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Abstract—This paper reviews state-of-the-art research 

solutions across the spectrum of medical imaging informatics, 
discusses clinical translation, and provides future directions for 
advancing clinical practice. More specifically, it summarizes 
advances in medical imaging acquisition technologies for different 
modalities, highlighting the necessity for efficient medical data 
management strategies in the context of AI in big healthcare data 
analytics. It then provides a synopsis of contemporary and 
emerging algorithmic methods for disease classification and 
organ/ tissue segmentation, focusing on AI and deep learning 
architectures that have already become the de facto approach. The 
clinical benefits of in-silico modelling advances linked with 
evolving 3D reconstruction and visualization applications are 
further documented. Concluding, integrative analytics approaches 
driven by associate research branches highlighted in this study 
promise to revolutionize imaging informatics as known today 
across the healthcare continuum for both radiology and digital 
pathology applications. The latter, is projected to enable informed, 
more accurate diagnosis, timely prognosis, and effective treatment 
planning, underpinning precision medicine.  
 

Index Terms—Medical Imaging, Image Analysis, Image 
Classification, Image Processing, Image Segmentation, Image 
Visualization, Integrative Analytics, Machine Learning, Deep 
Learning, Big Data. 
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I. INTRODUCTION 

MEDICAL imaging informatics covers the application of 
information and communication technologies (ICT) to medical 
imaging for the provision of healthcare services. A wide-
spectrum of  multi-disciplinary medical imaging services have 
evolved over the past 30 years ranging from routine clinical 
practice to advanced human physiology and pathophysiology. 
Originally, it was defined by the Society for Imaging 
Informatics in Medicine (SIIM) as follows [1]-[3]: 
“Imaging informatics touches every aspect of the imaging 
chain from image creation and acquisition, to image 
distribution and management, to image storage and retrieval, 
to image processing, analysis and understanding, to image 
visualization and data navigation; to image interpretation, 
reporting, and communications. The field serves as the 
integrative catalyst for these processes and forms a bridge with 
imaging and other medical disciplines.” 

The objective of medical imaging informatics is thus, 
according to SIIM, to improve efficiency, accuracy, and 
reliability of services within the medical enterprise [3], 
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concerning medical image usage and exchange throughout 
complex healthcare systems [4].  In that context, linked with the 
associate technological advances in big-data imaging, -omics 
and electronic health records (EHR) analytics, dynamic 
workflow optimization, context-awareness, and visualization, a 
new era is emerging for medical imaging informatics, 
prescribing the way towards precision medicine [5]-[7]. This 
paper provides an overview of prevailing concepts, highlights 
challenges and opportunities, and discusses future trends.  

Following the key areas of medical imaging informatics in 
the definition given above, the rest of the paper is organized as 
follows: Section II covers advances in medical image 
acquisition highlighting primary imaging modalities used in 
clinical practice. Section III discusses emerging trends 
pertaining to the data management and sharing in the medical 
imaging big data era. Then, Section IV introduces emerging 
data processing paradigms in radiology, providing a snapshot 
of the timeline that has today led to increasingly adopting AI 
and deep learning analytics approaches. Likewise, Section V 
reviews the state-of-the-art in digital pathology. Section VI 
describes the challenges pertaining to 3D reconstruction and 
visualization in view of different application scenarios. Digital 
pathology visualization challenges are further documented in 
this section, while in-silico modelling advances are presented 
next, debating the need of introducing new integrative, multi-
compartment modelling approaches. Section VII discusses the 
need of integrative analytics and discusses emerging 
radiogenomics paradigm for both radiology and digital 
pathology approaches. Finally, Section VIII provides the 
concluding remarks along with a summary of future directions. 

II. IMAGE FORMATION AND ACQUISITION 
Biomedical imaging has revolutionized the practice of 

medicine with unprecedented ability to diagnose disease 
through imaging the human body and high-resolution viewing 
of cells and pathological specimens. Broadly speaking, images 
are formed through interaction of electromagnetic waves at 
various wavelengths (energies) with biological tissues for 
modalities other than Ultrasound, which involves use of 
mechanical sound waves. Images formed with high-energy 
radiation at shorter wavelength such as X-ray and Gamma-rays 
at one end of the spectrum are ionizing whereas at longer 
wavelength - optical and still longer wavelength - MRI and 
Ultrasound are nonionizing. The imaging modalities covered in 
this section are X-ray, ultrasound, magnetic resonance (MR), 
X-ray computed tomography (CT), nuclear medicine, and high-
resolution microscopy [8], [9] (see Table 1). Figure 1 shows 
some examples of images produced by these modalities. 

X-ray imaging’s low cost and quick acquisition time has led 
to it being one of the most commonly used imaging techniques. 
The image is produced by passing X-rays generated by an X-
ray source through the body and detecting the attenuated X-rays 
on the other side via a detector array; the resulting image is a 
2D projection with resolutions down to 100 microns and where 
the intensities are indicative of the degree of X-ray attenuation 
[9]. To improve visibility, iodinated contrast agents that 
attenuate X-rays are often injected into a region of interest (e.g., 
imaging arterial disease through fluoroscopy). Phase-contrast 
X-ray imaging can also improve soft-tissue image contrast by 

using the phase-shifts of the X-rays as they traverse through the 
tissue [10]. X-ray projection imaging has been pervasive in 
cardiovascular, mammography, musculoskeletal, and 
abdominal imaging applications among others [11].  

Ultrasound imaging (US) employs pulses in the range of 1-
10 MHz to image tissue in a noninvasive and relatively 
inexpensive way. The backscattering effect of the acoustic 
pulse interacting with internal structures is used to measure the 
echo to produce the image. Ultrasound imaging is fast, 
enabling, for example, real-time imaging of blood flow in 
arteries through the Doppler shift. A major benefit of ultrasonic 
imaging is that no ionizing radiation is used, hence less harmful 
to the patient. However, bone and air hinder the propagation of 
sound waves and can cause artifacts. Still, ultrasound remains 
one of the most used imaging techniques employed extensively 
for real-time cardiac and fetal imaging [11]. Contrast-enhanced 
ultrasound has allowed for greater contrast and imaging 
accuracy with the use of injected microbubbles to increase 
reflection in specific areas in some applications [12]. 
Ultrasound elasticity imaging has also been used for measuring 
the stiffness of tissue for virtual palpation [13]. Importantly, 
ultrasound is not limited to 2D imaging and use of 3D and 4D 
imaging is expanding, though with reduced temporal resolution 
[14].  

MR imaging [15] produces high spatial resolution volumetric 
images primarily of Hydrogen nuclei, using an externally 
applied magnetic field in conjunction with radio-frequency 
(RF) pulses which are non-ionizing [1]. MRI is commonly used 
in numerous applications including musculoskeletal, 
cardiovascular, and neurological imaging with superb soft-
tissue contrast [16], [17]. Additionally, functional MRI has 
evolved into a large sub-field of study with applications in areas 
such as mapping the functional connectivity in the brain [18]. 
Similarly, diffusion-weighted MRI images the diffusion of 
water molecules in the body and has found much use in 
neuroimaging and oncology applications [19]. Moreover, 
Magnetic Resonance Elastography (MRE) allows virtual 
palpation with significant applications in liver fibrosis [20], 
while 4D flow methods permit exquisite visualization of flow 
in 3𝐷𝐷 + 𝑡𝑡 [17], [21]. Techniques that accelerate the acquisition 
time of scans, e.g. compressed sensing, non-Cartesian 
acquisitions [22], and parallel imaging [23], have led to 
increased growth and utilization of MR imaging. In 2017, 36 
million MRI scans were performed in the US alone [24].  

X-ray CT imaging [25] also offers volumetric scans like 
MRI. However, CT CT produces a 3D image via the 
construction of a set of 2D axial slices of the body. Similar to 
MRI, 4D scans are also possible by gating to the ECG and 
respiration. Improved solid-state detectors, common in modern 
CT scanners, have improved spatial resolutions to 0.25 mm 
[26], while multiple detector rows enable larger spatial 
coverage with slice thicknesses down to 0.625 mm. Spectral 
computed tomography (SCT) utilizes multiple X-ray energy 
bands that are used to produce distinct attenuation data sets of 
the same organs. The resulting data permit material 
composition analysis for a more accurate diagnosis of disease 
[27]. CT is heavily used due to its quick scan time and excellent 
resolution, in spite concerns of radiation dosage. Around 74 
million CT studies were performed in the US alone in 2017 
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[24], and this number is bound to grow due to CT’s increased 
applications in screening in emergency care.  

In contrast to transmission energy used in X-ray based 
modalities, nuclear medicine is based on imaging gamma rays 
that are emitted through radioactive decay of radioisotopes 
introduced in the body. The radioisotopes emit radiation that is 
detected by an external camera before being reconstructed into 
an image [11]. Single photon emission computed tomography 
(SPECT) and positron emission tomography (PET) are 
common techniques in nuclear medicine. Both produce 2D 
image slices that can be combined into a 3D volume; however, 
PET imaging uses positron-emitting radiopharmaceuticals that 
produce two gamma rays when a released positron meets a free 
electron. This allows PET to produce images with higher 
signal-to-noise ratio and spatial resolution as compared to 
SPECT [9]. PET is commonly used in combination with CT 
imaging (PET/CT) [28] and more recently PET/MR [29] to 
provide complementary information of a potential abnormality. 

The use of fluorodeoxyglucose (FDG) in PET has led to a 
powerful method for diagnosis and cancer staging. Time-of-
flight PET scanners offer improved image quality and higher 
sensitivity during shorter scan times over conventional PET and 
are particularly effective for patients with a large body habitus 
[30].  

