTION 

A. Diabetes and its complications 
Type 1 diabetes (T1D) is an autoimmune metabolic disorder whereby 
the beta cells within the pancreas are destroyed and are no longer able 
to produce insulin [1]. People living with T1D must therefore take 
exogenous insulin to enable their body to utilize glucose in the blood 
[2]. Without exogenous insulin, glucose levels in the blood can become 
dangerously high, which can be toxic and can lead to long term damage 
to tissue including diabetic retinopathy, neuropathy, cardiovascular 
disease, and limb loss [3]. Exogenous insulin delivery poses risk as 
well because too much insulin delivery can lead to dangerous 
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hypoglycemia which can be fatal if extreme and untreated [4]. Type 2 
diabetes (T2D) is different from T1D in that the beta cells in the 
pancreas can initially still produce insulin; however, the cells in the 
person’s body have become resistant to insulin and so glucose levels 
can become dangerously elevated and toxic to the person when insulin 
secretion becomes inadequate relative to insulin resistance. In addition 
to T1D and T2D there is gestational diabetes, which is a condition that 
can happen during pregnancy whereby a woman becomes increasingly 
resistant to insulin and may require exogenous insulin delivery or other 
medications to manage their glucose [5]. New treatments in the area of 
diabetes care are now becoming possible because of advances in sensor 
technology, mobile computing, new control algorithms, data mining 
and also in artificial intelligence (AI) and machine learning (ML).  

B. Current treatment approaches in diabetes 
In T1D, the state-of-the-art therapy for managing glucose is automated 
insulin delivery (AID). An AID is a closed-loop system  that comprises 
a continuous glucose monitor (CGM) that measures glucose 
subcutaneously about once every 1 to 5 minutes, an insulin pump that 
delivers insulin through a subcutaneous tube, and a control algorithm 
that receives the current and historical CGM data and calculates how 
much insulin to deliver to the person through the pump [6]. The 
introduction of AID into clinical care has resulted in significant 
improvements in glucose management such that use of AID can yield 
a reduction of hemoglobin A1C (HbA1c) by 0.2-0.5% compared with 
basal-bolus insulin therapy [7-9] in which there is no continuous 
feedback from glucose sensing devices and automated adjustments to 
insulin dosage as in closed-loop systems. Examples of open-loop 
therapies include basal-bolus insulin therapy and multiple daily 
injections (MDI). A lower HbA1c means that the person is spending 
less time in high glucose ranges that can cause long-term damage to 
health. 
 While AID has made a positive impact on helping people with T1D 
better manage their glucose levels, AID is not perfect  [10]. Current 
commercial AIDs are so-called hybrid closed-loop systems, which 
means that they are not fully automated and require the person using 
the system to announce their carbohydrate intake to the system so that 
meal insulin may be dosed. People oftentimes forget to announce their 
meals to the system or they indicate an incorrect carbohydrate in the 
meal, which can cause large glucose excursions during the daytime 
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when food is consumed. Exercise can be 
challenging because exercise (especially aerobic 
exercise) can cause sharp drops in glucose and 
dangerous hypoglycemia[11]. For these reasons, 
AID systems have primarily shown benefit during 
the overnight time, when meals and exercise do not 
occur [12].  
 Complicating the problem further is that many 
people still choose not to use AID systems for a 
variety of reasons including cost, comfort, and 
inconvenience of having multiple subcutaneous 
devices connected to their body. The majority of 
people with diabetes on intensive insulin therapy 
still use MDI therapy whereby they deliver insulin 
through an insulin pen. People using MDI therapy 
oftentimes make incorrect decisions about how 
much insulin to dose themselves and can therefore 
suffer from the complications associated with 
inadequate glucose management.   

C. Improving diabetes treatment using AI 
and ML 
AI and in particular ML, are driving discovery 
across the sciences in engineering, computer 
science, medicine and the field of diabetes treatment and therapeutics. 
ML has become particularly important as ubiquitous connected sensors 
and drug delivery devices are becoming integrated with mobile 
computing to generate large data sets that can be used to identify 
patterns that are relevant for improving health outcomes (Figure 1).   

While the past 20 years have led to profound innovations in CGM 
and connected insulin pumps and pens, the field of ML has also had 
significant growth and innovation during this time.  ML is a powerful 
tool that can be used to overcome the current challenges of current AID 
and MDI therapies.  For example, ML can be used for identifying 
patterns in CGM that are useful for AID control algorithms [13]. ML 
can also be used to augment the automation of insulin or other hormone 
delivery using reinforcement learning to adapt over time to 
individuals’ unique physiologies or to respond to disturbances such as 
exercise [14-18]. ML can be leveraged to develop automate 
recommendation systems used in decision support systems to help 
people living with diabetes on MDI therapy and care providers better 
manage insulin dosing [19-22]. There have been major successes in 
use of ML in applications of diabetes care. Deep learning methods 
have been successfully reported for automated detection of diabetic 
retinopathy and diabetic macular edema in retinal fundus photographs 
[23, 24]. Closed-loop control algorithms for automated insulin and 
other hormone delivery have been augmented with ML methods for 
automating the detection of hypoglycemia during exercise [16, 18, 25-
27], meal detection [28-37] and time series prediction models that can 
be incorporated into model predictive control algorithms to achieve 
over 70% time in glucose target range (TIR, 70-180 mg/dL) [16, 26]. 
Anomaly detection techniques can identify disturbances and 
complications in diabetes management [38, 39].  

However, with the growth of new ML algorithms for use in diabetes 
applications, and their associated challenges in their development and 
implementation, there is an increasing need for best practices including 
guidelines on (1) how features are generated, (2) standards in metrics 
and how they are calculated, (3) standards on how data reconciliation, 
and data imputation methods are reported and performed, and (4) best 
practices on algorithmic approaches to enable better reproducibility 
and well-informed comparisons as new technologies are presented. 
Developing ML algorithms for diabetes applications is particularly 
difficult, mainly due to the scarcity and lack of structure in available 
datasets. Moreover, the high inter- and intra-individual variability in 
glucose dynamics across people living with diabetes further 
compounds the challenge. This variability is influenced by many 

factors including nutrition, lifestyle choices, medication regimens, 
stress, and underlying health conditions beyond diabetes [40]. In an 
ideal scenario, a larger volume of data would be employed to train ML 
algorithms on highly variable data sets. However, this is not often the 
case within the diabetes field. Many of the available data sets are 
collected either in clinical studies under highly controlled conditions 
that are difficult to reproduce in real-world scenarios or under free 
living conditions when reporting of daily activities (e.g., meals, 
physical activity, sleep quality, pain, etc.) and life events (e.g., those 
leading to high stress levels) is imperfect. Therefore, it becomes 
critical to establish and adhere to best practices for data processing to  
ensure ML models used in drug delivery and diabetes therapy are 
generalizable and pose minimal risk to users.  

Similar to other survey manuscripts on ML in diabetes [41-43], this 
manuscript provides a review of prior work on ML methods in various 
applications in the area of diabetes with focus on T1D. Additionally, 
this manuscript provides a framework for how researchers can 
approach feature engineering, limited data set sizes, data imbalance 
issues, data set variability, model explainability and interpretability, 
personalization, and application-specific considerations for algorithm 
selection that can be generally applied to other applications in 
medicine. 

We present consensus-based best practices and pitfalls to avoid 
when designing, training, and evaluating new models that are used in 
glycemic control. This guide compiles lessons learned by examining 
prior work in ML in diabetes. The field is dynamic, so no guide can be 
exhaustive. As data science evolves, some methods might need 
revision or could altogether be replaced by better approaches. This 
consensus manuscript has three primary objectives: 
(i)  Provide a tutorial style guide to data scientists working in the field 

to accelerate the development and use of ML, 
(ii) Provide consensus guidelines on standards and best practices to 

appropriately exploit available data sets, create 
training/validation/test data sets, apply ML methodology, perform 
feature engineering, and present results, 

(iii) Provide recommendations and an open-source library for 
standardizing calculations of common features and model 
evaluation metrics used in diabetes ML algorithms and an online list 
of data sources. 

D. Methods for selecting manuscripts, reaching consensus 
The PubMed, Science Direct and Google Scholar databases were 
considered to obtain the most relevant research works of the last thirty 

Figure 1: Current therapies for people living with T1D include automated insulin delivery and 
multiple daily injection therapy (MDI).  Advances in mobile, cloud connected devices and 
improved computing power in combination with AI/ML are enabling new technologies in 
diabetes therapeutics including fully-automated hormone delivery and advanced decision 
support for use in MDI.  
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years using the search terms ‘diabetes’, ‘machine learning’, ‘glucose 
prediction’, ‘continuous glucose monitoring’, ‘automated insulin 
delivery’, ‘closed-loop’, ‘decision support’, and ‘artificial 
intelligence’. Our search identified 189 manuscripts that were used to 
support the best practices and pitfalls presented. Manuscripts were 
reviewed based on one of the following modeling aims related to 
glucose control: (i) short-term continuous glucose monitoring (CGM) 
prediction within < 60 min, (ii) long-term CGM prediction over 60 
min, (iii) CGM prediction during exercise, (iv) nocturnal CGM 
prediction, (v) detection and estimation of events including 
hypoglycemia and meals (vi) personalization and adaptation (vii) other 
applications of ML in diabetes management including closed-loop 
control and decision support. While many manuscripts have reported 
on T1D because of the availability of CGM in this patient cohort, most 
of the methods presented here may be applied to T2D and gestational 
diabetes as well. Certain manuscripts are included as examples of good 
practices or pitfalls in the field. We used a modified Delphi method 
[44] for reaching consensus on the guidelines. In-person meetings were 
arranged with each author to discuss the approach and gather initial 
feedback. A set of questions were distributed to authors regarding a 
preliminary set of guidelines. Authors provided written feedback on 
the questions and authors met in person and virtually at the Advanced 
Technologies and Treatments in Diabetes in Barcelona in April 2022. 
A first draft was released, and three subsequent meetings were 
organized to reach consensus among the authors before a final draft 
was completed.  

E. Related work 
There have been several survey, review, and meta-analyses 
manuscripts on ML in the diabetes domain [43, 45-47], presenting, 
mainly, summaries of various algorithms and methodologies while 
displaying the advantages of using ML algorithms. There are also a 
few manuscripts describing ML in clinical research [45], its use in 
education [48], and its use in clinical guidelines and recommendations 
[49]. A few manuscripts present ML-on-the-edge and Internet-of-
things that describe methods to combine ML with smart devices [50]. 
Other manuscripts focus on subtopics like metrics [51], or glucose 
prediction [52]. This manuscript weighs the pros and cons of different 
approaches after forming consensus from all authors for the 
practitioner to make informed decisions. 

II. Data 

A. Current real-world and clinical study data sets available 
The commercial availability of CGM sensors, insulin pumps, smart 

insulin pens, and other wearable fitness sensors that push data to cloud 
servers has led to rapid growth in the amount of time-matched glucose, 
insulin, nutrient, exercise and other sensor data. There are three types 
of data that are typically used in diabetes ML applications: (1) real-
world data collected under free-living conditions, (2) data collected 
under controlled conditions within the frame of clinical trials that may 
take place in a hospital, in the home, or a combination of both, and (3) 
simulated data generated by means of executing simulation scenarios 
to a virtual environment (e.g. data farming). For data collected in 
clinical studies, participants usually adhere to strict protocols for food 
intake and exercise, and often the type of food and exercise is 
controlled as well. A controlled environment is preferred for 
measuring the efficacy of drugs, algorithms or interventions whereas 
free-living data sets are suited for the development of multiple-
hormone closed-loop systems and decisions support algorithms. 
Simulated or synthetic data can be easily generated by physiological 
(compartmental) models expressed as ordinary differential equations 
(ODE) using simulation environments as described further in section 
II.C. There are methods of adding noise and variability to simulated 
data to make them more real but these in silico subjects still behave 

differently than real-world people since all factors affecting 
metabolism are not being modeled. 