Last but not least, the use of microscopy in imaging of cells 
and tissue sections is of paramount importance for disease 
diagnosis, e.g. for biopsy and/ or surgical specimens. 
Conventional tissue slides contain one case per slide. A single 
tissue specimen taken from a patient is fixated on a glass slide 
and stained. Staining enhances visual representation of tissue 
morphology, enabling a pathologist to view and interpret the 
morphology more accurately. Conventional staining methods 
include Hematoxylin and Eosin (H&E), which is the most 
common staining system and stains nuclei, and 
immunohistochemical staining systems. Light microscopes use 
the combination of an illuminator and two or more lenses to 

    
(a) Cine-angiography X-ray (b) 4D gated planning CT (c) Echocardiogram (d) Axial MRI slices 

   

 

(e) Q SPECT lung perfusion (f) 2D slice from a 3D FDG-PET  (g) Magnified, digitized tissue  
Fig. 1. Typical medical imaging examples. (a) Cine angiography X-ray image after injection of iodinated contrast; (b) An axial slice of a 4D, gated planning 
CT image taken before radiation therapy for lung cancer;  (c) Echocardiogram – 4 chamber view showing the 4 ventricular chambers (ventricular apex located 
at the top); (d) First row – axial MRI slices in diastole (left), mid-systole (middle), and peak systolic (right). Note the excellent contrast between blood pool 
and left ventricular myocardium. Second row –tissues tagged MRI slices at the same slice location and time point during the cardiac cycle. The modality 
creates noninvasive magnetic markers within the moving tissue [40]; (e) A typical Q SPECT image displaying lung perfusion in a lung-cancer patient; (f) A 
2D slice from a 3D FDG-PET scan that shows a region of high glucose activity corresponding to a thoracic malignancy; (g) A magnified, digitized image of 
brain tissue to look for signs of Glioblastoma (taken from TCGA Glioblastoma Multiforme collection (https://cancergenome.nih.gov/). 

TABLE I. SUMMARY OF IMAGING MODALITIES CHARACTERISTICS 
 

 Technology Anatomies Dimensionality Cost per Scan* Storage 
Requirements 

X-ray Produces images by measuring the attenuation of 
X-rays through the body, via a detector array [9]. Most organs 2D, 2D+t $15-385 Up to ~1GB 

CT Creates 2D cross-sectional images of the body by 
using a rotating X-ray source and detector [25].  Most organs 2D, 3D, 4D $57-385 Up to 10s of 

GBs 

Ultrasound A transducer array emits acoustic pulses and 
measures the echoes from tissue scatters [9].  Most Organs 2D, 2D+t, 3D, 

4D 

$57-230, 
$633-1483 (with 
endoscope) 

Up to GBs 

MRI 
Uses a magnetic field to align atoms; RF pulses are 
then used to excite the molecules to measure their 
locations within the body [15].  

Most organs 3D, 4D $32-691 Up to 10s of 
GBs 

Nuclear 
Measures the emission of gamma rays through 
decay of  radioisotopes introduced into the body via 
an external detectors/Gamma cameras [9] 

All organs with 
radioactive tracer 
uptake 

2D, 3D, 4D $182-1375 Up to GBs 

Microscopy Typically uses an illumination source and lenses to 
magnify specimens before capturing an image [9] 

Primarily biopsies 
and surgical 
specimens 

2D, 3D, 4D 
$248-482, 
$642-1483 (with 
endoscope) 

Can be >1TB 

MRI: Magnetic Resonance Imaging, CT: Computer Tomography, RF: Radiofrequency. 
*Actual costs vary across providers, countries, and specific imaging parameters. Cost estimates obtained from https://www.medicare.gov/. 
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magnify samples up to 1,000x although lower magnifications 
are often used in histopathology. This allows objects to be 
viewed at resolutions of approximately 0.2 μm and acts as the 
primary tool in diagnosing histopathology. Light microscopy is 
often used to analyze biopsy samples for potential cancers as 
well as for studying tissue-healing processes [1], [31].  

While conventional microscopy uses the principle of 
transmission to view objects, the emission of light at a different 
wavelength can help increase contrast in objects that fluoresce 
by filtering out the excitatory light and only viewing the emitted 
light – called fluorescence microscopy [32]. Two-photon 
fluorescence imaging uses two photons of similar frequencies 
to excite molecules which allows for deeper penetration of 
tissue and lower phototoxicity (damage to living tissue caused 
by the excitation source) [33]. These technologies have seen use 
in neuro [34], [33] and cancer [35] imaging among other areas. 

Another tissue slide mechanism is the Tissue Microarray 
(TMA). TMA technology enables investigators to extract small 
cylinders of tissue from histological sections and arrange them 
in a matrix configuration on a recipient paraffin block such that 
hundreds can be analyzed simultaneously [36]. Each spot on a 
tissue microarray is a complex, heterogeneous tissue sample, 
which is often prepared with multiple stains. While single case 
tissue slides remain the most common slide type, TMA is now 
recognized as a powerful tool, which can provide insight 
regarding the underlying mechanisms of disease progression 
and patient response to therapy. With recent advances in 
immune-oncology, TMA technology is rapidly becoming 
indispensable and augmenting single case slide approaches. 
TMAs can be imaged using the same whole slide scanning 
technologies used to capture images of single case slides. 
Whole slide scanners are becoming increasingly ubiquitous in 
both research and remote pathology interpretation settings [37].  

For in-vivo imaging, Optical Coherence Tomography (OCT) 
can produce 3D images from a series of cross-sectional optical 
images by measuring the echo delay time and intensity of 
backscattered light from internal microstructures of the tissue 
in question [38].  Hyperspectral imaging is also used by 
generating an image based on several spectra (sometimes 
hundreds) of light to gain a better understanding of the 
reflectance properties of the object being imaged [39]. 

The challenges and opportunities in the area of biomedical 
imaging include continuing acquisitions at faster speeds and 
lower radiation dose in the case of anatomical imaging 
methods. Variations in imaging parameters (e.g. in-plane 
resolution, slice thickness, etc.) – which were not discussed – 
may have strong impacts on image analysis and should be 
considered during algorithm development. Moreover, the 
prodigious amount of imaging data generated causes a 
significant need for informatics in the storage and transmission 
as well as in the analysis and automated interpretation of the 
data, underpinning the use of big data science in improved 
utilization and diagnosis. 

III. INTEROPERABLE AND FAIR DATA REPOSITORIES FOR 
REPRODUCIBLE, EXTENSIBLE AND EXPLAINABLE RESEARCH 
Harnessing the full potential of available big data for 

healthcare innovation necessitates a change management 

strategy across both research institutions and clinical sites. In 
its present form, heterogeneous healthcare data ranging from 
imaging, to genomic, to clinical data, that are further augmented 
by environmental data, physiological signals and other, cannot 
be used for integrative analysis (see Section VII) and new 
hypothesis testing. The latter is attributed to a number of 
factors, a non-exhaustive list extending to the data being 
scattered across and within institutions in a poorly indexed 
fashion, not being openly-available to the research community, 
and not being well-curated nor semantically annotated. 
Additionally, these data are typically semi- or un- structured, 
adding a significant computational burden for constituting them 
data mining ready. 

A cornerstone for overcoming the aforementioned 
limitations relies on the establishment of efficient, enterprise-
wide clinical data repositories (CDR). CDRs can systematically 
aggregate information arising from: (i) Electronic Health and 
Medical Records (EHR/ EMR; term used interchangeably); (ii) 
Radiology and Pathology archives (relying on picture archive 
and communication systems (PACS)), (iii) a wide range of 
genomic sequencing devices, Tumor Registries, and 
Biospecimen Repositories, as well as (iv) Clinical Trial 
Management Systems (CTMS). Here, it is important to note that 
EHR/ EMR are now increasingly used as the umbrella term 
instead of CDRs encompassing the wealth of medical data 
availability. We adopt this approach in the present study. As 
these systems become increasingly ubiquitous, they will 
decisively contribute as fertile resources for evidence-based 
clinical practice, patient stratification, and outcome assessment, 
as well as for data-mining and drug discovery [41]-[45]. 

Toward this direction, many clinical and research sites have 
developed such data management and exploration tools to track 
patient outcomes [46]. Yet, many of them receive limited 
adoption from the clinical and research communities because 
they require manual data entry and do not furnish the necessary 
tools required to enable end-users to perform advanced queries. 
More recently, there has been a much greater emphasis placed 
on developing automated extraction, transformation and load 
(ETL) interfaces. ETLs  can accommodate the full spectrum of 
clinical information, imaging studies and genomic information.  
Hence, it is possible to interrogate multi-modal data in a 
systematic manner, guide personalized treatment, refine best 
practices and provide objective, reproducible insight as to the 
underlying mechanisms of disease onset and progression [47]. 

One of the most significant challenges towards establishing 
enterprise-wide EHRs stems from the fact that a tremendous 
amount of clinical data are found in unstructured or semi-
structured format with a significant number of reports generated 
at 3rd party laboratories. Many institutions simply scan these 
documents into images or PDFs so that they can be attached to 
the patient’s EHR. Other reports arrive in Health Level 7 (HL7) 
format with the clinical content of the message aggregated into 
a continuous ASCII (American Standard Code for Information 
Interchange) string. Unfortunately, such solutions address only 
the most basic requirements of interoperability by allowing the 
information to flow into another Healthcare Information 
Technology (HIT) system; but since the data are not discrete, 
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they cannot be easily migrated into a target relational or 
document-oriented (non-relational) database.  

To effectively incorporate this information into the EHRs 
and achieve semantic interoperability, it is necessary to develop 
and optimize software that endorses and relies on 
interoperability profiles and standards. Such standards are 
defined by the Integrating the Healthcare Enterprise (IHE), HL7 
Fast Healthcare Interoperability Resources (FHIR), and Digital 
Imaging and Communications in Medicine (DICOM), the latter 
also extending to medical video communications [48]. 
Moreover, to adopt clinical terminology coding (e.g., 
Systemized Nomeclature of Medicine-Clinical Terms 
(SNOMED CT), International Statistical Classification of 
Diseases and Related Health Problems (ICD) by the World 
Health Organization (WHO)). In this fashion, software systems 
will be in position to reliably extract, process, and share data 
that would otherwise remain locked in paper-based documents 
[49]. Importantly, (new) data entry (acquisition) in a 
standardized fashion underpins extensibility that in turns results 
in increased statistical power of research studies relying on 
larger cohorts.  

The availability of metadata information is central in 
unambiguously describing processes throughout the data 
handling cycle. Metadata underpin medical dataset sharing by 
providing descriptive information that characterize the 
underlying data. The latter, can be further capitalized towards 
joint processing of medical datasets constructed under different 
context, such as clinical practice, research and clinical trials 
data [50]. A key medical imaging example concept relevant to 
metadata usage comes from image retrieval. Traditionally, 
image retrieval relied on image metadata, such as keywords, 
tags or descriptions. However, with the advent of machine and 
deep learning AI solutions (see Section IV), content-based 
image retrieval (CBIR) systems evolved to exploiting rich 
contents extracted from images (e.g., imaging, statistical, object 
features, etc.) stored in a structured manner. Today, querying 
for other images with similar contents typically relies on a 
content-metadata similarity metric. Supervised, semi-
supervised and unsupervised methods can be applied for CBIR 
extending across imaging modalities [51]. 

FAIR guiding principles initiative attempts to overcome 
(meta) data availability, by establishing a set of 
recommendations towards constituting (meta) data findable, 
accessible, interoperable, and reusable (FAIR) [52]. At the 
same time, privacy-preserving data publishing (PPDP) is an 
active research area aiming to provide the necessary means for 
openly sharing data. PPDP objective is to preserve patients’ 
privacy while achieving the minimum possible loss of 
information [53]. Sharing such data can increase the likelihood 
of novel findings and replication of existing research results 
[54]. To accomplish the anonymization of medical imaging 
data, approaches such as k-anonymity [55], [56], l-diversity 
[57] and t-closeness [58] are typically used. Toward this 
direction, multi-institutional collaboration is quickly becoming 
the vehicle driving the creation of well-curated and 
semantically annotated large cohorts that are further enhanced 
with research methods and results metadata, underpinning 

reproducible, extensible, and explainable research [59], [60]. 
From a medical imaging research perspective, the quantitative 
imaging biomarkers alliance (QIBA) [61] and more recently the 
image biomarker standardisation initiative (IBSI) [62] set the 
stage for multi-institution collaboration across imaging 
modalities. QIBA and IBSI vision is to promote reproducible 
results emanating from imaging research methods by removing 
interoperability barriers and adopting software, hardware, and 
nomeclature standards and guidelines [63]-[66]. Disease 
specific as well as horizontal examples include the Multi-Ethnic 
Study of Atherosclerosis (MESA - www.mesa-nhlbi.org), the 
UK biobank (www.ukbiobank.ac.uk_), the Cancer Imaging 
Archive (TCIA - www.cancerimagingarchive.net/), the Cancer 
Genome Atlas (TCGA - https://cancergenome.nih.gov/), and 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI - 
http://adni.loni.usc.edu/). In a similar context, the CANDLE 
project (CANcer Distributed Learning Environment) focuses 
on the development of open-source AI-driven predictive 
models under a single scalable deep neural network umbrella 
code. Exploiting the ever-growing volumes and diversity of 
cancer data and leveraging exascale computing capabilities, it 
aspires to advance and accelerate cancer research. 

The co-localization of such a broad number of correlated data 
elements representing a wide spectrum of clinical information, 
imaging studies, and genomic information, coupled with 
appropriate tools for data mining, are instrumental for 
integrative analytics approaches and will lead to unique 
opportunities for improving precision medicine [67], [68]. 

IV. PROCESSING, ANALYSIS, AND UNDERSTANDING IN 
RADIOLOGY 

This section reviews the general field of image analysis and 
understanding in radiology whereas a similar approach is 
portrayed in the next section for digital pathology. 

Medical image analysis typically involves the delineation of 
the objects of interest (segmentation) or description of labels 
(classification) [69]-[72]. Examples include segmentation of 
the heart for cardiology and identification of cancer for 
pathology. To date, medical image analysis has been hampered 
by a lack of theoretical understanding on how to optimally 
choose and process visual features. A number of ad hoc (or 
hand-crafted) feature analysis approaches have achieved some 
success in different applications, by explicitly defining a prior 
set of features and processing steps. However, no single method 
has provided robust, cross-domain application solutions. The 
recent advent of machine learning approaches has provided 
good results in a wide range of applications. These approaches, 
attempt to learn the features of interest and optimize parameters 
based on training examples. However, these methods are often 
difficult to engineer since they can fail in unpredictable ways 
and are subject to bias or spurious feature identification due to 
limitations in the training dataset. An important mechanism for 
advancing the field is by open access challenges in which 
participants can benchmark methods on standardized datasets. 
Notable examples of challenges include dermoscopic skin 
lesions [73], brain MRI [74], [75], heart MRI [76], quantitative 
perfusion [77], classification of heart disease from statistical 
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shape models [78], retinal blood vessels segmentation [79], 
[80], general anatomy (i.e., the VISCERAL project evaluated 
the subjectivity of 20 segmentation algorithms [81]), 
segmentation of several organs together (the decathlon 
challenge) [82], and many others. An up-to-date list of open and 
ongoing biomedical challenges appears in [83]. These 
challenges have provided a footing for advances in medical 
image analysis and helped push the field forward; however, a 
recent analysis of challenge design has showed that biases exist 
that questions how easy would be to translate methods to 
clinical practice [84]. 

A. Feature Analysis 
There has been a wealth of literature on medical image 

analysis using signal analysis, statistical modelling, etc. [71]. 
Some of the most successful include multi-atlas segmentation 
[85], graph cuts [86], and active shape models [87], [88]. Multi-
atlas segmentation utilizes a set of labelled cases (atlases) which 
are selected to represent the variation in the population. The 
image to be segmented is registered to each atlas (i.e., using 
voxel-based morphometry [89]) and the propagated labels from 
each atlas are fused into a consensus label for that image. This 
procedure adds robustness since errors associated with a 
particular atlas are averaged to form a maximum likelihood 
consensus. A similarity metric can then be used to weight the 
candidate segmentations. A powerful alternative method 
attempts to model the object as a deformable structure, and 
optimize the position of the boundaries according to a similarity 
metric [87]-[90]. Active shape models contain information on 
the statistical variation of the object in the population and the 
characteristic of their images [91]. These methods are typically 
iterative and may thus get stuck in a local minimum. On the 
other hand, graph cut algorithms facilitate a global optimal 
solution [86]. Despite the initial graph construction being 
computationally expensive, updates to the weights (interaction) 
can be computed in real time.  

B. Machine Learning 
Machine learning (prior to deep learning which we analyse 

below) involves the definition of a learning problem to solve a 
task based on inputs [92].  To reduce data dimensionality and 
induce necessary invariances and covariances (e.g. robustness 
to intensity changes or scale) early machine learning 
approaches relied on hand-crafted features to represent data.  In 
imaging data several transforms have been used to capture local 
correlation and disentangle frequency components spanning 
from Fourier, Cosine or Wavelet transform to the more recent 
Gabor filters that offer also directionality of the extracted 
features and superior texture information (when this is deemed 
useful for the decision). In an attempt to reduce data 
dimensionality or to learn in a data-driven fashion features, 
Principal and Independent Component Analyses have been 
used and [93] also the somewhat related (with some 
assumptions) K-means algorithm [94]. These approaches 
formulate feature extraction within a reconstruction objective 
imposing different criteria on the reconstruction and the 
projection space (e.g. PCA assumes the projection space is 

orthogonal). Each application then required a significant effort 
in identifying the proper features (known as feature 
engineering), which would then be fed into a learnable decision 
algorithm (for classification or regression).  A plethora of 
algorithms have been proposed for this purpose, a common 
choice being support vector machines [95], due to the ease of 
implementation and the well understood nonlinear kernels. 
Alternatively, random forest methods [96] employ an ensemble 
of decision trees, where each tree is trained on a different subset 
of the training cases, improving the robustness of the overall 
classifier. An alternative classification method is provided by 
probabilistic boosting trees [97], which forms a binary tree of 
strong classifiers using a boosting approach to train each node 
by combining a set of weak classifiers. However, recent 
advances in GPU processing and availability of data for training 
have led to a rapid expansion in neural nets and deep learning 
for regression and classification [98]. Deep learning methods 
instead optimize simultaneously for the decision (classification 
or regression) whilst identifying and learning suitable input 
features.  Thus, in lieu of feature engineering, learning how to 
represent data and how to solve for the decision are now done 
in a completely data-driven fashion, notwithstanding the 
existence of approaches combining feature-engineering and 
deep learning [99]. Exemplar deep learning approaches for 
medical imaging purpose are discussed in the next subsections.  