An example of the type of CGM, carbohydrate, insulin, and exercise 
data collected from people living with T1D is shown in Figure 2. One 
clinical data set that is widely used in ML in diabetes applications is 
the Ohio T1DM Data set which was originally published in 2018 and 
then updated in 2020 [53]. The most recent Ohio data set includes time 
matched CGM and insulin data from 12 people with T1D over 8 weeks 
under free-living conditions. Physical activity and self-reported stress 
are also included in this data set. Various algorithms have been trained 
using this data set including Zhu et al. [17], however this data set is 
small compared with some other recently available data sets. 

A much larger real-world data set is being collected by a company 
called Tidepool [54]. People with T1D donate their CGM data, insulin 
data, and other data types including physical activity data to the 
Tidepool Big Data Donation Data set. Tidepool then licenses the data 
set to companies and academic institutions interested in extracting 
knowledge and mining the data to develop new ML algorithms. The 
Tidepool data set has been used to train ML algorithms for predicting 
overnight hypoglycemia at the time when a person goes to sleep [55] 
and also to predict short-term glucose and hypoglycemia up to 60 
minutes in the future [26]. It has also been used to develop a DNN to 
detect meals, exercise and their concurrent occurrences as well [25, 
56].  

A data set that was recently collected and released to the public in 
2022 is the T1-Dexi data set [57]. The T1-Dexi data set is one of the 
largest data sets comprising time-matched CGM, insulin, genetics 
data, food intake, and physical activity data (heart rate and 
accelerometry). It was obtained through the execution of a 4-week 
study involving 497 people with T1D who performed aerobic (n=162), 
resistance (n=170), or interval (n=165) exercise several days per week 
while recording nutrition information using a custom smart phone app 
[58]. It is an excellent resource for designing ML algorithms, 
especially as related to exercise and food intake.  

In addition to these data sets, the Jaeb Center for Health Research 
maintains a web site listing data sets available for use [59].   

B. Simulators available to generate data in diabetes research 
A simulator in diabetes comprises a set of equations that describe the 
dynamics of glucose metabolism as a set of compartments in the body 
representing subcutaneous tissue, the gut, plasma, and other non-
observable compartments. Parameters of the metabolic model can be 
statistically sampled from a distribution of parameter values. The 
distribution of parameter values is typically identified using 
physiology tracer-study experiments [60] to generate a virtual patient 
population of simulated people with diabetes with different insulin 
absorption kinetics and dynamics, carbohydrate absorption kinetics 
and dynamics, other hormones (e.g. glucagon and pramlintide), and 
different responses to exercise (e.g. aerobic, resistance, interval). The 
T1D simulator has been an important tool that has helped in the design 
and commercialization of the first commercial AID systems [7, 9] and 

Figure 2: Top panel shows example traces of CGM (blue) and carbohydrate 
intake (red) in a person with T1D. Bottom panel shows examples of basal 
insulin (green) and bolus insulin (red lines) taken by the person. 
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also in the design of multi-hormone delivery algorithms [16, 34, 61-
66]. Many ML algorithms are initially designed and tested on 
simulated data prior to being evaluated in human studies[20, 22]. In 
this way, simulators based on compartmental modeling play an 
important role in the preliminary design process of ML-based closed-
loop control algorithms and decision support algorithms in diabetes an 
example of an open source simulator is shown in Figure 3. 

The UVA-Padova T1D simulator [67] is the only FDA-accepted 
simulator that has been published as a substitute for animal trials. The 
simulator has been used in a variety of applications and has been 
instrumental in the preliminary design and evaluation of several 
control algorithms including the now commercially available Control 
IQ [9] and others described below.  

The open-source OHSU T1D simulator was published in 2019 and 
is available for download and extensions from a Git repository [68]. 
This simulator has been used to evaluate several control algorithms 
prior to a clinical study [16, 61, 64] and also to pre-train ML algorithms 
prior to evaluation in human studies [20, 26, 55, 69-71]. 

Other simulators have also been described and can be obtained by 
contacting the authors. These include a statistical virtual patient 
population published by Haidar et al. [72], a multivariable simulator 
developed by Cinar and colleagues [73] that permits scheduling of 
exercise bouts (with intensity and duration that can be randomly 
modified) and also provides as outputs the values of physiological 
variables that are reported or predicted (energy expenditure) by 
wearable devices, a simulator developed by Vehi and colleagues [74], 
and a simulator developed by Wilinska and Hovorka [75]. 

Data scientists should use caution when designing new ML 
algorithms with simulators as the algorithms may work well on 
simulated data, but perform poorly in a real-world situation because 
simulation does not capture real-world events that influence glucose 
levels that are not included in the models such as medications, 
menstrual cycle, and stress. Data scientists should always verify their 
algorithm performance on real-world data and include these results in 
their publication (see Common Pitfall 9 and Best Practice 12). 

C. Standardization of reporting on data sets used in ML algorithm 
development and evaluation 
Currently, it is challenging to compare algorithms described in 
different publications because the algorithms are typically trained and 
evaluated on different data sets. Comparing algorithms across 
benchmark data sets is critical for improving reproducibility of ML 
algorithms [76, 77]. In the area of short-term glucose forecasting, it is 
especially important to clearly indicate the variability of the glucose 
data [78]. The use of AID or automated multi-hormone delivery, may 
results in less glucose variability compared to those obtained by 
applying sensor-augmented pump therapy or multiple daily injection 
therapy [79]. Consequently, an algorithm trained and evaluated on a 

data set with AID control may have superior performance and less 
error compared with an algorithm trained and evaluated on MDI data. 
Mosquera-Lopez et al. [26] discussed utilizing regression metrics to 
quantify how glucose prediction changes with variability in the 
glucose data set using the glucose variability impact index (GVII) and 
the glucose prediction consistency index (GPCI). GVII is the slope of 
a regression line between the RMSE error and the variance of the 
glucose data. If the GVII (slope) is flat, then it means that the error is 
not significantly impacted by the variance of the glucose data. The 
GPCI is the standard deviation about the regression line, indicating 
how consistent the RMSE is across the data set.  
Common Pitfall 1: Beware of training and evaluation data that lack 
heterogeneity or with low glucose variance. It is easy to achieve good 
accuracy on a data set with low variability. 
Best practice 1: Evaluate algorithms on open-source baseline data sets 
if available (Table 1 or [59]). Alternatively, evaluate on a data set that 
is included with the publication. 
Best practice 2: Include performance across data sets with differing 
variability using metrics such as the GVII and GPCI [26] for any data 
set used to train or evaluate an ML algorithm.  
Best practice 3: When training an algorithm that is designed to work 
regardless of the therapy (e.g. MDI, closed-loop, sensor augmented 
pump), include data balanced across all of those therapies in the 
training and test data sets and ensure that the data sets are well 
representative. 
Best practice 4: Include a data sheet [80] for the data set used in 
training, validation and testing.  
Data scientists should publish detailed information on the data sets 
used in algorithm development as a formal data sheet [80]. The data 
sheet (Supplemental Table 1) should include information about the 
data set including information regarding volume (e.g. number of 
participants), demographics, and treatment plan, along with missing 
data and interpolation done if any, variability of the data, and other 
relevant information to be considered when developing comparator 
algorithms. 
Common Pitfall 2: Mixing individual data with both training and test 
data sets can lead to reporting of unrealistically high accuracy 
compared with when evaluated on individuals who were not included 
in the training set. In ML algorithm development, there is a training 
data set, a validation data set used for hyperparameter tuning, and a 
test data set. The test data set is not used at all in training the algorithm 
or in hyperparameter tuning. When training and cross-validation are 
done, a portion of data is held out as the test data set is used for 
evaluation. One of the natural consequences of limited data sizes in the 
field of diabetes is the temptation to increase the data available for 
training by including in the training data set data from a patient 
reserved for testing. This is problematic for several reasons. First, it 
implies that the accuracy reported on the algorithm would require 
access to a certain amount of the person’s own data for use in training. 
A population-level ML model is not re-trained when new data is 
available from an individual. An adaptive or personalized model, 
however, can be potentially re-trained when new data is observed to 
improve the accuracy for a given individual.  

An example of an algorithm that was designed to be personalized 
for specific individuals is presented in Zhu et al. [17] whereby they 
designed a CNN for forecasting glucose 30 minutes in the future. They 
included data from all six of the participants in the Ohio T1DM Data 
set in the training, and then forecasted on future data from one of the 
participants. In addition, data was augmented by extending by 50%, 
each of the six participants’ glucose data sets with a mixture of the 
other five participants’ glucose data. In this way, each participant’s 
data set was doubled in size by including a mixture of data from the 
five other participants. This type of an algorithm would be appropriate 
for a personalized model, but would not be appropriate as a general 
population model. Population models can be personalized using 
transfer learning [81, 82] or meta learning [83-86] approaches. 

Figure 3: Example of CGM and carbohydrate traces (top panel) and insulin 
delivery (bottom panel) from a metabolic simulator (dashed line) vs. real-
world data (solid line) [68]. 
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The heterogeneity of the test set should also be balanced with that 
of the training set. For example, if there are no children or adolescents 
in the training set, but they are present in the test set, then the algorithm 
may not perform as well on the adolescents during evaluation (Best 
Practice 5). Furthermore, the training and test sets should include 
approximately the same number of observations for the different target 
classes (classification problems) or comparable overall dynamics 
(regression problems). Checks should be made to ensure that training, 
validation, and test sets are balanced as much as possible. Care should 
be taken not to under-sample the majority class in case the dynamics 
are not preserved. Under- or over-sampling must be done in a smart 
way so as not to introduce bias using methods such as cluster-based 
centroid sampling described by Yen et al. [87]. 
Best practice 5: Ensure that the training, validation, and test sets are 
balanced and cover the same population groups.  

D. Handling missing, calibration, interpolated, and synthetic data 
CGM and insulin data are frequently incomplete because they are 
collected from devices that are wirelessly connected and they 
sometimes fail. Sensor misplacement or infusion site failures can cause 
gaps in data as well. Sensor faults can occur in closed-loop systems 
[88] which can be caused by pressure-induced sensor attenuations as 
reported by Bequette and colleagues. Insulin pumps can also fail 
during usage as caused by infusion set actuation problems [89]. 
Machine learning approaches have been applied to detecting these 
anomalies and alerting patients to these failures [90]. Data scientists 
must decide how to handle missing CGM and insulin data in the 
training, validation, and test sets. Some examples for handling missing 
data include (1) linear and nonlinear interpolation, (2) extrapolation if 
current data is not available using forecasting models, (3) zero-order 
hold, and (4) exclude missing data from the training and test sets. CGM 
tends to change rapidly enough that linear interpolation is a good 
choice if the gaps are less than about 20 minutes. After that, 
interpolation may not be appropriate. Data scientists should clearly 
describe their methods for handling missing data. Data scientists 
should also be careful not to report prediction accuracy on interpolated 
values to prevent data leakage from future values. Furthermore, data 
sets also may include calibration data from blood glucose meters. Data 
scientists should be clear to specify how calibration data or data from 
blood glucose meters is handled differently than CGM data. 