C. Deep Learning for Segmentation 
One of the earliest applications of convolutional neural 

networks (CNN, the currently most common form of deep 
learning) has appeared as early as 1995, where a CNN was used 
for lung nodule detection in chest x-rays [100].  Since then, 
fueled by the revolutionary results of AlexNet [101] and 
incarnations of patch-based adaptations of Deep Boltzmann 
Machines and stacked autoencoders, deep learning based 
segmentation of anatomy and pathology has witnessed a 
revolution (see also Table II), where for some tasks now we 
observe human level performance [102].  In this section, we aim 
to analyse key works and trends in the area, while we point 
readers to relevant, thorough reviews in [69], [70]. 

The major draw of deep learning and convolutional 
architectures is the ability to learn suitable features and decision 
functions in tandem. While AlexNet quickly set the standard for 
classification (that was profusely adapted also for classification 
of medical tasks, see next subsection) it was the realisation that 
dense predictions can be obtained from classification networks 
by convolutionalization that enabled powerful segmentation 
algorithms [103]. The limitations of such approaches for 
medical image segmentation were quickly realised and led to 
the discovery of U-Net [104], which is even today one of the 
most successful architectures for medical image segmentation.   

The U-Net is simple in its conception: an encoder-decoder 
network that goes through a bottleneck but contains skip 
connections from encoding to decoding layers.  The skip 
connections allow the model to be trained even with few input 
data and offer highly accurate segmentation boundaries, albeit 
perhaps at the “loss” of a clearly determined latent space. While 
the original U-Net was 2D, in 2016, the 3D U-net was proposed 
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that allowed full volumetric processing of imaging data [105], 
maintaining the same principles of the original U-net. 

Several works were inspired by treating image segmentation 
as an image-to-image translation (and synthesis) problem. This 
introduced a whole cadre of approaches that permit for 
unsupervised and semi-supervised learning working in tandem 
with adversarial training [106] to augment training data 
leveraging label maps or input images from other domains. The 
most characteristic examples are works inspired by CycleGAN 
[107]. CycleGAN allows mapping of one image domain to 
another image domain even without having pairs of images. 
Early on Chartsias et al, used this idea to generate new images 
and corresponding myocardial segmentations mapping CT to 
MRI images [108].  Similarly, Wolterink et al used it in the 
context of brain imaging [109]. Both these approaches paired 
and unpaired information (defining a pair as an input image and 
its segmentation) differently to map between different 
modalities (MR to CT) or different MR sequences. 

Concretely rooted in the area of semi-supervised learning 
[110] are approaches that use discriminators to approximate 
distributions of shapes (and thus act as shape priors), to solve 
the segmentation task in an unsupervised manner in the heart or 
the brain [111]. However, in the context of cardiac 
segmentation, the work of Chartsias et al, showed that when 
combined with auto-encoding principles and factorised 
learning, a shape-prior aided with reconstruction objectives 
offer a compelling solution to semi-supervised learning for 
myocardial segmentation [112].  

We highlight that all the above works treat expert 
delineations as ground truth, whereas our community is well 
aware of the variability in the agreement between experts in 
delineation tasks.  Inspired by aforementioned, Kohl et al 
devised a probabilistic U-Net, where the network learns from a 
variety of annotations without need to provide (externally) a 
consensus [113]. However, we note that use of supervision via 
training exemplars as a signal could be limited and may not 
fully realize the potential of deep learning. 

D. Deep Learning for Classification 
Deep learning algorithms have been extensively used for 

disease classification, or screening, and have resulted in 
excellent performance in many tasks (see Table II). 
Applications include screening for acute neurologic events 
[114], diabetic retinopathy [115], and melanoma [116]. 

Like segmentation, these classification tasks have also 
benefited from CNNs. Many of the network architectures that 
have been proven on the ImageNet image classification 
challenge [117] have seen reuse for medical imaging tasks by 
fine-tuning previously trained layers. References [118] and 
[119] were among the first that assessed the feasibility of using 
CNN-based models trained on large natural image datasets, for 
medical tasks. In [118], the authors showed that pre-training a 
model on natural images and fine-tuning its parameters for a 
new medical imaging task gave excellent results. These 
findings were reinforced in [120] to demonstrate that fine-
tuning a pre-trained model generally performs better than a 
model trained from scratch. Ensembles of pre-trained models 

can also be fine-tuned to achieve strong performance as 
demonstrated in [121]. 

This transfer learning approach is not straightforward, 
however, when the objective is tissue classification of 3D image 
data. Here, transfer learning from natural images is not possible 
without first condensing the 3D data into two dimensions. 
Practitioners have proposed a myriad of choices on how to 
handle this issue, many of which have been quite successful. 
Alternative approaches directly exploit the 3D data by using 
architectures that perform 3D convolutions and then train the 
network from scratch on 3D medical images [122]-[126]. Other 
notable techniques include slicing 3D data into different 2D 
views before fusing to obtain a final classification score [127]. 
Learning lung nodule features using a 2D autoencoder [128] 
and then employing a decision tree for distinguishing between 
benign nodules and malignant ones was proposed in [129]. 

Development of an initial network – in which transfer 
learning is dependent – is often difficult and time-consuming. 
Automated Machine Learning (AutoML) has eased this burden 
by finding optimal networks hyperparameters [130] and, more 
recently, optimal network architectures [131]. We suspect these 
high-level training paradigms will soon impact medical image 
analysis. 

Overall, irrespective of the training strategy used, 
classification tasks in medical imaging are dominated by some 
formulation of a CNN – often with fully-connected layers at the 
end to perform the final classification. With bountiful training 
data, CNNs can often achieve state-of-the-art performance; 
however, deep learning methods generally suffer with limited 
training data. As discussed, transfer learning has been 
beneficial in coping with scant data, but the continued 
availability of large, open datasets of medical images will play 
a big part in strengthening classification tasks in the medical 
domain. 

E. CNN Interpretability 
Although Deep CNNs have achieved extremely high 

accuracy, they are still black-box functions with multiple layers 
of nonlinearities. It is therefore essential to trust the output of 
these networks and to be able to verify that the predictions are 
from learning appropriate representations, and not from 
overfitting the training data. Deep CNN interpretability is an 
emerging area of machine learning research targeting a better 
understanding of what the network has learned and how it 
derives its classification decisions. One simple approach 
consists of visualizing the nearest neighbors of image patches 
in the fully connected feature space [101]. Another common 
approach that is used to shed light on the predictions of Deep 
CNN is based on creating saliency maps [132] and guided 
backpropagation [133], [134]. These approaches aim to identify 
voxels in an input image that are important for classification 
based on computing the gradient of a given neuron at a fixed 
layer with respect to voxels in the input image. Another similar 
approach, that is not specific to an input image, uses gradient 
ascent optimization to generate a synthetic image that 
maximally activates a given neuron [135]. Feature inversion, 
where the difference between an input image and its 
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reconstruction from a representation at a given layer, is another 
approach that can capture the relevant patches of the image at  
the considered layer [136]. Other methods for interpreting and 
understanding deep networks can be found in [137]-[139]. 
Specifically, for medical imaging, techniques described in 
[140] interpret predictions in a visually and semantically 
meaningful way while task-specific features in [141] are 
developed such that their deep learning system can make 
transparent classification predictions. Another example uses 
multitask learning to model the relationship between benign-
malignant and eight other morphological attributes in lung 
nodules with the goal of an interpretable classification [142]. 
Importantly, due diligence must be done during the design of 
CNN systems in the medical domain to ensure spurious 
correlations in the training data are not incorrectly learned. 

F. Interpretation and Understanding 
Once object geometry and function has been quantified, 

patient cohorts can be studied in terms of the statistical variation 
of shape and motion across large numbers of cases. In the Multi-
Ethnic Study of Atherosclerosis, heart shape variations derived 
from MRI examinations were associated with known 
cardiovascular risk factors [143]. Moreover, application of 
imaging informatics methodologies in the cardiovascular 
system has produced important new knowledge and has 
improved our understanding of normal function as well as of 
pathophysiology, diagnosis and treatment of cardiovascular 
disorders [144]. In the brain, atlas-based neuroinfoimatics 
enables new information on structure to predict 
neurodegenerative diseases [145]. 

TABLE II. SELECTED DEEP LEARNING METHODS FOR MEDICAL IMAGE SEGMENTATION AND CLASSIFICATION 
Year - [REF] 

Author Disease Imaging 
Data Patients DL Method Segmentation/ 

Classification Description 

1995 - [100] 
Lo et al Lung Cancer X-ray 55 2 layer CNN Nodules detection 

in a patch fashion 
First ever attempt to use CNN for 
medical image analysis 

2015 - [104] 
Ronneberger 

et al 
Cells 

Electron 
and optical 
microscopy 

30 /35 U-net 
Segmentation of 
EM images and 
cell tracking 

Image to image tasks architecture 
depicting exceptional segmentation 
performance even with limited data 

2016 - [118] 
Shin et al 

Interstitial Lung  
Disease CT 120  

(905 slices) 

Transfer learning 
(AlexNet, GoogleNet, 

CifarNet CNNs) 

Interstitial lung 
disease binary 
classification   

Showed that networks pre-trained 
on natural image data could be 
succesfully used on medical data 

2016 - [122] 
Dou et al 

Cerebral 
Microbleeds MRI 320 

Two-stage: 1) 3D 
Fully-convolutional 
network (FCN), 2) 3D 
CNN 

3D FCN for 
candidate 
microbleed 
detection 

A two-stage system used a 3D FCN 
to detect candidate microbleeds 
before a 3D CNN was applied to 
reduce false positives 

2016 - [127] 
Setio et al 

Pulmonary 
Cancer CT 

888 scans, 
1186 

nodules 

Two-stage: 1) Feature-
engineered candidate 
detector, 2) Multi-view 
2D CNN for false 
positive reduction 

Candidate 
pulmonary 
nodules detection  

Significantly reduced false 
positives using fusion of multiple 
2D CNNs at different views around 
a nodule 

2017 - [268] 
Lekadir et al 

Cardiovascular 
(carotid artery) US 56 cases 

Four convolutional and 
three fully connected 
layers 

Characterization 
of carotid plaque 
composition 

High correlation (0.90) with plaque 
composition clinical assessment for 
the estimation of lipid core, fibrous 
cap, and calcified tissue areas 

2017 – [128] 
Yu et al Melanoma Dermoscop

ic Images 
1250 

images 
Very deep (38/50/101 
layers) fully 
conv. residual network  

Binary melanoma 
classification 

Used a very deep residual network 
(16 residual blocks) to classify 
melanoma 

2017 - [102] 
Komnitsas et 

al 
TBI, LGG/ 

GBM, Stroke MRI 
61 /110/ 
ISLES-

SISS data 

11-layers, multi-scale 
3D CNN with fully 
connected CRF 

Brain lesion 
segmentation 
algorithm 

Top-performing segmentation 
results on TBI, brain tumours, and 
ischemic stroke at BRATS and 
ISLES 2015 challenges 

2017 - [246] 
Lao et al GBM MRI 112 Transfer learning 

Necrosis, 
enhancement, and 

edema tumour 
subregions  

Overall survival prognostic 
signature for patients with 
Glioblastoma Multiforme (GBM) 

2017 - [247] 
Oakden-

Rayner  et al 

Overall 
Survival 

CT  
(chest) 48 

ConvNet transfer 
learning (3 
convolutional and 1 
fully connected layers) 

Tissue (muscle, 
body fat, aorta, 

vertebral column, 
epicardial fat, 
heart, lungs) 

Predict patients’ 5-year mortality 
probability using radiogenomics 
data (overall survival) 

2017 - [241] 
Zhu et al Breast Cancer DCE-MRI 270 

Transfer learning 
(GoogleNet, VGGNet, 
CIFAR) 

Breast tumour 
lesions 

Discriminate between Luminal A 
and other breast cancer subtypes 

2018 - [112] 
Chartsias et al Cardiovascular MRI 100 Various networks Segmentation of 

cardiac anatomy 

Limited training data when 
appropriate autonecoding losses 
are introduced 

2020 – [121] 
McKinney et 

al 
Breast Cancer X-ray 25,856 & 

3,097 cases 
Ensemble and transfer 
learning 

Breast cancer 
classification 

Cancer prediction on two large 
datasets with comparison against 
human readers 

2019 - [170] 
Hekler et al Melanoma 

Whole slide 
H&E tissue 

imaging 
695 Transfer learning 

(ResNet50) 
Binary melanoma 

classification 

Human level performance in 
discriminating between nevi and 
melanoma images 

US: Ultrasound; MRI: Magnetic Resonance Imaging; DCE-MRI: Dynamic Contrast Enhancement MRI; CT: Computed Tomography; PET: Positron 
Emission Tomography; GBM: Glioblastoma; LGG: Lower-Grade Glioma; CNN: Convolutional Neural Networks. 
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At the same time, it is also possible to extract information on 
biophysical parameters of tissues and organs from medical 
imaging data. For example, in elastography, it is possible to 
estimate tissue compliance from the motion of wave imaged 
using ultrasound or MRI [146], whereas in the heart, 
myocardial stiffness is associated with disease processes. Given 
knowledge of the boundary loading, and imaged geometry and 
displacements, finite element analysis can estimate material 
properties compatible with the imaged deformation [147].  

V. PROCESSING, ANALYSIS, AND UNDERSTANDING IN 
DIGITAL PATHOLOGY  

Pathology classifications and interpretations have 
traditionally been developed through pathologist examination 
of tissue prepared on glass slides using microscopes. Analyses 
of single tissue and TMA images have the potential to extract 
highly detailed and novel information about the morphology of 
normal and diseased tissue and characterization of disease 
mechanics at the sub-cellular scale. Studies have validated and 
shown the value of digitized tissue slides in biomedical research 
[148]-[152]. Whole slide images can contain hundreds of 
thousands or more cells and nuclei.  Detection, segmentation 
and labeling of slide tissue image data can thus lead to massive, 
information rich datasets. These datasets can be correlated to 
molecular tumor characteristics and can be used to 
quantitatively characterize tissue at multiple spatial scales to 
create biomarkers that predict outcome and treatment response 
[150], [152]-[154].  In addition, multiscale tissue 
characterizations can be employed in epidemiological and 
surveillance studies. The National Cancer Institute SEER 
program is exploring the use of whole slide imaging extracted 
features to add cancer biology phenotype data to its surveillance 
efforts. Digital pathology has made great strides in the past 20 
years. A good review of challenges and advancements in digital 
pathology is provided in several publications [155]-[157]. 
Whole slide imaging is also now employed at some sites for 
primary anatomic pathology diagnostics. In light of advances in 
imaging instruments and software, the FDA approved in 2017 
the use of a commercial digital pathology system in clinical 
settings [158]. A summary of AI-based medical imaging 
systems that have obtained FDA approval appear in Table III. 

A. Segmentation and Classification 
Routine availability of digitized pathology images, coupled 

with well-known issues associated with inter-observer 
variability in how pathologists interpret studies [159], has led 
to increased interest in computer-assisted decision support 
systems. Image analysis algorithms, however, have to tackle 
several challenges in order to efficiently, accurately and reliably 
extract information from tissue images. Tissue images contain 
a much denser amount of information than many other imaging 
modalities, encoded at multiple scales (pixels, objects such as 
nuclei and cells, and regions such as tumor and stromal tissue 
areas). This is further compounded by heterogeneity in structure 
and texture characteristics across tissue specimens from 
different disease regions and subtypes. A major challenge in 
pathology decision support also arises from the complex and 

nuanced nature of many pathology classification systems. 
Classifications can hinge of the  fraction of the specimen found 
to have one or another pattern of tissue abnormality.  In such 
cases, the assessment of abnormality and the estimate of tissue 
area are both subjective.  When interpretation could only be 
carried out using glass slides, the profound way of reducing 
inter-observer variability was for multiple pathologists to view 
the same glass slides and to confer on interpretation.  These 
challenges have motivated many efforts for the development of 
image analysis methods to automate whole slide image 
pathology interpretation. While few of these methods have 
found their way into clinical practice, results are promising and 
seem almost certain to ultimately lead to the development of 
effective methods to routinely provide algorithmic anatomic 
pathology second opinions. A comprehensive review of these 
initiatives appears in [160]-[162].  

Some of the earlier works employed statistical techniques 
and machine learning algorithms to segment and classify tissue 
images. Bamford and Lovell, for example, used active contours 
to segment nuclei in Pap stained cell images [163]. Malpica et 
al. applied watershed-based algorithms for separation of nuclei 
in cell clusters [164]. Kong et al. utilized a combination of 
grayscale reconstruction, thresholding, and watershed-based 
methods [165]. Gao et al. adapted a hierarchical approach based 
on mean-shift and clustering analysis [166]. Work by Al-Kofahi 
et al. implemented graph-cuts and multiscale filtering methods 
to detect nuclei and delineate their boundaries [167]. In recent 
years, deep learning methods have rapidly grown in importance 
in pathology image analysis [160]. Deep learning approaches 
make it possible to automate many aspects of the information 
extraction and classification process. A variety of methods have 
been developed to classify tissue regions or whole slide images, 
depending on the context and the disease site. Classifications 
can hinge on whether regions of tissue contain tumor, necrosis 
or immune cells. Classification can also target algorithmic 
assessment of whether tissue regions are consistent with 
pathologist descriptions of tissue patterns. An automated 
system for the analysis of lung adenocarcinoma based on 
nuclear features and WHO subtype classification using deep 
convolutional neural networks and computational imaging 
signatures was developed, for example, in [168]. There has 
been a wealth of work over the past twenty years to classify 
histological patterns  in different disease sites and cancer types 
(e.g. Gleason Grade in prostate cancer, lung cancer, breast 
cancer, melanoma, lymphoma and neuroblastoma) using 
statistical methods and machine and deep learning techniques 
[154], [169], [170].  

Detection of cancer metastases is an important diagnostic 
problem to which machine-learning methods have been 
applied. The CAMELYON challenges target methods for 
algorithmic detection and classification of breast cancer 
metastases in H&E whole slide lymph node sections [171]. The 
best performing methods employed convolutional neural 
networks differing in network architecture, training methods, 
and methods for pre- and post- processing. Overall, there has 
been ongoing improvement in performance of algorithms that 
detect, segment and classify cells and nuclei. These algorithms 
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often form crucial components of cancer biomarker algorithms. 
Their results are used to generate quantitative summaries and 
maps of the size, shape, and texture of nuclei as well as 
statistical characterizations of spatial relationships between 
different types of nuclei [172]-[176]. One of the challenges in 
nuclear characterization is to generalize the task across different 
tissue types. This is especially problematic because generating 
ground truth datasets for training is a labor intensive and time-
consuming process and requires the involvement of expert 
pathologists. Deep learning generative adversarial networks 
(GANs) have proved to be useful in generalizing training 
datasets in that respect [177].  