Insulin data collected from pumps or smart pens (e.g. the Tidepool 
data set [54]) may not always clearly indicate if the insulin was taken 
for a meal or as a correction for a high glucose reading. Meal insulin 
is typically calculated by dividing the grams of carbohydrate 
consumed by a carbohydrate ratio, but this information may not be 
available in a pump record. If there is knowledge of the person’s 
correction factor (CF), their target glucose (CGMtarget), and the glucose 
at the time that insulin was dosed (CGMcurrent), we may presume that a 
portion of the insulin dosed was to get their glucose to return to their 
target glucose using their correction factor minus any insulin on board 
(IOB) that is not being used [91]. The inferred meal insulin is then just 
the difference of the actual insulin dosed minus the inferred correction 
dose as shown in Equations 1 and 2. 

 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐶𝐶𝐶𝐶
− 𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢       (1) 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 −  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   (2) 

Note that inference introduces inaccuracies and should be clearly 
explained as a limitation by data scientists if used.  
Best practice 6: Report methods to handle calibration data and 
interpolation of missing data in training, validation, and test sets.  
Common pitfall 3: Reporting accuracy on interpolated data in the test 
set can lead to invalid estimates of accuracy on actual data. 
Performance should be reported without using interpolated values in 
the test data set. 
Common pitfall 4: Use caution when applying imputation or 
smoothing to the test data set as it can cause future data points to 
impact current data points if done incorrectly. CGM cannot change 
faster than what is physiologically plausible. In a manuscript by Clarke 
and Kovatchev [92], they showed that the CGM does not typically 
change faster than ± 4 mg/dL/minute. Therefore, smoothing outliers 
may help to remove noise that is not physiologically possible. 
Common pitfall 5: Evaluating algorithms on synthetic data may yield 
invalid accuracy results. Data scientists may improve algorithms by 
including synthetic data using methods such as SMOTE [93] or 
generative adversarial neural networks to fabricate synthetic glucose 
data [94] to improve model accuracy or handle class imbalance 
during training. It is important to apply the synthetic method only on 
the training data and ensure that synthetic data are not in the test set. 

E. Data size considerations in diabetes ML 
The size of publicly available data sets in diabetes are typically a lot 

smaller than data sets used in other fields of ML (Table 1). For this 
reason, the machine learning methods employed in diabetes and 
medicine that rely on smaller data sets need to be different than the 
ones used on larger text and imaging data sets. It is important for data 
scientists to consider the size of the data set prior to selecting various 
candidate ML algorithms. As a rough rule of thumb, a model should 
train on at least an order of magnitude more examples than trainable 
parameters [95]. Simple models trained on large data sets generalize 
better and therefore perform better than more complex models trained 
on small data sets. Particular care has to be taken when exploring the 
use of deep neural networks (DNNs) on small data sets, since there are 
a large number of parameters that must be learned and this can lead to 
overfitting [96]. DNNs often need more data than traditional ML 
methods to train, and do not generalize well when the data set is small 
relative to the number of parameters. In computational learning theory 
there exists the concept of the Vapnik–Chervonenkis (VC) dimension 
[97], which gives a lower bound on the minimal number of training 
examples required to learn a model correctly. However, the VC-
dimension is a theoretical concept and not often used in practice. More 
often, a data scientist can explore how accuracy of an algorithm 
changes when trained on increasing fractions of the complete 
development data set. The expectation is that the performance will 
improve with increasing amounts of training data and then plateau after 
a certain upper bound amount of data is reached [95]. 

TABLE I 
COMPARISON OF DATA SET SIZES IN DIABETES (TOP) COMPARED WITH OTHER 

FIELDS (BOTTOM). 
Name 

Description Field 
# 

Observation
s 

T1-Dexi [47] Time-matched glucose, 
insulin, nutrition, and 
exercise data collected 
from n=497 people with 
T1D under free-living 
conditions over 28 days. 

Diabetes 3,737,664 

Tidepool Big 
Data Donation 
Set [44] 

Time-matched continuous 
glucose, insulin, physical 
activity data from people 
with T1D  

Diabetes 3,263,904 

Ohio T1DM 
dataset [43] 

Small open-source data set 
on time-matched glucose, 
insulin data 

Diabetes 193,536 

Other data sets outside the field of diabetes 
MovieLens  Moving ratings Rating 

systems 
20,000,263 

Google 
SmartRep 

Interactions with smart-
agent 

Intellige
nt dialog 

238,000,000 

Objects365 Object detection imaging 
dataset 

Object 
detection 

10,000,000+ 

Translate Google translation data set NLP > 1 trillion 
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III. FEATURES AND OUTCOMES USEFUL IN DIABETES ML  
When designing an ML algorithm for predicting future glucose, the 
common data types that may be useful as input features for the 
algorithm include (1) recent CGM measurements and statistics on 
CGM, (2) recent nutrient intake, especially carbohydrates, (3) recent 
insulin doses, (4) recent other hormone doses (if applicable), (5) recent 
physical activity, stress, or other physiologic measures as estimated 
from wearable sensor data, and (6) demographics information. When 
wearable device data are used to determine the metabolic state of a 
person, additional features may be helpful including classification of 
physical activities and stress to improve accuracy of estimated glucose 
concentrations [25, 98-100]. While it is important for data scientists to 
freely explore and experiment with many ways of representing features 
as inputs to glucose forecasting algorithms, this section provides 
standard ways of representing common features. In addition, in online 
supplementary materials, we provide functions in Python to calculate 
each of these features to help improve standardization and 
repeatability.  

A. Statistical representations of CGM as possible features in ML 
algorithms and for use as performance metrics  
For most commercial glucose sensors, data is sampled every one or 
five minutes. The Dexcom G6/G7 and Medtronic Guardian Sensor 3 
provide data every 5 minutes while the Abbott Freestyle Libre 3, 
Waveform (Agamatrix) and the GlucoMen (A. Menarini Diagnostics) 
sensors provide data every minute. Most CGM forecasting models use 
a history of CGM data as input features. Autoregressive (AR) and 
autoregressive with exogenous inputs (ARX) models are examples 
whereby the use of this history of CGM is explicit [101, 102].      

The collinearity of CGM as measured by autocorrelation tend to 
disappear after about 1 hour [103]. For regression-based models, 
collinearity can be a problem, whereas for time-series models like AR 
and ARX, the collinearity is positive, and histories are selected based 
on the autocorrelation being above a certain threshold. Choosing the 
history length is application specific and data scientists should explore 
different history lengths when designing their algorithm. Some groups 
have used grid search to determine what an optimal history of CGM is 
required to maximize performance. For example, Mosquera-Lopez and 
Jacobs compared CGM history of 1, 2, and 3 hours and found that 3 
hours was optimal for short-term prediction of glucose using a long-
short-term memory neural network [26]. However, other algorithms 
have reported on shorter histories, though not indicating if other 
history lengths were explored (e.g. Perez-Gandia et al. [104] used a 20-
minute history of CGM as their input to a neural network).  

The downside of choosing longer histories is that CGM sometimes 
drops out due to connectivity problems, and so there could be gaps in 
the data. Interpolating large gaps in data may negatively affect the 
glucose performance of a forecasting algorithm. While the history 
length is application and algorithm specific, it could be preferable to 
choose shorter histories of glucose for calculating CGM-related 
features to minimize the impact of CGM drop-out when used in 
practice. 
Best practice 7: For short-term glucose forecasting tasks (e.g. 30-60 
minutes), it could be preferable to choose a short history of glucose for 
calculating CGM-related features as inputs to ML algorithms to 
minimize the impact of device-related missing CGM, which happens in 
real-world practice. To mitigate the impact of missing data, data 
imputation can be used to fill in gaps in data. In addition, during 
training, missing data should be introduced into the data set to ensure 
that the algorithm can appropriately handle it. 

The history length should be determined to optimize the 
performance of the prediction task. For example, if the data scientist is 
designing an algorithm for predicting overnight hypoglycemia prior to 
bedtime, over the course of the next 4-8 hours, summary measures of 
CGM that have occurred over the past one to two days could be 
important as well as recent CGM. When predicting glucose over an 8-

hour window overnight to estimate likelihood of hypoglycemia during 

this window, Mosquera-Lopez et al. used statistical measures of 
glucose across the prior 1 h, 3 h, 6 h, 9 h, 12 h and also summary 
measures across the past week [55].  

Glucose outcome metrics that are traditionally used as indicators of 
glucose management performance may also be useful as inputs to ML 
algorithms. Common outcome metrics that may optionally be used as 
inputs to glucose forecasting algorithms include statistical measures of 
the glucose across a historical time window such as mean, variance, 
skewness, and kurtosis. In addition, there are clinically relevant 
metrics that are also used as inputs to ML algorithms. These metrics 
are included in Table 2. The clinically relevant ranges have been 
determined by a consensus of clinical experts [105] and would be 
useful whenever considering clinically relevant input features to ML 
algorithms. Many of the glucose outcome measures are correlated with 
each other and using all of these features as inputs may induce 
collinearity in data and not be helpful in ML. For example, the % time 
in range is correlated with the % time below plus % time above range. 
To avoid the problem of correlated features, principal component 
analysis (PCA) can be used to do dimensionality reduction of 
correlated features into a smaller set of orthogonal features [100, 106, 
107]. The disadvantage of using PCA-based features is that the 
features are less interpretable. Another option for handling correlation 
amongst features is to perform feature selection by eliminating less 
relevant features that are correlated with more relevant features. 
Best practice 8: When including clinically relevant summary measures 
to quantify performance of the forecasting algorithm in clinically 
relevant ranges, it is important to use the ranges agreed upon by an 
international consensus group and summarized in [105]. These 
measures may also be useful as ML features, but the ranges and 
features should be selected based on the task of the algorithm and their 
impact on accuracy and explainability. 

B. Representation of carbohydrate intake 
Carbohydrate intake frequently causes a significant increase in glucose 
levels in people with diabetes. For this reason, carbohydrates on board 
or carbohydrates in plasma can be used as an input to glucose 
forecasting algorithms. One way to represent carbohydrates as a 
feature in an ML algorithm is to use a two-compartment differential 
equation carbohydrate-absorption in plasma model. In his 2004 
manuscript, Hovorka et al. [108] described a second order differential 
equation representation of carbohydrate absorption in plasma. The 
equations for this model are given below whereby the carbs in grams 
is represented by the variable c. Q1(t) is the amount of glucose in the 
gut and Q2(t) represents available carbs in plasma. The constant tmax 
represents the time constant for meal absorption and its default value 
is 40 minutes but this might change depending on the type of meal.  

𝑄𝑄1̇(𝑡𝑡) = −�𝑄𝑄1(𝑡𝑡)
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

� + 0.8𝑐𝑐,    

𝑄𝑄2̇(𝑡𝑡) = �𝑄𝑄1(𝑡𝑡)
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

� − �𝑄𝑄2(𝑡𝑡)
𝑡𝑡𝑚𝑚𝑎𝑎𝑎𝑎

�.                             (3) 

Figure 4:  Carbohydrate availability and carbohydrate on board by Hovorka et 
al. and Patek et al.  The top plot shows the plasma glucose following a 40 g 
carbohydrate meal.  The Patek et al. model peaks earlier (27 min) compared 
with the Hovorka et al. model (40 minutes).  Also note that the Hovorka 
model only presumes that 80% of the meal (32 g) is available to the body.  
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Notice in  that the Hovorka et al. [108] representation of carbohydrate 
availability assumes that only 80% of the carbohydrate consumed is 
utilized (e.g. 0.8c).  Another model for estimating carbohydrate 
availability is described by Patek et al. [109]. The Patek model is also 
a two-compartment model. However, there are two time constants, a 
short-acting meal absorption t1 of 11.2 min, and a longer-acting 
absorption constant tabs of 83.8 min.  
                                    𝑄𝑄1̇(𝑡𝑡) = −�𝑄𝑄1(𝑡𝑡)

𝑡𝑡1
� + 𝑐𝑐, 

𝑄𝑄2̇(𝑡𝑡) = �𝑄𝑄1(𝑡𝑡)
𝑡𝑡1
� − �𝑄𝑄2(𝑡𝑡)

𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎
�.                             (4) 

Others have described meal models including Dalla Man et al. [110]. 
Regardless of the method for representing carbohydrate distribution 
and disposal, we define carbohydrate in plasma and carbohydrates on 
board using Equation 5 and 6. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑡𝑡) = 𝑄𝑄2(𝑡𝑡)                 (5) 

                        𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (𝑡𝑡) = 𝑐𝑐(𝑧𝑧) −  ∫ 𝑄𝑄2(𝑧𝑧),𝑡𝑡
𝑧𝑧=𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠             (6) 

In Equation 6, carb_start is the time of carbohydrate ingestion and 
c(z) is the grams of carbohydrate ingested at time z. 