B.  Interpretation and Understanding 
There is increasing attention paid to the role of tumor 

immune interaction in determining outcome and response to 
treatment. In addition, immune therapy is increasingly 
employed in cancer treatment. High levels of lymphocyte 
infiltration have been related to longer disease-free survival or 
improved overall survival (OS) in multiple cancer types [178] 
including early stage triple-negative and HER2-positive breast 
cancer [179].  The spatial distribution of lymphocytes with 
respect to tumor, tumor boundary and tumor associated stroma 
are also important factors in cancer prognosis [180].  A variety 
of recent efforts relies on deep learning algorithms to classify 
TIL regions in H&E images. One recent effort targeted 
characterization of TIL regions in lung cancer, while another, 
carried out in the context of TCGA Pan Cancer Immune group, 
looked across tumor types to correlate deep learning derived 
spatial TIL patterns with molecular data and outcome. A 3rd 
study employed a structured crowd sourcing method to generate 
tumor infiltrating lymphocyte maps [152], [181]. These studies 
showed there are correlations between characterizations of TIL 
patterns, as analyzed by computerized algorithms, and patient 
survival rates and groupings of patients based on subclasses of 
immunotypes. These studies demonstrate the value of whole 
slide tissue imaging in producing quantitative evaluations of 
sub-cellular data and opportunities for richer correlative 
studies.  

Although there has been some progress made in the 
development of automated methods for assessing TMA images, 
most of systems are limited by the fact that they are closed and 
proprietary; do not exploit the potential of advanced computer 
vision techniques; and/or do not conform with emerging data 
standards. In addition to the significant analytical issues, the 
sheer volume of data, text, and images arising from even limited 
studies involving tissue microarrays pose significant 
computational and data management challenges (see also 
Section VI.B). Tumor expression of immune system-related 
proteins may reveal the tumor immune status which in turn can 
be used to determine the most appropriate choices for  
immunotherapy. Objective evaluation of tumor biomarker 
expression is needed but often challenging. For instance, human 
leukocyte antigen (HLA) class I tumor epithelium expression is 
difficult to quantify by eye due to its presence on both tumor 
epithelial cells and tumor stromal cells, as well as tumor-
infiltrating immune cells [182].  

To maximize the flexibility and utility of the computational 
imaging tools that are being developed, it will be necessary to 
address the challenge of batch affect, which arises due to the 
fact that histopathology tissue slides from different institutions 
show heterogeneous appearances as a result of differences in 
tissue preparation and staining procedures. Prediction models 
had been investigated as a means for reliably learning from one 
domain to map into a new domain directly. This was 
accomplished by introducing unsupervised domain adaptation 
to transfer the discriminative knowledge obtained from the 
source domain to the target domain without requiring re-
labeling images at the target domain [183]. This paper has 
focused on analysis of Hematoxylin and Eosin (H&E) stained 
tissue images. H&E is one of the main tissue stains and is most 
commonly used stain in histopathology. Tissue specimens 
taken from patients are routinely stained with H&E for 
evaluation by pathologists for cancer diagnosis. There is a large 
body of image analysis research that targets H&E stained tissue 
as covered in this paper. In research and clinical settings other 
types of staining and imaging techniques, such as fluorescence 
microscopy and immunohistochemical techniques, are also 
employed [184]-[185]. These staining techniques can be used 
to boosting signal specific morphological features of tissue –
e.g., emphasizing proteins and macromolecules in cells and 
tissue samples. An increasing number of histopathology 
imaging projects are targeting methods for analysis of images 
obtained from fluorescence microscopy and immunostaining 
techniques (e.g., [186]-[192]).  

VI. VISUALIZATION AND NAVIGATION  

A. Biomedical 3D Reconstruction and Visualization 
Three-dimensional (3D) reconstruction concerns the detailed 

3D surface generation and visualization of specific anatomical 
structures, such as arteries, vessels, organs, body parts and 
abnormal morphologies e.g. tumors, lesions, injuries, scars and 
cysts. It entails meshing and rendering techniques are used for 
completing the seamless boundary surface, generating the 
volumetric mesh, followed by smoothing and refinement. By 
enabling precise position and orientation of the patient’s 
anatomy, 3D visualization can contribute to the design of 
aggressive surgery and radiotherapy strategies, with realistic 
testing and verification, with extensive applications in spinal 
surgery, joint replacement, neuro-interventions, as well as 
coronary and aortic stenting [193]. Furthermore, 3D 
reconstruction constitutes the necessary step towards 
biomedical modeling of organs, dynamic functionality, 
diffusion processes, hemodynamic flow and fluid dynamics in 
arteries, as well as mechanical loads and properties of body 
parts, tumors, lesions and vessels, such as wall / shear stress and 
strain and tissue displacement [194].  

In medical imaging applications with human tissues, 
registration of slices must be performed in an elastic form [195]. 
To that respect, feature-based registration appears more suitable 
in the case of vessels' contours and centerline [196], while the 
intensity-based registration can be effectively used for image 
slices depicting abnormal morphologies such as tumors [197]. 
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The selection of appropriate meshing and rendering techniques 
highly depends on the imaging modality and the corresponding 
tissue type. To this respect, Surface Rendering techniques are 
exploited for the reconstruction of 3D boundaries and geometry 
of arteries and vessels through the iso-contours extracted from 
each slice of intravascular ultrasound or CT angiography. 
Furthermore, NURBS are effectively used as a meshing 
technique for generating and characterizing lumen and media-
adventitia surfaces of vascular geometric models, such as 
aortic, carotid, cerebral and coronary arteries, deployed for the 
reconstruction of aneurysms and atherosclerotic lesions [196], 
[198]. The representation of solid tissues and masses, i.e. 
tumors, organs and body parts, is widely performed by means 
of Volume Rendering techniques, such as ray-casting, since 
they are capable of visualizing the entire medical volume as a 
compact structure but also with great transparency, even though 
they might be derived from relatively low contrast image data. 

The reconstruction process necessitates expert knowledge 
and guidance. However, this is particularly time consuming and 
hence not applicable in the analysis of larger numbers of 
patient-specific cases. For those situations, automatic 
segmentation and reconstruction systems are needed. The 
biggest problem with automatic segmentation and 3D 
reconstruction is the inability to fully automate the 
segmentation process, because of different imaging modalities, 
varying vessel geometries, and the quality of source images 
[199].  Processing of large numbers of images require fast 
algorithms for segmentation and reconstruction. There are 
several ways to overcome this challenge such as parallel 
algorithms for segmentation and application of neural networks 
as discussed in Sections IV-V, the use of multiscale processing 
techniques, as well as the use of multiple computer systems 
where each system works on an image in real time. 

B. Data Management, Visualization and Processing in Digital 
Pathology  

Digital pathology is an inherently interactive human-guided 
activity. This includes labeling data for algorithm development, 
visualization of images and features for tuning algorithms, as 
well as explaining findings, and finally gearing systems towards 
clinical applications. It requires interactive systems that can 

query the underlying data and feature management systems, as 
well as support interactive visualizations. Such interactivity is 
a prerequisite to wide-scale adoption of digital pathology in 
imaging informatics applications. There are a variety of open 
source systems that support visualization, management, and 
query of features, extracted from whole slide images along with 
the generation of whole slide image annotations and markups. 
One such system is the QuIP software system [201]. QuIP is an 
open-source system that uses the caMicroscope viewer [202] to 
support the interactive visualization of images, image 
annotations, and segmentation results as overlays of heatmaps 
or polygons. QuIP includes FeatureScape - a visual analytic tool 
that supports interactive exploration of feature and 
segmentation maps. Other open-source systems that carry out 
these or related tasks are QuPath [203], the Pathology Image 
Informatics Platform (PIIP) for visualization, analysis, and 
management [204], the Digital Slide Archive (DSA) [205] and 
Cytomine [206]. These platforms are designed for local 
(QuPath, PIIP) or web-based (QuIP, caMicroscope, DSA) 
visualization, management and analysis of whole slide images. 
New tools and methods are also being developed to support 
knowledge representation and indexing of imaged specimens 
based on advanced feature metrics. These metrics include 
computational biomarkers with similarity indices that enable 
rapid search and retrieval of similar regions of interest from 
large datasets of images. Together, these technologies will 
enable investigators to conduct high-throughput analysis of 
tissue microarrays composed of large patient cohorts, store and 
mine large data sets and generate and test hypotheses [200]. 

The processing of digital pathology images is a challenging 
activity, in part due to the size of whole-slide images, but also 
because of an abundance of image formats and the frequent 
need for human guidance and intervention during processing. 
There are some efforts towards the adoption of DICOM in 
digital pathology, including the availability of tools such as the 
Orthanc DICOMizer [207] that can convert a pyramidal tiled 
tiff file into a DICOM pathology file. caMicroscope [202] 
supports the visualization of DICOM pathology files over the 
DICOMWeb API [208]. These efforts are few and far between, 
and most solutions adopt libraries such as OpenSlide [209] or 
Bio-Formats [210] to navigate the plethora of open and 
proprietary scanner formats. Digital pathology algorithms work 
well with high resolution images to extract detailed imaging 
features from tissue data. Since digital pathology images can 
grow to a few GBs, compressed, per-image, the local 
processing of digital pathology images can be severely affected 
by the computational capacity of an interactive workstation. In 
such cases, some algorithms can work on regions of interest 
(ROI) identified by a user or on lower-resolution, down-
sampled images.  The growing popularity of containerization 
technologies such as Docker [211] has opened a new 
mechanism to distribute algorithms and pathology pipelines. 
There is also growing interest in the use of cloud computing for 
digital pathology, driven by the rapid decline in costs, making 
them increasingly cost-effective solutions for large-scale 
computing. A number of groups, predominantly in the 
genomics community, have developed solutions for deploying 

 
Fig. 2. In silico modelling paradigm of cardiovascular disease with 
application to heart. 
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genomic pipelines on the cloud [212]-[214]. QuIP includes 
cloud-based pipelines for tumor infiltrating lymphocyte 
analysis and nuclear segmentation. These are available as APIs 
and deployed as containers as well as pipelines in workflow 
definition language (WDL) using a cross-platform workflow 
orchestrator, which supports multiple cloud and high 
performance computing (HPC) platforms. The work in this area 
is highly preliminary, but one that is likely to see widespread 
adoption in the forthcoming years. Applications include 
algorithm validation, deployment of algorithms in clinical 
studies and clinical trials, and algorithm development 
particularly in systems that employ transfer learning. 