Figure 4 shows carbohydrate availability and carbohydrates on 
board and the comparison of these two methods for estimating 
carbohydrate availability after consuming a 40 g carbohydrate meal. 
The Patek et al. model peaks somewhat earlier (27 minutes) compared 
with the Hovorka model (40 minutes). This leads to a higher peak 
carbs on board, which is even larger because the Patek et al. model 
presumes that the entire carbohydrate consumed is utilized, rather than 
80% of it. The Python functions for calculating carbohydrate in plasma 
for these two methods is included in Supplemental Materials.  

Carbohydrate in plasma is not monotonic, as it will have the 
identical value when it is rising as when it is falling. This is important 
to consider if used as a feature in ML algorithms, because a monotonic 
representation of carbohydrates provides more information about the 
future than a non-monotonic representation. Therefore, a better feature 
for a forecasting algorithm can be to use carbohydrates on board rather 
than carbohydrate availability.  

Importantly, current meal models do not account for other nutrients 
(fat, protein and fiber) which also affect glucose response, primarily in 
the area of delayed gastric emptying.  

C. Representing estimated plasma insulin vs. insulin on board as 
features 
Insulin that is injected subcutaneously does not appear immediately in 
the plasma. There is a delay that is caused by the metabolism of insulin 
from a hexamer into a monomer and then movement from the 
subcutaneous space to plasma. The peak appearance of fast-acting 
insulin in plasma after injection subcutaneously is typically 40-60 
minutes. Estimated plasma insulin is the amount of insulin in plasma, 
and as with carbohydrate availability, it can be represented by a set of 
differential equations or alternatively as a linear function over time. 
Most glucose metabolism simulators [67, 68] use multi-compartment 
differential equation models to represent the kinetics of insulin into 
plasma. For example, estimated plasma insulin can be represented 
using a 3-compartment model described by Hovorka et al. [108]. This 
model of estimated plasma insulin (I) is given by Equation 7 whereby 
uI is the insulin injected subcutaneously and I is the insulin in plasma 
or estimated plasma insulin and tmaxI is the time constant for insulin 
absorption into plasma. 
                                    𝑆𝑆1̇(𝑡𝑡) = 𝑢𝑢𝐼𝐼 − �𝑆𝑆1(𝑡𝑡)

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
�,                           

𝑆𝑆2̇(𝑡𝑡) = �𝑆𝑆1(𝑡𝑡)
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

� − �𝑆𝑆2(𝑡𝑡)
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼

�,  

𝐼𝐼(̇𝑡𝑡) = �𝑆𝑆2(𝑡𝑡)
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

� − 𝑆𝑆2(𝑡𝑡)𝐼𝐼(𝑡𝑡).                         (7) 

 
Insulin on board is defined according to Equation 9 
             𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑡𝑡) = 𝐼𝐼(𝑡𝑡)                                         (8) 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (𝑡𝑡) = 𝑢𝑢𝐼𝐼(𝑧𝑧) − ∫ 𝐼𝐼(𝑧𝑧),𝑡𝑡
𝑧𝑧=𝑖𝑖𝑖𝑖𝑖𝑖_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑      (9) 

where z=ins_dose is the time when uI(z) insulin was dosed. 
Other groups have used a triangular compartmental model trained 

on data from Swan et al. to describe action and then use convolution 
with past insulin injected [111]. It is also possible to represent 
estimated plasma insulin and insulin on board as a simple linear decay 
with a 3- or 4-hour linear decay over time from the time that it is 
delivered. While the linear decay representation of estimated plasma 
insulin is simpler, it is clear that it ignores the delayed peak in 
estimated plasma insulin that is representative of insulin kinetics. A 
real-time personalized plasma insulin concentration estimation based 
on CGM and insulin data, and demographic information has also been 
developed and used in AID systems [112, 113]. Figure 5 shows a 
comparison of estimated plasma insulin availability and insulin on 
board as calculated by Equations 8 and 9, respectively. 
Best practice 9: When considering food and drug intake as features in 
an ML model, it is important to consider the kinetics and dynamics of 
these compounds within the body as they metabolize. Selecting the way 
to represent these compounds should be considered based on 
application to maximize algorithm performance and to minimize the 
risk to the person using the algorithm. Estimated plasma carbohydrate 
and insulin as calculated using Equation 5 and Equation 8, respectively 
could be suitable features for short-term glucose forecasting. 
Carbohydrates on board (Equation 6) and insulin on board (Equation 
9) may be more useful for longer-term predictions, because the carbs 

TABLE 2 
CGM FEATURES USED IN IN DIABETES RESEARCH. 

Type 
Name Description 

Statistical 
Features 

Mean Average CGM over time window 
Variance Variance of CGM over time window 
Covariance Covariance of CGM over time window 
Coef of variation Coefficient of variation over time window 
Skewness Skewness of CGM over a time window 
Kurtosis Kurtosis of CGM over a time window 
Maximum Maximum CGM over a time window 
Minimum Minimum CGM over a time window 
Slope Rate of change of glucose, typically 

estimated through a regression across the 
most recent 10-15 minutes 

Clinically 
relevant 
features 

HbA1c Rate of hemoglobin glycation 
Mean glucose Mean glucose across a time frame 
% time in range % Time glucose is between 70-180 mg/dL 
% tight range % Time glucose is between 70-140 mg/dL 
% low % Time when glucose is < 70 mg/dL 
% very low % Time when glucose is < 54 mg/dL 
% high % Time when glucose is > 180 mg/dL 
% very high % Time when glucose is > 250 mg/dL 
# hypo events  Number of times over a window when 

glucose dropped < 70 mg/dL 
Demo-
graphic 
features 

Sex Male, female, non-binary 
BMI Body mass index 
Duration diabetes Years of diabetes since diagnosis 
Race/ethnicity  

   

 

Figure 5:  Insulin on board and plasma insulin availability as calculated by 
Hovorka et al. 3-compartment insulin kinetics model  
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and insulin consumed will tend to act for many hours in the future and 
the monotonic nature of these parameters is helpful. As new insulin 
formulations become available, ODE model parameters for insulin on 
board calculations will need to be updated. Note that deep learning 
approaches will not need these transformations as the insulin and 
carbohydrate dynamics can be learned by the network.  

D. Representation of exercise 
1) Exercise is challenging in diabetes  
Exercise can impact glucose changes in people with diabetes in 
different ways depending on the type of exercise, the duration, the 
intensity of the exercise, and the timing of the exercise relative to meal 
intake and insulin dosing [57]. Exercise causes increases in insulin-
mediated and non-insulin mediated glucose uptake [114]. Sharp drops 
in glucose can occur when people with T1D perform aerobic exercise 
1-2 hours following a meal when insulin on board is high. While 
people with T1D are advised to reduce basal and meal bolus insulin 1-
2 hours prior to an exercise event to avoid hypoglycemia during and 
following exercise, they oftentimes do not do this and therefore suffer 
from exercise-induced hypoglycemia [11, 115].  Current commercial 
AID systems do not automatically respond to or anticipate exercise, 
and this can result in hypoglycemia during and following exercise. 
2) Enabling automated response to exercise using ML 
Automating the detection of exercise and the automated response of an 
AID to exercise represents an opportunity for the use of ML in AID 
therapy. Some AID algorithms have features that enable the user to 
announce exercise in advance so that they can exercise more safely by 
raising the glucose target, but this is not automated. Multivariable AID 
control algorithms have been reported that automatically detect 
exercise from wearable fitness sensors and adjust insulin dosing in 
response to different types of exercise [18, 113, 116]. ML algorithms 
that attempt to predict glucose changes during exercise therefore must 
consider many factors during the prediction. Riddell and colleagues 
[57] identified the most relevant features related to glucose drops 
during exercise in a large free-living data set in  T1D (the T1-Dexi 
Initiative) given in Table 3. These features are useful as inputs to ML 
algorithms for forecasting change in glucose during exercise.  
3) Sensors used to capture and quantify physical exertion 

Enabling an AID system to automatically respond to exercise 
requires collection of physiologic metrics representative of exercise. 
Exercise physiology data is typically in the form of either heart rate or 
accelerometry data. There has been an explosion of wearable fitness 
sensors that can be worn on the wrist or the chest to track heart rate 
and accelerometry during exercise. It is important to consider where 
on the body heart rate and accelerometry data are being acquired. For 
example, accelerometry data acquired from the wrist will look very 
different than when acquired from a sensor worn on the chest. Heart 
rate data acquired on the chest will typically be more accurate than 
when acquired on the wrist [117], although it is more convenient for a 
person to wear a wrist-based activity monitor than a chest-based 
monitor.  
Common pitfall 6: An exercise detection algorithm trained on physical 
activity data collected from a chest-mounted sensor may not work as 
well if tested on activity data collected from the wrist, and vice-versa. 
When reporting results on algorithms utilizing physical activity data, 
it is important to consider and report where the sensor was positioned 
on the body. Accuracy of commercial wrist-worn devices has been 
assessed and there can be variability across different manufacturers 
and models [117]. Skin color can also affect accuracy [118].  

AID algorithms that use ML to respond automatically to exercise 
will need to be robust so that they can handle the different types of 
exercise being done. There are three broad categories of physical 
activity, aerobic (e.g. jogging), resistance (e.g. weight lifting), and 
interval exercise (e.g. Crossfit, soccer, etc.) and these different types 
of physical activity can impact glucose in different ways. For example, 
Riddell and colleagues showed in a large free-living study that aerobic 

exercise can cause an average drop in glucose of -18±39 mg/dL while 
resistance and interval exercise cause drops of -14±32 and -9±36 
mg/dL, respectively [57]. Exercise can also cause glucose to increase, 
especially when interval exercise is done in the fasted state or during 
competition [115]. Algorithms have been published to classify the type 
of exercise [119, 120]. Various groups have published methods for 
detecting the onset of physical activity [121, 122] and categorizing the 
types of physical activity [98, 100, 123]. These algorithms typically 
use blood volume pulse or heart rate, averaged over a window of time, 
and a tri-axial accelerometer magnitude, also averaged over a period 
of time, as features within the algorithm. Depending on the forecasting 
task being done, the time window across which heart rate and 
accelerometry data should be averaged should be carefully considered. 
For example, during interval exercise and resistance exercise, the heart 
rate and accelerometry signals tend to change very rapidly from 
minute-to-minute. Therefore, using a shorter time window for 
averaging these signals would be important for an algorithm 
classifying exercise type.  
Best practice 10: Heart rate and accelerometry offer a reliable set of 
physiological measurements based on wearable devices to quantify 
exercise and impacts on glucose changes. Selection of time windows 
for averaging these signals and generating features should be specific 
to the forecasting task.  