C. In Silico Modeling of Malignant Tumors 
Applications of in-silico models evolve drastically in early 

diagnosis and prognosis, with personalized therapy planning, 
noninvasive and invasive interactive treatment, as well as 
planning of pre-operative stages, chemotherapy and 
radiotherapy (see Fig. 2). The potential of inferring reliable 
predictions on the macroscopic tumor growth is of paramount 
importance to the clinical practice, since the tumor progression 
dynamics can be estimated under the effect of several factors 
and the application of alternative therapeutic schemes. Several 
mathematical and computational models have been developed 
to investigate the mechanisms that govern cancer progression 
and invasion, aiming to predict its future spatial and temporal 
status with or without the effects of therapeutic strategies.  

Recent efforts towards in silico modeling focus on multi-
compartment models for describing how subpopulations of 
various cell types proliferate and diffuse, while they are 
computationally efficient. Furthermore, multiscale approaches 
link in space and time the interactions at different biological 
levels, such as molecular, microscopic cellular and macroscopic 
tumor scale [215]. Multi-compartment approaches can reflect 
the macroscopic volume expansion while they reveal particular 
tumor aspects, such as the spatial distributions of cellular 
densities of different phenotypes taking into account tissue 
heterogeneity and anisotropy issues, as well as the chemical 
microenvironment with the available nutrients [216]. The 
metabolic influence of oxygen, glucose and lactate is 
incorporated in multi-compartment models of tumor spatio-
temporal evolution, enabling the formation of cell populations 
with different metabolic profile, proliferation and diffusion 
rates. Methodological limitations of such approaches relate 
mainly to reduced ability of simulating specific cellular factors 
(e.g. cell to cell adhesion) and subcellular-scale processes 
[217], which play an important role in regulating cellular 
behavior and determine tumor expansion/metastasis.  

Recent trends in modeling seek to incorporate the 
macroscopic tumor progress along with dynamic changes of 
chemical ingredients (such as glucose, oxygen, 
chemotherapeutic drugs, etc), but also the influence of 
individual cell expressions resulting from the intracellular 
signaling cascades and gene characteristics. Along this 
direction, multiscale cancer models allow to link in space and 
time the different biological scales affecting the macroscopic 
tumor development. They facilitate model development in 

precision medicine under the 3R principles of in vivo 
experimentation related to replacement, reduction and 
refinement [218] of experimentation on life samples. Distinct 
spatial and temporal scales have been considered, such as the 
subcellular scale of molecular pathways and gene expressions, 
the microscopic-cellular level of individual cell’s behavior and 
phenotypic properties, the microenvironmental scale of the 
diffusing chemical ingredients, the tissue-multicellular extent 
of different cell-regions and the macroscopic scale of the tumor 
volume. The interconnection of the different levels is 
considered great challenge of in-silico models, through 
coupling of blood flow, angiogenesis, vascular remodeling, 
nutrient transport and consumption, as well as movement 
interactions between normal and cancer cells [219]. 

Despite the progress, challenging issues still remain in cancer 
growth models. Important factors include the ability to simulate 
tumor microenvironment, as well as cell-to-cell interactions, the 
effectiveness of addressing body heterogeneity and anisotropy 
issues with diffusion tensors, the potential of engaging the 
dynamically changing metabolic profile of tumor, and the 
ability of including interactions on cancer growth at 
biomolecular level, considering gene mutations and 
malignancy of endogenous receptors. 

D. Digital Twins 
In general, digital twin uses and applications benefit not only 

from CAD reconstruction tools but also engage dynamic 
modelling stemming from either theoretical developments or 
real-life measurements merging the Internet of Things with 
artificial intelligence and data analytics [220]-[221]. In this 
form, the digital equivalent of a complex human functional 
system enables the consideration of event dynamics, such as 
tumour growth or information transfer in epilepsy network, as 
well as a systemic response to therapy, such as response to 
pharmacogenomics or targeted radiotherapy [222]. 

Since the digital twin can incorporate modelling at different 
resolutions, from organ structure to cellular and genomic level, 
it may enable complex simulations [223] with the use of AI 
tools to integrate huge amounts of data and knowledge aiming 
at improved diagnostics and therapeutic treatments, without 
harming the patient. Furthermore, such a twin can also act as a 
framework to support human-machine collaboration in testing 
and simulating complex invasive operations without even 
engaging the patient.  

VII. INTEGRATIVE ANALYTICS 

A. Medical Imaging in the Era of Precision Medicine 
Radiologists and pathologists are routinely called upon to 

evaluate and interpret a range of macroscopic and microscopic 
images to render diagnoses and to engage in a wide range of 
research activities. The assessments that are made ultimately 
lead to clinical decisions that determine how patients are treated 
and predict outcomes. Precision medicine is an emerging 
approach for administering healthcare that aims to improve the 
accuracy with which clinical decisions are rendered towards 
improving the delivery of personalized treatment and therapy 
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planning for patients as depicted in Fig. 3 [67]. In that context,  
physicians have become increasingly reliant upon sophisticated 
molecular and genomic tests, which can augment standard 
pathology and radiology practices in order to refine 
stratification of patient populations and manage individual care. 
Recent advances in computational imaging, clinical genomics 
and high-performance computing now make it possible to 
consider multiple combinations of clinico-pathologic data 
points, simultaneously. Such advances provide unparalleled 
insight regarding the underlying mechanisms of disease 
progression and could be used to develop a new generation of 
diagnostic and prognostic metrics and tools. From a medical 
imaging perspective, radiogenomics paradigm integrates afore-
described objectives towards advancing precision medicine. 

B. Radiogenomics for Integrative Analytics 
Radiomics research has emerged as a non-invasive approach 

of significant prognostic value [224]. Through the construction 
of imaging signatures (i.e., fusing shape, texture, morphology, 
intensity, etc., features) and their subsequent association to 
clinical outcomes, devising robust predictive models (or 
quantitative imaging biomarkers) is achieved [225]. 
Incorporating longitudinal and multi-modality radiology and 
pathology (see also Section VII.C) image features further 
enhances the discriminatory power of these models. A dense 
literature demonstrates the potentially transforming impact of 
radiomics for different disease staging such as cancer, 
neurodegenerative, and cardiovascular diseases [224]-[228]. 
Going one-step further, radiogenomics methods extend 
radiomics approaches by investigating the correlation between, 
for example, a tumor’s characteristics in terms of quantitative 

imaging features and its molecular and genetic profiling [68]. A 
schematic representation of radiomic and radiogenomics 
approaches appears in Fig. 3. 

During the transformation from a benign to malignant state 
and throughout the course of disease progression, changes 
occur in the underlying molecular, histologic and protein 
expression patterns, with each contributing a different 
perspective and complementary strength. Clearly then, the 
objective is to generate surrogate imaging biomarkers 
connecting cancer phenotypes to genotypes, providing a 
powerful and yet non-invasive prognostic and diagnostic tool in 
the hands of physicians. At the same time, the joint 
development of radiogenomic signatures, involves the 
integrated mining of both imaging and -omics features, towards 
constructing robust predictive models that better correlate and 
describe clinical outcomes, as compared with imaging, 
genomics or histopathology alone [68]. 

The advent of radiogenomics research is closely aligned with 
associated advances in inter- and multi- institutional 
collaboration and the establishment of well curated, FAIR-
driven repositories that encompass the substantial amount of 
semantically annotated (big) data, underpinning precision 
medicine (see Section III). Such example is the TCIA and the 
TCGA repositories, which provide matched imaging, genetic 
and clinical data for over 20 different cancer types. Importantly, 
these data further facilitate consensus ratings on radiology 
images (e.g., MRI) of expert radiologists to alleviate 
inconsistencies that often arise due to subjective impressions 
and inter- and intra-observer variability [229]. Moreover, 
driven by the observation that objectivity and reproducibility 
improve when conclusions are based upon computer-assisted 

 
 

Fig. 3. Radiogenomics System Diagram: An abstract system diagram demonstrating the use of radiogenomics approaches in the context of precision medicine 
[68]. Based on the clinical case, (multi-modal) image acquisition is performed. Then, manual and/or automatic segmentation of the diagnostic regions of 
interest follows, driving quantitative and/or qualitative radiomic features extraction and machine learning approaches for segmentation, classification and 
inference. Alternatively, emerging deep learning methods using raw pixel intensities can be used for the same purpose. Radiogenomics approaches investigate 
the relationships between imaging and genomic features and how radiomics and genomics signatures, when processed jointly, can better describe clinical 
outcomes. On the other hand, radiomics research is focused on characterizing the relationship between quantitative imaging and clinical features.  
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decision support [230]-[233], research initiatives from TCIA 
groups attempt to formalize methodological processes thus 
accommodating extensibility and explainability.  
1) The TCIA/ TCGA initiatives paradigm 

The breast and glioma phenotype groups in TCIA, 
investigating breast invasive carcinoma (BRCA) and 
glioblastoma (GBM) and lower grade glioma (LGG), 
respectively, are examples of such initiatives. In this sequence, 
the breast phenotype group defined a total of 38 radiomics 
features driving reproducible radiogenomics research 
hypothesis testing [234]. Stemming from T1-weighted 
Dynamic Contrast Enhancement (DCE) MRI, radiomics 
features are classified into six phenotype categories, namely: (i) 
size (4), (ii) shape (3), (iii) morphology (3), (iv) enhancement 
texture (14), (v) kinetic curve (10), and (vi) enhancement-
variance kinetics (4). Likewise, the glioma phenotype group 
relies on the VASARI feature set to subjectively interpret MRI 
visual cues. VASARI is a reference consensus schema 
composed of 30 descriptive features classified with respect to 
(i) non-enhanced tumor, (ii) contrast-enhanced tumor, (iii) 
necrosis, and (iv) edema. VASARI is widely used in 
corresponding radiogenomics studies driving the quantitative 
imaging analysis from a clinical perspective [235]. In terms of 
genetic analysis, features are extracted from the TCGA website, 
using enabling software such as the TCGA-Assembler. 