Heart rate and accelerometry offer their own advantages and 
disadvantages for quantifying energy expenditure during exercise. If 
heart rate is estimated from blood volume pulse signals from a 
wristband, the arm movement causes large artifacts on blood volume 
pulse. In this case artifacts must be eliminated before computing heart 
rate as described [98, 100, 129]. Accelerometry has the advantage of 
capturing the more rapid onset and offset of exercise, since it takes 
time for the heart rate signal to increase or decrease during transitions 
from rest to exercise and vice versa. However, heart rate may increase 
as a result of stress [130] instead of physical activity. In this way, a 
combination of heart rate and accelerometry may jointly provide a 
complete set of features for predicting the impact of exercise on 
changing glucose levels.  
Common pitfall 7: Utilizing only accelerometry signals to estimate 
physical activity can be inaccurate, especially with wrist-worn fitness 
watches.  
4) Quantifying exercise features using ODE-based models 

Features used in an ML algorithm that quantify exercise can be 
derived from ODE-based compartment models that describe the 
impact of exercise on glucose dynamics. These ODE models could be 
useful for deriving features used in glucose forecasting algorithms 
during and following exercise. A number of ODE exercise models 
have been published and most use heart rate and/or accelerometry as 
an input to the model. For example, the OHSU T1D compartment [68] 
model metabolic simulator includes a model of exercise described by 
Hernández-Odoñez  et al. [124] that uses metabolic expenditure as a 
function of active muscle mass and metabolic equivalent of task 
(METs) to impact glucose disposal. As METs increases, insulin 
sensitivity also increases and thereby more glucose is disposed. Hobbs 
et al. [125] proposed a more comprehensive model of the effects of 
physical activities on glucose concentration that was instrumental in 

TABLE 3 
FEATURES STATISTICALLY RELATED TO GLUCOSE CHANGE DURING EXERCISE. 

Feature 
Exercise type (aerobic, interval, resistance) 
Sex 
HbA1c 
Baseline glucose at start of exercise 
Rate of change of glucose in 15-minutes before start of exercise 
Percent time < 70 mg/dL in 24-hours prior to exercise 
Heart rate at start of exercise 
Time-of-day of exercise 
Insulin on board at start of exercise 
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the multivariable glucose-insulin-physiological variables simulator 
that provides estimates of various physiological variables as outputs. 
Dalla Man and colleagues have also incorporated exercise into a 
metabolic compartment model [126] following on work by Breton 
[127]. Ozaslan et al. [128] introduce the idea of physical activity on 
board (similar to insulin and carbohydrates on board), which presumes 
that past exercise has an additive effect on future changes in glucose.  
Best practice 11: Compartment models offer physically interpretable 
models of metabolism and can be used to generate features for ML 
algorithms for representing exercise by heart rate and accelerometry.  

IV. ML METHODS APPLIED TO MODELING IN DIABETES  
While much of ML research has been based on algorithms trained on 
very large data sets oftentimes involving 2-dimensional data (e.g. 
images), ML efforts in the application area of forecasting and 
modeling in diabetes typically involve much smaller data sets 
primarily using multivariable time-series data. In addition to the CGM 
data that are sampled every 1-5 minutes, insulin data are available from 
pumps that deliver insulin either continuously throughout the day as 
basal insulin or as bolus doses for meals and correction of 
hyperglycemia. Meal carbohydrate estimates are usually acquired via 
electronic logbooks [57]. 

A. Short-term glucose prediction (less than 60 minutes) 
Many ML algorithms have been developed for predicting glucose over 
short-term prediction horizons of 5-60 minutes and also over longer 
prediction horizons of 1-4 hours. Predicting glucose in the short-term 
of 5-60 minutes can be useful in automated insulin delivery systems 
that shut off insulin in response to predicted low glucose (Figure 6). 
The prediction horizon over which the forecasting is being done can 
help indicate the best type of algorithm to use for the prediction. When 
predicting over 5-30 minutes, it is possible to estimate the glucose 
within a reasonable error tolerance (e.g. 14-24 mg/dl) using a 
regression-based algorithm (e.g. linear regression, support vector 
regression, long-short-term memory neural network, convolutional 
neural networks). One of the early algorithms for predicting glucose 
30 minutes in the future was by Sparacino and colleagues who used an 
AR model and achieved an accuracy of about 18 mg/dL root mean 
squared error (RMSE) [101]. Turksoy et al. used an AR predictive 
model with exogenous inputs (ARX) to recommend carbohydrates if 
low glucose was predicted to reduce hypoglycemia, though no 
accuracy measures were included in the manuscript [102]. Random 
forests have also been used to predict glucose in the short-term with 
very low RMSE reported [131]. However, the RMSE reported in this 
manuscript (8.15 mg/dL) is lower than the typical error of a glucose 
sensor, which at the time of that publication was on the order of about 
10-12%. The ML community including Schwartz-Ziv and Armon 
[132] showed that for tabular data, random forests tend to outperform 
deep learning methods when the number of observations is relatively 
small (e.g. < 1 million), which is typically the case for T1D data sets. 
Georga et al. published an algorithm on short-term glucose prediction 
using support vector regression with RMSE even lower at 6 mg/dL 
[133]. RMSE can be low if there is not much glucose variability in a 
data set. For this reason, it is important to report glucose variability 
along with RMSE. Neural network algorithms have also been used to 
predict short-term glucose [26, 104, 134-138]. Li et al. [134] utilized a 
convolutional recurrent neural network and achieved an RMSE of 
9.38±0.71 mg/dL on simulated patient data and 21.07±2.35 mg/dL on 
real-world data. Results from this manuscript highlight the importance 
of evaluating glucose forecasting algorithms on real-world data 
compared with simulated data since the performance can be higher in 
simulation.  
Common pitfall 8: RMSE can be found to be very low if the variability 
of the data set is low. When presenting RMSE results, it is also 
important to present information about the glucose variability such as 
standard deviation or coefficient of variation in the data set. Another 

option is to present accuracy results as the normalized RMSE whereby 
RMSE is normalized with respect to the inter-quartile range, the 
standard deviation, or the coefficient of variation. 
Common pitfall 9: Presenting glucose forecasting accuracy results 
only on simulated glucose data can yield results that are overly 
optimistic. Introducing noise, missing data, outliers, and other 
disturbance artifacts can help to make simulated data sets more 
realistic. When presenting forecasting results on simulated data, 
glucose variability should also be reported along with information 
about how meal insulin dosing was done and how meal time were 
presented to the simulator, and how meal time and meal amount 
variability were imposed. 
Common pitfall 10: When reporting algorithm accuracy results on a 
data set, it is important to clearly state that the algorithm was 
evaluated on either the entire data set or a subset of data. An 
explanation should be provided if only a subset was used.  
Best practice 12: Always present final results on free-living real-world 
human data if available. If results are shown only on simulated data or 
on in-clinic data collected under prescribed conditions to a particular 
study design, this should be listed as a limitation in the results.  
Best practice 13: When presenting results on a new glucose 
forecasting algorithm, it is important to compare it with best-in-class 
previously published algorithms and also include results of that 
algorithm on a benchmark data set for a comparison (Table 1). This is 
especially true if very low RMSE prediction results are found. This is 
possible if the prior publications have included code for implementing 
the algorithm. If the algorithm must be retrained, differences in 
performance could be expected compared with publication.  
Best practice 14: When presenting results on a new algorithm, it is 
important to compare that algorithm’s performance with the 
performance of a naïve algorithm including a zero-order hold 
predictor, a simple linear regression predictor, and a low-order 
autoregressive model. A zero-order hold algorithm simply assumes 
that glucose will not change in the future. Work on the Tidepool data 
set indicates that a zero-order-hold algorithm can achieve an RMSE of 
25 mg/dL on 30-minute prediction for closed-loop data and 24 mg/dL 
on sensor-augmented pump data [26]. A simple linear extrapolation 
where you fit a regression line across the most recent 10 minutes can 
predict 30-minutes in the future with 21 and 20 mg/dL RMSE for 
closed-loop and sensor augmented pump in the Tidepool data sets, 
respectively [26]. In addition, a 3rd or 4th order autoregressive model 
can be used as a comparator model. Importantly, a zero-order hold 
algorithm will work well when there is less variability in a data set 
while a simple linear regression algorithm will work well when 
glucose is changing at a constant rate. It is important to compare 
algorithm performance with these naïve prediction algorithms. 

Figure 6: Top panel shows CGM over time (blue) and forecasted CGM 
(dashed red) where the pink region indicates hypoglycemia region (<70 
mg/dL), the green region is a target glucose range (70-180 mg/dL), and beige 
is a hyperglycemia region (>180 mg/dL).  Bottom panel shows meal insulin 
(red) and basal insulin in green.  Notice that the basal insulin is turned off 
when CGM is predicted to go into the hypoglycemia region.  
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Zecchin et al. [136] describe a jump neural network design for 
predicting short-term glucose. This jump neural network is a feed-
forward, shallow neural network with one hidden layer of 5 neurons 
that have inputs connected to both the first layer but also to the output 
layer. Despite the small amount of data used to train the model, it 
achieved good performance with an RMSE of 16.6±3.1 mg/dL 
(mean±standard deviation) with a time gain (TG) of 18.5±3.4 minutes. 
Zecchin et al. [137] also demonstrated that improved performance 
could be obtained when including carbohydrate information as a 
feature. Pappada et al. [135] also proposed a shallow neural network 
for predicting glucose with a prediction horizon of 75 minutes. Their 
network had a single hidden layer with nine neurons. They used CGM, 
SMBG glucose, CGM trend information, insulin, carbs, and 
hypo/hyperglycemic symptoms, activities, and even emotional factors 
as inputs. Perez-Gandia [104] also used a shallow neural network to 
predict glucose 15, 30, and 45 minutes in the future using prior glucose 
data from up to 20 minutes before the prediction time. Results showed 
an RMSE of 18 mg/dL at 30 minutes with a prediction delay of 
approximately 9-15 minutes. All of these early publications on ML 
approaches to short-term glucose forecasting had very little data for 
training and evaluation. More recently, Mosquera-Lopez and Jacobs 
[26] showed that on a large real-world data set from the Tidepool Big 
Data Donation Data set with 175 people and 41,318 days of data from 
people on both closed-loop (CL) and sensor-augmented pump (SAP) 
therapy, a long short-term memory neural network could achieve an 
RMSE of 19.8±3.2 mg/dL (CL) and 19.6±3.8 mg/dL (SAP) for a 30-
minute prediction horizon, with 99.6% of predications within the A+B 
zones of the Parkes Consensus grid. Because of the larger data size, 
the architecture was more complex with 5 hidden layers including an 
LSTM layer with 128 units, and 4 dense units with 64, 32, 16, 12 units 
respectively. The higher RMSE compared with other studies is because 
the model was trained and evaluated on real-world data across a large 
heterogeneous population of people with T1D. Simpler models were 
considered, but the higher complexity LSTM was best.  
Common pitfall 11: Using an overly complex model that is trained on 
a small data set may not yield good performance. Time-series or 
tabular data with fewer than 1 million observations may be more 
accurately modeled using regression models or random forests than 
deep learning [132]. 
Best practice 15: If a data set is of limited size, select an ML algorithm 
that requires fewer parameters to tune such as AR/ARX models, 
support vector regression, random forest, or shallow neural networks. 
For larger data (e.g. Tidepool), more complex models can be used.  
Best practice 16: When reporting on results on an algorithm, include 
the training time, model and number of CPUs/GPUs, and include the 
model and code in a repository. 
Common pitfall 12: Presenting glucose forecasting results may not be 
accurate if the delay of the prediction algorithm is not also reported. 
Some algorithms impose a certain amount of delay in the prediction 
and this should be reported. 
Best practice 17: When predicting glucose in the future, include an 
estimate of the time gain (TG) of the prediction model (defined below). 
TG is the prediction horizon over which prediction is desired, minus 
the delay of the prediction model. Delay in the prediction is found by 
performing cross-correlation of the actual glucose with the predicted 
signal. 

 𝑇𝑇𝑇𝑇 = 𝑃𝑃𝑃𝑃 − 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷                                       (10) 

B. Binary classifiers of hypoglycemic events and glucose prediction 
over longer-term horizons over 1 hour 
Predicting glucose over 1-4 hours is  more challenging within a 
reasonable accuracy. Kushner et al. [139] used shallow neural 
networks to predict glucose 1-4 hours in the future and they reported 
accuracy of 38±6 mg/dL for a 2-hour prediction horizon and 43±12 
mg/dL at 4 hours. For longer prediction horizons, it may be optimal to 
instead predict binary events such as hypoglycemia. Regression 

algorithms can still be used for the prediction, but the algorithms are 
trained to only predict when a threshold is exceeded. For example, 
Mosquera-Lopez et al. described use of a support vector regression 
algorithm to predict hypoglycemia overnight up to 8 hours in advance. 
The algorithm had a sensitivity of 94.1% with a specificity of 72% and 
an area under the receiver operating characteristic curve (AUC-ROC) 
of 86%. The optimal threshold was selected using decision theory to 
optimize net benefit of acting on the classifier output whereby net 
benefit was defined as the negative of the sum of the low blood glucose 
index and the high blood glucose index (see section on metrics below). 
Jensen et al. [140] also designed a forecasting algorithm for predicting 
nocturnal hypoglycemia. They used a linear discriminant analysis 
classifier and achieved a sensitivity of 75% and specificity of 70%. 
Various ML algorithms are used for physical activity and 
psychological stress detection and characterization by Sevil et al. for 
glucose concentration estimation and in AID systems [98-100] and by 
Askari et al. for meal and exercise detection [25]. 
Common pitfall 13: When predicting glucose and the error is less than 
the error of the CGM (e.g., 8-10% for commercial CGM), there could 
be a problem with the algorithm. 
Common pitfall 14: When predicting glucose or binary events, it is 
important to consider how unanticipated events may affect the 
prediction accuracy. For example, a prediction model may provide 
good accuracy in forecasting glucose 30 minutes in the future, but if a 
meal is consumed 5 minutes after the prediction is made, this will 
degrade the prediction accuracy since glucose may unexpectedly rise 
rapidly in response to the meal. When designing a forecasting 
algorithm, it is important to consider how unexplained events impact 
training and also evaluation of the algorithm.  
Best practice 18: Prediction tasks and prediction metrics should be 
selected based on the forecast interval, and care should be taken in 
properly selecting features and prediction events depending on this 
forecast window. For long-term glucose prediction, it is challenging to 
achieve low error (RMSE or MARD) when predicting glucose values. 
When using classifiers instead, it is important to include the definition 
of true positive (TP), true negative (TN), false positive (FP), and false 
negative (FN).  Outcomes will differ depending on these definitions. 
For example, in meal detection, a TP could be defined as a detection 
within 30 minutes after a meal has been ingested. For short-term 
hypoglycemia detection, a TP could detection of glucose dropping 
below 70 mg/dL for at least 15 minutes. In any case, the definition of 
the prediction task will must be defined.  Error metrics like RMSE and 
MARD are more relevant prediction metrics when predicting short-
term glucose (e.g., 30 minutes). 

Although regression algorithms can be used to predict binary events 
(e.g., hypoglycemia or hyperglycemia), an algorithm used for binary 
classification will perform better if it is trained specifically to predict 
that event. For example, a glucose prediction algorithm may have a 
very low RMSE, but it may have a poor sensitivity for predicting low 
glucose readings. This is likely to occur because of the large imbalance 
in glucose data in the low glucose range (<70 mg/dl) compared with 
glucose above this range. Binary classifiers that are used to predict 
events like hypoglycemia need to be designed by dealing with the 
inherent imbalance in the data set.  

It is helpful to use an outcome metric weighted by the glucose range 
in which the error was made. It is more dangerous to make an error in 
a low glucose range (<70 mg/dL) than in a normal glucose range (90-
140 mg/d). Del Favero, Facchinetti and Cobelli [141] described a 
glucose-range-specific metric to better capture the increased risk of 
making errors in different ranges of glucose such that errors made in 
dangerous regions were weighted more heavily than those made in less 
dangerous regions. This group also showed in Faccioli et al. [142] that 
through use of this glucose-specific weighted error term, they could 
improve forecasting of hypoglycemia. Cameron et al. also report on a 
risk-based closed-loop algorithm that prioritizes mitigation of the 
increased risk of hypoglycemia compared with hyperglycemia [143].   

This article has been accepted for publication in IEEE Reviews in Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/RBME.2023.3331297

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



RBME-00029-2023  11 

Common pitfall 15: When using a regression algorithm to detect a rare 
event such as low glucose (e.g., < 70 mg/dL), a meal event, or an 
exercise event, sensitivity and specificity may be poor because the cost 
function for a regression algorithm is designed to minimize overall 
error, not detection of the hypoglycemia or meal event. These events 
are defined based on thresholds, such glucose dropping below a 
threshold of 70 mg/dL, glucose rising faster than 5 mg/dL/minute in 
response to a forecasted meal event. A cost function that penalizes 
based on glucose error alone may not be sufficient to optimize 
detection of the actual event of interest such as low glucose or a meal 
event. Furthermore, a person’s glucose can vary right around the 
threshold defining the binary event (e.g., the threshold for low glucose 
is < 70 mg/dL, but glucose varies right around 70, 71, 68, etc.). When 
designing a binary classifier, it is important to consider points near the 
threshold that defines the binary event and how detection errors near 
this threshold are considered  during training of the algorithm. 
Alternatively, a cost function that weights error near the threshold 
based on risk associated with that error may yield better performance 
(see Best Practice 33).  
Best practice 19: When designing an algorithm to predict an event 
such as low glucose (<70 mg/dL), it may be optimal to design a binary 
classifier rather than a classifier based on a regression algorithm 
whereby there is a penalty for failing to identify the binary event. 
Alternatively, it could be optimal to use a glucose-range-specific 
penalty [141, 142].  

C. Use of ML in detecting meal events 
Another type of sparse event classifier in diabetes is detecting a meal 
event (Figure 7). Detecting meal ingestions using various features 
including CGM, insulin, and other features may be an important step 
towards enabling a fully-automated hormone delivery system. The 
ideal time to dose meal insulin is before the meal is consumed due to 
the delayed kinetics of insulin relative to carbohydrate absorption. This 
requires the person with T1D to remember to dose meal insulin and 
also to properly estimate the carbohydrates consumed in the meal. This 
is a burden leading some to miss mealtime insulin and for those that 
do take mealtime insulin, carbohydrate estimation is prone to errors 
[58]. However, if a meal can be detected using an ML algorithm, a 
portion of the meal insulin bolus can be dosed once a meal has been 
detected[144]. The amount of meal dosed in response to the detected 
meal should depend on the estimated size of the meal and the estimated 
time that the meal was taken. Most meal detection algorithms can 
detect the meal within 25-45 minutes of the consumption of the meal. 
Although this is not an ML method, Mahmoudi et al. [145] used a 
Kalman filter within a control framework to determine if a meal has 
been consumed. They demonstrated that when dosing for this missed 
meal using the UVA-Padova simulator, they could improve TIR from 
53% to 83%. However, the algorithm still needs to be evaluated in a 
human study. Samadi and Cinar [146] reported on a qualitative trend 
analysis and fuzzy logic method for meal detection that achieved 87% 
sensitivity in silico and 93% sensitivity on actual human data. Their 
algorithm could detect a meal on average 34.8 minutes after the meal 
was consumed. One of the few ML-based meal detection algorithms 
was done by Garcia-Tirado et al. who showed that integrating a bolus 
priming system (BPS) to estimate the probability of a meal being 
consumed into their model predictive control algorithm improved time 
in range in an in-clinic human study [37]. Another ML approach for 
automated meal detection in T1D was based on an ensemble of LSTMs 
that received as input sequences of CGM records and classified the 
most recent CGM records as positive or negative for a meal onset. The 
in silico evaluation demonstrated the potential of the approach to 
achieve acceptable performance (mean c-statistic: >75%, mean 
detection time errors: 7-13 min) [147]. 

Since meal events are relatively rare (3-5 per day) compared with 
the total number of CGM readings in a day (~288), it is important that 
data scientists balance the data sets during training. A result of the 

imbalance in the data set is that accuracy can seem very high even for 
algorithms with poor sensitivity since there are so many non-meal 
events in a day. Therefore, reporting on balanced accuracy, area under 
the curve [148], and F1 are important metrics for evaluating meal 
detection. Lastly, specificity as a percentage is not that helpful for meal 
detection because of the data imbalance. Rather, the specificity of a 
meal detection algorithm should be reported as number of false 
positives per day.  
Best practice 20: When designing an algorithm to detect a meal, it is 
important to report on the sensitivity, the specificity, and the area 
under the receiver operating characteristic curve (AUC-ROC) of the 
algorithm. Specificity should be reported as number of false positives 
per day. A false positive event for a meal detection algorithm may 
carry a significant risk of hypoglycemia, and the impact of acting on 
these false positive events should be evaluated in simulations. The 
additional outcome metrics to report on are covered in section III. The 
challenge with predicting sparse events such as a meal is that the 
prediction accuracy is highly dependent on the definition of the event. 
For example, a meal event can be defined as consuming a 10 g 
carbohydrate meal, or as consuming a 100 g carbohydrate meal, which 
yield vastly different glucose responses. It is far easier to detect a large 
carbohydrate meal compared with a small carbohydrate meal. Data 
scientists must carefully consider how the meal event is defined, how 
the detection window is defined, and how a detection event from the 
algorithm will be used when defining the definition for the meal size 
and when reporting accuracy.  
Best practice 21: The mean time of the meal consumption relative to 
prediction time should be reported with all meal prediction algorithms. 
An optimal meal detection time is as soon as possible relative to the 
start of the meal consumption, though the change in glucose in 
response to a meal does not typically appear until 20-45 minutes after 
the meal. Insulin on board and macronutrient contents of the meal 
(protein and fat) will also affect the response to the meal [149]. 
Best practice 22: For automated meal detection, it may be important 
to both detect a meal and also to estimate the size of the meal, though 
this is application-specific. Certain meal forecasting algorithms may 
be used to automate meal insulin dosing in full closed-loop AID 
applications in response to detected meal events. Certain algorithms 
can utilize a size estimation as well to determine how much meal 
insulin should be dosed in response to the detected meal event [144]. 
Other algorithms that automate meal insulin dosing, may not require a 
meal size estimation to determine how to dose for meal insulin but 
instead use anticipation using probabilities derived from prior meal 
events [150]. Meal anticipation is possible as done by Garcia-Tirado 
and colleagues if conservative meal dosing is employed. It is important 
to report the sensitivity and false positives per day of the meal 
detection event and optionally on the accuracy of the size estimation 
algorithm if size estimation is important for the application. 

D. Hyperparameter tuning 
In all ML algorithms, there are hyperparameters that need to be tuned. 
These hyperparameters may include the features used, aspects of the 
architecture such as the number of layers or nodes in a layer of a neural 

Figure 7: Block diagram of a fully-automated insulin delivery system 
including a basal insulin controller and a meal detection and bolus priming 
module. 
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network, or the selection of gamma, C, or the kernel in support vector 
machines. The hyperparameters can be tuned through a search across 
the parameter space, such as grid search. It is important for data 
scientists to (1) report final hyperparameters of their model and (2) 
clearly report how hyperparameters were tuned (e.g. using a validation 
set or N-fold cross validation). 
Common Pitfall 16: Finalizing a model structure without 
hyperparameter tuning or not discussing how the hyperparameters 
were chosen could lead to sub-optimal model performance and lack of 
reproducibility. 
Best Practice 23: Hyperparameters in a model should be tuned. 
Examples of hyperparameter tuning approaches may include grid 
search, random search, evolutionary algorithms, or Bayesian sampling. 
Data scientists should clearly state how hyperparameter tuning was 
done to enable reproducibility. 

E. Considerations on types of sensors and devices used 
Different studies are done using various types of commercial and/or 
developmental sensors and insulin delivery devices. This should be 
considered when comparing ML algorithms trained and evaluated 
from different studies using different devices. The accuracy of 
different CGM sensors under different conditions (e.g. during exercise, 
or with certain types of medication) should be considered.  
Common Pitfall 17: Comparing algorithms built on glucose data 
collected using different CGM sensors may yield inconclusive results. 
CGM manufacturers use different algorithms, that may introduce bias 
on the CGM data. Data scientists should report on the devices used in 
the study and be aware that performance may differ if algorithms are 
evaluated on devices on which the algorithm was not trained.  
Best Practice 24: ML algorithms designed using data from different 
models may need to consider manufacturer and model as inputs so that 
bias differences between the CGM manufacturers can be appropriately 
handled by the algorithm.  

F. Personalized ML in diabetes forecasting and treatment 
There is heterogeneity in physiology, glucose responses, insulin 
dosing, nutrient intake, exercise patterns, sleep patterns etc. in people 
living with diabetes. This large amount of heterogeneity can make it 
challenging to design an ML algorithm that will work well for 
everyone. Adapting a population model once new data from an 
individual becomes available may lead to significant improvements in 
accuracy. Romero-Ugalde et al. developed an autoregressive with 
exogenous inputs (ARX) model for glucose prediction during and after 
exercise [151]. They found that personalization could improve the 
prediction accuracy. Tyler and colleagues also found that using data 
recorded from prior exercise sessions could be used to personalize a 
glucose forecasting algorithm and improve accuracy during future 
exercise events  [71]. Askari et al. used the Tidepool data set to develop 
personalized DNN models for meal and physical activity detection 
[25]. Reinforcement learning could be an important approach at 
personalizing glucose control algorithms in the future as discussed by 
Tejedor and colleagues [152] and Fox and colleagues [153]. However, 
it remains an open question of whether population models are better 
than personalized models when used in the real-world. Individuals’ 
glucose profiles change a lot day-to-day. Herrero and colleagues 
showed that individuals’ glucose traces could uniquely identify each 
person thereby generating a CGM equivalent to a ‘fingerprint’ [154]. 
If individual glucose profiles have a larger inter-day variation than the 
variation observed in a population model, then there could be no 
benefit of personalization. It is important for any personalized model 
to be compared with a population model. 
Best practice 25: When presenting results on a personalized ML 
model, compare performance with a population model to show the 
benefit of personalization. Architecture should be identical between 
personalized and population models. 

V. APPLICATIONS OF ML IN DECISION SUPPORT AND CLOSED-
LOOP  

ML has the potential to improve glucose control beyond just glucose 
forecasting. ML techniques can be used to optimally provide 
recommendations to patients about modifying their insulin dosing 
settings in closed-loop systems or using open-loop therapy.  

A. ML algorithms used in decision support 
Noaro et al. [155, 156] trained multiple ML models to estimate the 
optimal pre-meal bolus. The models were shown to improve glucose 
control in silico and results were also presented on retrospective real-
world data.  

Though not an ML approach, a common approach for selecting 
optimal recommendations for adjusting insulin settings is to use a run-
to-run approach whereby settings are selected based on the similarities 
of the circumstances with prior circumstances. Various groups [157-
160] have demonstrated how run-to-run methods can be used to 
provide decision support and improve glucose outcomes in silico.  
Similar to run-to-run methods, Tyler et al. [20] developed a k-nearest-
neighbors decision support system (KNN-DSS) to provide weekly 
optimal recommendations to help people with T1D on multiple daily 
injections (MDI) to modify correction factors and carbohydrate ratios. 
The algorithm was trained on 50,000 in silico observations derived via 
simulator [68] and then evaluated in a short 4-week real-world study 
that demonstrated reduction of time in hypoglycemia with use of the 
recommendations compared with a baseline period. Tyler et al. 
compared the recommendations provided by the KNN-DSS with 
recommendations provided by physicians and found that the algorithm 
agreed with a consensus of board-certified endocrinologists 67.9% of 
the time. This study emphasized several important best practices and 
also pitfalls important for ML algorithms designed for use in decision 
support in diabetes. First, while the algorithm was trained on a 
simulator, it was evaluated on clinical study data and results were 
reported on both in silico and real-world data (Best Practice #12). 
Second, a comparison was done between the algorithm’s 
recommendations with those of board-certified endocrinologists (Best 
Practice #26).  
Best Practice 26: When evaluating an ML-driven recommender 
engine, comparing a recommender engine with recommendations by 
board certified endocrinologists can provide some assurance of 
acceptable safety.  
More recently, Castle et al. [161] reported that the Tyler et al. 
algorithm was evaluated in an 8-week trial in people with T1D. There 
was no improvement in the percent time in target glucose range (70-
180 mg/dl) in the final 2 weeks of the study compared with the baseline 
two weeks. However, for weeks when participants followed most or 
all of the recommendations, they realized a 6.3% increased time in 
range compared with weeks when they did not follow the 
recommendations. Importantly, the in silico evaluation in the UVA 
Padova simulator done by Tyler et al. showed a 6.7% increase in time 
in range, which is close to the improvement shown in the Castle et al. 
study of 6.3%. However, when Tyler et al. evaluated the performance 
in the OHSU simulator using different virtual participants than the one 
on which the algorithm was trained, the performance was higher 
demonstrating an expected improvement in percent time in range of 
20.3%. The variable performance across simulators emphasizes the 
need to evaluate algorithms across multiple simulators.  
Best practice 27: If a decision support or control algorithm is trained 
on virtual participants from a given simulator, it is important to 
evaluate it on virtual participants in a different simulator, which 
should be at least comparable in terms of specifications to the first one. 
If a second simulator is not available, a data scientist may use a sub-
sample of virtual participants from the same simulator not used to train 
the algorithm, and test on this sub-sample. However, results will likely 
be overly optimistic. It is also important to consider how closely the 
scenarios in a test set are represented by those in the training set. 
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Scenarios should be well represented in both training and test sets and 
should be close to real-world (e.g. utilizing real-world meal amounts, 
meal size misestimations, meal timing and exercise intensities, 
durations, and timing).  
Best practice 28: When training and evaluating a clinical decision 
support or control algorithm, it is important to simulate lack of 
adherence to recommendations when determining changes in glucose 
outcomes. In decision support, it has been shown that people tend to 
not to adhere to recommendations about 25% of the time [161]. Lack 
of adherence in a closed-loop setting could be scenarios where a 
participant does not adequately follow meal bolus recommendations or 
does not dose for meals altogether in a hybrid closed-loop application. 
Lack of adherence in a clinical decision support system could be where 
a person does not announce a meal or uses an incorrect carbohydrate 
ratio or correction factor and does not change it when recommended to 
do so [162]. 

Additional work on clinical decision support systems (CDSS) was 
reported by Nimri et al. [163] on a clinical decision support algorithm 
(AI-CDSS) for use in adjusting insulin pump settings for open loop 
insulin therapy. This algorithm uses fuzzy logic rather than ML. 
Recommendations were provided to the participants once every 3 
weeks for adjusting carb ratios, correction factors, and basal insulin 
rates. This CDSS was cleared by the FDA. Nimri et al. reported non-
inferiority data comparing AI-CDSS with board certified 
endocrinologists in patients using MDI therapy [164]. 

Bisio et al. [165] showed that 80 participants with T1D using CGM 
+ MDI therapy in combination with a decision support also did not 
improve their time in range compared with participants using CGM + 
MDI without decision support. However, as with Castle et al., they also 
showed that ‘active users’ of the app experienced a higher time in 
range than a group that was not defined as ‘active users’. This further 
supports the need to model adherence and lack-of-adherence when 
evaluating expected benefit of use of decision support. 
Best Practice 29: A decision support algorithm providing 
recommendations on changes to carb ratios, correction factors or 
basal rates should require a minimum amount of historical data prior 
to making a subsequent recommendation. Because of the variability of 
CGM and day-to-day behavior as well as the differences in behavior 
during the week vs. weekend, the recommendation is to require at least 
1 week of historical data prior to making a recommendation. Herrero 
and colleagues found that a minimum of two weeks of observing CGM 
when people use ultra-long-acting insulin (e.g. Tresiba and Toujeo 
which reach steady state in 3-4 days) is sufficient for estimating 
glucose outcomes  [166]. Therefore, multiple weeks could be required 
to assess glucose outcomes prior to providing a recommendation for 
these types of basal insulin. In addition, improvement should be 
assessed across multiple weeks using a statistical test as a comparison 
against another algorithm (e.g. standard care). The amount of time 
needed between recommendations is likely application-dependent and 
should optimally be determined through hyper-parameter tuning.  
Best practice 30: When assessing a clinical decision support 
algorithm, it is best to compare glucose outcomes (Table 2) relative to 
a baseline time period. A recommended baseline window would be a 
minimum of 2 weeks [167]. Menstrual cycle can affect glucose levels, 
and for that reason, it would be beneficial to have at least 4 weeks in a 
baseline period. 
Best practice 31: When comparing different algorithms, it is important 
to do a statistical test (e.g. t-test or a general linear model) to show if 
an improvement is significant. A test of normality should also be done 
if using a t-test to ensure normality of the distribution, otherwise a non-
parametric test (e.g. Wilcoxon rank-sum test) should be done. 

B.  ML algorithms used in closed-loop control 
ML algorithms can be used within systems that automate delivery of 
insulin and other hormones [168]. A model predictive control 
algorithm requires a forecasting model that is used to predict glucose 

across a future time horizon [169]. This forecasting model can be a 
physical model comprising ordinary differential equations as was done 
in Hovorka et al. [108] and by others [66, 170], or the model may also 
include a data-driven model as was done by Zarkogianni and 
colleagues [171] where they combined a compartment model with a 
recurrent neural network. ML algorithms can also be used within a 
closed-loop framework to predict a low glucose event as was done 
using a long-short-term memory neural network [26] within a dual-
hormone closed loop system to shut off insulin in the event that a low 
glucose event is predicted [16]. ML algorithms can also be used to 
predict when a meal has occurred such that a percentage of meal 
insulin can be delivered when the meal is detected or to detect an 
exercise event so that insulin can be reduced during or following 
exercise [144, 150]. The application in which an algorithm is intended 
to be used is critical to understand when designing it because the 
resulting actions of its use can be catastrophic if the algorithm is 
incorrect. For example, depending on the dosing strategy, when 
designing a meal detection algorithm designed to dose insulin in the 
event of a non-reported meal, it is optimal to minimize or eliminate 
false positives at the expense of reduced sensitivity, since dosing 
insulin in response to a false positive meal detection could potentially 
result in severe hypoglycemia, which can be life-threatening. Whereas, 
a hypoglycemia prediction algorithm should be optimized for higher 
sensitivity because a hypoglycemic event is a dangerous event; if the 
algorithm misses a prediction, and insulin is not reduced by the closed-
loop system, then it again could be harmful to the user. 
Best practice 32: When designing ML algorithms used within a closed-
loop system, the outcome metrics [172] should be carefully considered 
to minimize risk to the user.  

VI. METRICS USED TO EVALUATE ALGORITHMS 

A. Glucose forecasting metrics 
Kovatchev provides a review of metrics that can be used to assess 
outcomes of predictive algorithms [51]. When predicting glucose, the 
most common metrics used to assess performance are root mean 
squared error (RMSE), mean absolute error (MAE), mean absolute 
relative difference (MARE), mean error (ME), mean relative error 
(MRE), and time gain (TG). In the equations below, 𝑦𝑦�(𝑘𝑘 + 𝑃𝑃𝑃𝑃) is the 
predicted glucose at time k, for a given prediction horizon (PH) while 
y(k+PH) is the measured glucose at that time. 
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1                                     (15) 

Notice that RMSE and MAE are very similar measures. However, 
RMSE includes the square root of the sum of the square of errors, 
which yields an error metric that is more sensitive to large deviations. 
A large glucose prediction error can be life-threatening to a person with 
T1D using that prediction to dose insulin. RMSE should be the primary 
metric used to present results on glucose forecasting. 
Common pitfall 18: When reporting on absolute error for glucose 
forecasting, MAE may not provide a complete picture as it does not 
weight large mistakes in prediction like RMSE. 
Best practice 33: When reporting on an absolute error for glucose 
forecasting performance, include RMSE as the primary reporting 
measure. It may also be helpful to report glucose-specific RMSE 
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(gRMSE) which weights the risk associated with errors in different 
glucose ranges [141]. 

When used in glucose prediction, RMSE and MAE are typically in 
units of either mg/dL or mmol/L. MARE is helpful in that it is given as 
a percentage, which is an important way to display the data since a 30 
mg/dL error in glucose estimation is far more concerning when glucose 
is low compared with when glucose is high, for example. ME and MRE 
provide information about the bias of a prediction estimate, indicating 
if the prediction tends to be lower or higher than the actual value on 
average. While designers may prefer to have an algorithm that has no 
bias, it is important to consider that a negative bias could be preferable 
to a positive bias. Hypoglycemia can be life-threatening while some 
amount of hyperglycemia can be tolerated, and so an algorithm that 
errs on the side of estimating glucose as too low, is actually safer than 
an algorithm that estimates glucose as higher than the actual value. It 
is important to limit false positives as this can cause alarm fatigue.  
Common pitfall 19: Presenting prediction results only as an absolute 
value (e.g. RMSE, MARE, or MAE) is not sufficient because there is 
no information about bias in the prediction.  
Common pitfall 20: When calculating an error metric such as RMSE 
for a given prediction horizon (e.g. 30 minutes), averaging the RMSE 
across multiple horizons yields an error that is incorrectly small. For 
example, if a data scientist was to report an RMSE for a 30-minute 
horizon as an average of the RMSE at 5-, 10-, 15-, 20-, 25-, and 30-
min horizons, the RMSE will be unrealistically lower than if reported 
solely at 30 min.  
Best practice 34: In addition to including absolute outcome metrics of 
RMSE, MARE, and MAE, also include relative error measures 
including MRE and ME. One of the disadvantages of including 
mathematical metrics of accuracy such as RMSE, MARE, MAE, 
MRE, and ME is that there is no penalization for errors that are made 
in regions that are dangerous when predictions are used by an insulin 
dosing algorithm or a decision support algorithm. Del Favero et al. 
[141] introduced a new metric called the glucose-specific mean 
squared error (gMSE) that penalizes mean squared error more 
significantly in low and high regions of glucose where the impact of 
an error is more clinically significant. If the glucose is less than a lower 
threshold of 70 mg/dL (TL), then a penalty is applied.  

The Clarke error grid [173], the Parkes consensus grid [174], the 
continuous error grid [175], and the surveillance error grid [176] are 
other important tools that can be used to demonstrate how bias in a 
prediction is more or less clinically relevant. The Clarke error grid 
shown in Figure 8a [173] is a plot of predicted vs. reference glucose 
values over the range of 0-400 mg/dL (0-22.2 mmol/l). Regions of the 
plot are indicated by the letters A, B, C, D, and E whereby regions A 
and B are considered safe and regions C, D, and E are considered 
progressively more dangerous and even life-threatening if a person or 
device was to act on these inaccurate predictions. The Clarke error grid 
was originally designed to help people with diabetes gauge awareness 
their glucose levels. The Parkes Consensus grid [174] in Figure 8b and 
the surveillance error grid also have the regions A-E, but the 

boundaries are smooth and were determined by a consensus among a 
group of endocrinologists who agreed on the regions that were most 
dangerous to a patient if a mistake in forecasting is made. Importantly, 
the risk attributed to the different regions of these grids was designed 
for decision making based on real-time blood glucose meter 
measurements, not predictions made 30-60 minutes in the future. 
Because risk based on forecasting errors is likely different than risk 
based on real-time blood glucose measurements, there is an 
opportunity in the future to re-think how risk should be quantified for 
glucose forecasting. 
Best Practice 35: Present glucose prediction results in the form of a 
Parkes consensus grid or surveillance error grid figure while also 
summarizing results in a table showing the percent of predictions in 
the A, B, C, D, and E regions. 

B. Metrics used for sparse event prediction (e.g. hypoglycemia, 
hyperglycemia, meal events, etc.) 
When assessing accuracy for a sparse event / binary classifier, it is 
important to account for the potential imbalance in the data set. For 
example, if there are 4% CGM readings below 70 mg/dL, an algorithm 
which always predicts that the glucose is not hypoglycemic will 
therefore have an accuracy of 96%, even if it misses every 
hypoglycemic event. For this reason, it is important to report both 
sensitivity and specificity as well as area under the receiver operating 
characteristic curve along with accuracy measures for sparse event 
classifiers (see Supplementary Equations 3.1-3.5). 

In addition, rather than reporting accuracy, it is important to report 
prediction accuracy using a metric that is robust to this imbalance. 
Balanced accuracy is the arithmetic mean of the sensitivity and 
specificity, and so it is a more robust metric to imbalance than simply 
reporting accuracy. Another metric robust to imbalance for binary 
classifiers is Matthews Correlation Coefficient (MCC) [177] 
(Supplementary Equation 3.5). 

Supplementary Equation 3.5 shows that when the classifier is 
perfect (FP = FN = 0) the value of MCC is 1, indicating perfect 
accuracy. Conversely, when the classifier always misclassifies (TP = 
TN = 0), we get a value of -1, representing perfect negative correlation 
(in this case, you can simply reverse the classifier’s outcome to get the 
ideal classifier). MCC value is always between -1 and 1, with 0 
meaning that the classifier is no better than a random flip of a fair coin. 
MCC is also symmetric, so no class is more important than the other. 
Common pitfall 21: If accuracy is reported on a sparse event classifier 
algorithm in a highly unbalanced data set with an excessive number of 
negative observations, it is possible to have a very high accuracy, but 
a very low or even zero value for sensitivity of detecting the positive 
event. The definitions of the thresholds used to define the sparse event 
is critical; it will impact the sensitivity and specificity of the algorithm.  
Best practice 36: When data sets are being used for a sparse event 
predictor, and if there is a large class imbalance between positive and 
negative observations, report sensitivity, specificity (FP/day), area 
under the ROC curve [148], and balanced accuracy such as MCC.  

C. Metrics for evaluating postprandial glucose prediction  
When predicting the glucose response after a meal (i.e. postprandial 
glucose response), there are various metrics that are of interest and can 
be used to determine if the amount of insulin dosed for the meal was 
appropriate. The area under the curve (AUC) of the CGM trace is 
calculated by using the trapezoidal rule and summing the area under 
this curve from the start of a meal to 3-4 hours after the meal. The AUC 
is not appropriate to assess postprandial glucose response because it 
inherently includes the starting glucose in the calculation, which is 
unrelated to the meal response. A better metric is the incremental area 
under the curve (iAUC) of the glucose trace, which sums the area under 
the CGM curve relative to the starting glucose value, only including in 
the sum the CGM values that are greater than the starting glucose value 
(Supplementary Figure 1). An additional metric is the netAUC which 
is the same as the iAUC however it also sums the negative areas under 

                              (a)                                                            (b) 
Figure 8: Clarke error grid (a) and Parkes Consensus grid (b). 
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the curve relative to the starting CGM. Brouns et al. provide an 
overview of AUC, iAUC, and netAUC [178]. If the insulin dosing for 
the meal is optimal, then there will be no low glucose following the 
meal (<70 mg/dL) and the iAUC and netAUC will be minimal.  

In addition to iAUC and netAUC, the maximum postprandial 
glucose, minimum postprandial glucose, and the delta between the 
peak and starting glucose are also useful. 
Common pitfall 22: AUC as a postprandial glucose metric can be 
deceptive because it is correlated with starting glucose. 
Best practice 37: When assessing prediction of postprandial glucose 
responses, appropriate metrics are the iAUC, netAUC, maximum delta 
glucose from the glucose at the start of the meal. All account for 
glucose at the start of the meal.  

D. Metrics for assessing explainability of algorithms 
Regulatory bodies like the Food and Drug Administration (FDA) in 
the U.S. will typically require that ML algorithms used within life-
critical operations such as drug delivery maintain a certain level of 
explainability and interpretability. Interpretability implies that it is 
possible to understand how an algorithm arrived at giving a certain 
prediction or recommendation. Explainability describes how certain 
aspects, parameters, or features in a model influence the output of that 
model. Simple classes of algorithms (e.g. logistic regression, decision 
tree) are inherently interpretable. However, other algorithms such as 
random forest and deep learning algorithms are not interpretable, but 
explainability can be incorporated into them. Some of the popular 
methods of incorporating explainability into complex black-box ML 
algorithms include  SHAP [179], LIME [180], DeepLIFT [181], 
MACE [182], GAN based methods [183]. These tools help illuminate 
ML models making predictions more comprehensible.  

SHAP stands for SHapley Additive exPlanations and is more widely 
used and more similar to human explanations. The core idea behind 
Shapley value-based explanations of ML models is to use fair 
allocation results from cooperative game theory to allocate credit for a 
model’s output among its input features.  
Best practice 38: Data scientists should strive to develop algorithms 
that are explainable and interpretable. When using algorithms that are 
not inherently explainable, methods like SHAP, LIME, etc. should be 
used to provide a certain measure of explainability into the algorithm. 
Common pitfall 23: When features are correlated, if the algorithm is 
used to identify input variables that are significantly related to the 
outcome, these correlations may lead to conclusions that are incorrect. 
For example, people with T1D take insulin at the same time as 
consuming a meal. In this way, both insulin and meal intake are 
correlated with rises in glucose. However, insulin does not cause the 
rise in glucose. The meal causes the rise. When exploring 
explainability of a model, it is important to be aware of correlated 
features to avoid invalid conclusions about which features are 
impacting prediction. 

VII. CONCLUDING REMARKS 
In this manuscript, we have presented an overview of current best 
practices and common pitfalls for data scientists interested in working 
on the development of AI and ML algorithms for diabetes and glucose 
management. Future guidelines may include best practices and pitfalls 
as they relate to newer technologies such as adaptive therapies [184, 
185], adjunctive therapies such as SGLT-2 inhibitors [186], multi-
hormone closed-loop systems (insulin, glucagon [16, 187], pramlintide 
[34]) and use of cloud-based computing approaches vs. computing on 
the edge [188, 189]. Our aim is to present current consensus-based 
guidelines and recommendations that will aid in the advancement of 
the field to ultimately improve glucose outcomes and overall health of 
people living with diabetes.  
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