Breast phenotype group studies documented significant 
associations between specific radiomics features (e.g., size and 
enhancement texture) and breast tumor staging. Moreover, they 
performed relatively well in predicting clinical receptor status, 
multigene assay recurrence scores (poor vs good prognosis), 
and molecular subtyping. Imaging phenotypes where further 
associated with miRNA and protein expressions [236]-[239]. 

 At the same time, hypothesis testing in glioma phenotype 
group verified the significant association between certain 
radiomic and genomic features with respect to overall and  
progression free survival, while joint radiogenomic signatures 
were found to increase the predictive ability of generated  
models. Importantly, imaging features were linked to molecular 
GBM subtype classification (based on Verhaak and/ or Philips 
classification) providing for non-invasive prognosis [68], [240].  
2) Deep Learning based Radiogenomics 

While still at its infancy, relying mostly on transfer learning 
approaches, deep learning methods are projected to expand and 
transform radiomics and radiogenomics research. Indicative 
studies focusing on cancer research involve discriminating 
between Luminal A and other molecular subtypes for breast 
cancer [241], predicting bladder cancer treatment response 
[242], IDH1 mutation status for LGG [243], [244], and MGMT 
methylation status for GBM [245], as well as predicting overall 
survival for GBM patients [246] and non-disease specific 
subjects [247]. 

C. Integrative Analytics in Digital Pathology  
Recently, the scope of image-based investigations has 

expanded to include synthesis of results from pathology images, 
genome information and correlated clinical information. For 
example a recent set of experiments utilized 86 breast cancer 
cases from the Genomics Data Commons (GDC) repository to 
demonstrate that using a combination of image- based and 
genomic features served to improve classification accuracy 

significantly [248]. Other work demonstrated the potential of 
utilizing a combination of genomic and computational imaging 
signatures to characterize prostate cancer. The results of the 
study show that integrating image biomarkers from CNN with 
a recurrence network model, called long short-term memory 
LSTM and genomic pathway scores, is more strongly correlated 
with a patient’s recurrence of disease as compared to using 
standard clinical markers and  image-based texture features 
[249]. An important computational issue is how to effectively 
integrate the omics data with digitized pathology images for 
biomedical research. Multiple statistical and machine learning 
methods have been applied for this purpose including 
consensus clustering [250], linear classifier [251], LASSO 
regression modeling [252], and deep learning [253]. These 
methods have been applied to studies on cancers, including 
breast [250], lung [252], and colorectal [253]. The studies not 
only demonstrated that integration of morphological features 
extracted from digitized pathology images and -omics data can 
improve the accuracy of prognosis but also provided insights on 
the molecular basis of cancer cell and tissue organizations. For 
instance, Yuan et al [251] showed that morphological 
information on TILs combined with gene expression data can 
significantly improve prognosis prediction for ER-negative 
breast cancers while the distribution patterns for TILs and the 
related genomics information are characterized for multiple 
cancers in [152]. These works led to new directions on 
integrative genomics for both precision medicine and biological 
hypothesis generation.  

As an extension of the work that is already underway using 
multi-modal combinations of image and genomic signatures to 
help support the classification of pathology specimens, there 
have been renewed efforts to develop reliable, content-based 
retrieval (CBR) strategies. These strategies aim to 
automatically search through large reference libraries of 
pathology samples to identify previously analyzed lesions 
which exhibit the most similar characteristics to a given query 
case. They also support systematic comparisons of tumors 
within and across patient populations while facilitating future 
selection of appropriate patient cohorts. One of the advantages 
of CBR systems over traditional classifier-based systems is that 
they enable investigators to interrogate data while visualizing 
the most relevant profiles [254]. However, CBR systems have 
to deal with very large and high-dimensional datasets, the 
complexity of which can easily render simple feature 
concatenation inefficient and insufficiently robust. It is often 
desirable to utilize hashing techniques to encode the high-
dimensional feature vectors extracted from computational 
imaging signatures and genomic profiles so that they can be 
encapsulated into short binary vectors, respectively. Hashing-
based retrieval approaches are gaining popularity in the medical 
imaging community due to their exceptional efficiency and 
scalability [255].  

VIII. CONCLUDING REMARKS & FUTURE DIRECTIONS 
Medical imaging informatics has been driving clinical research, 
translation, and practice for over three decades. Advances in 
associate research branches highlighted in this study promise to   
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revolutionize imaging informatics as known today across the 
healthcare continuum enabling informed, more accurate 
diagnosis, timely prognosis, and effective treatment planning. 
Among AI-based research-driven approaches that have 
obtained approval from the Food and Drug Administration 
(FDA), a significant percentage involves medical imaging 
informatics [256]. FDA is the US official regulator of medical 
devices and more recently software-as-a-medical-device 
(SAMD) [257]. These solutions rely on machine- or deep-
learning methodologies that perform various image analysis 
tasks, such as image enhancement (e.g. SubtlePET/MR, IDx-
DR), segmentation and detection of abnormalities (e.g. 
Lung/LiverAI, OsteoDetect, Profound AI), as well as 
estimation of likelihood of malignancy (e.g. Transpara). 
Radiology images are mostly addressed in these FDA-approved 
applications, and, to a lower degree, digital pathology images 
(e.g. Paige AI). Table III summarizes existing FDA-approved 
AI-based solutions. We expect significant growth in systems 
obtaining FDA-approval these numbers in the near future. 

 Hardware breakthroughs in medical image acquisition 
facilitate high-throughput and high-resolution images across 
imaging modalities at unprecedented performance and lower 
induced radiation. Already deep in the big medical data era, 
imaging data availability is only expected to grow, 
complemented by massive amounts of associated data-rich 
EMR/ EHR, -omics, and physiological data, climbing to orders 
of magnitude higher than what is available today. As such, the 
research community is struggling to harness the full potential of 
the wealth of data that are now available at the individual 
patient level underpinning precision medicine.  

Keeping up with storage, sharing, and processing while 
preserving privacy and anonymity [258], [259], has pushed 
boundaries in traditional means of doing research. Driven by 
the overarching goal of discovering actionable information, 
afore-described challenges have triggered new paradigms in an 

effort to standardize involved workflows and processes towards 
accelerating new knowledge discovery. Such initiatives include 
multi-institutional collaboration with extended research teams’ 
formation, open-access datasets encompassing well-annotated 
(extensible) large-cohorts, and reproducible and explainable 
research studies with analysis results augmenting existing data. 

Imaging researchers are also faced with challenges in data 
management, indexing, query and analysis of digital pathology 
data. One of the main challenges is how to manage relatively 
large-scale, multi-dimensional data sets that will continue to 
expand over time since it is unreasonable to exhaustively 
compare the query data with each sample in a high-dimensional  
database due to practical storage and computational bottlenecks 
[255]. The second challenge is how to reliably interrogate the 
characteristics of data originating from multiple modalities.  

In that sequence, data analytics approaches have allowed the 
automatic identification of anatomical areas of interest as well 
as the description of physiological phenomena, towards in-
depth understanding of regional tissue physiology and 
pathophysiology. Deep learning methods are currently 
dominating new research endeavours. Undoubtedly, research in 
deep learning applications and methods is expected to grow, 
especially in in view of documented advances across the 
spectrum of healthcare data, including EHR [260], genomic 
[261], [262], physiological parameters [263], and natural 
language data processing [264]. Beyond the initial hype, deep 
learning models managed in a short time to optimize critical 
issues pertaining to methods generalization, overfitting, 
complexity, reproducibility and domain dependence.  

However, the primary attribute behind deep learning success 
has been the unprecedented accuracy in classification, 
segmentation, and image synthesis performance, consistently, 
across imaging modalities, and for a wide range of applications. 

Toward this direction, transfer learning approaches and 

TABLE III. AI-BASED MEDICAL IMAGING SYSTEMS WITH FDA-APPROVAL 
Software Company Imaging Data Description 

SubtlePET/ SubtleMR Subtle 
subtlemedical.com PET/ MRI Enhancement of PET/MR images  

LungAI 
LiverAI 

Arterys 
www.arterys.com  

Lung CT 
Liver CT, MRI Segmentation of lesions and nodules  

AmCAD-UT AmCad BioMed 
www.amcad.com.tw Thyroid ultrasound Characterisation and assessment of thyroid tissue  

IDx-DR IDx 
www.eyediagnosis.co Retinal Feedback on image quality, and  

instructions for patient follow-up or referral  

icobrain Icometrix 
icometrix.com Brain MRI, CT Interpretation of CT and MRI brain images  

OsteoDetect Imagen 
www.lify.io Wrist X-ray Detection of distal radius fracture 

AI1 Zebra Medical Vision 
www.zebra-med.com CT, X-ray of various diseases Detection and quantification of abnormalities  

Aidoc 
Head/Chest/Spine/Abdomen 

Aidoc 
www.aidoc.com Radiology images Detection of acute abnormalities across the body  

ProFound AI iCAD 
www.icadmed.com 2D mammograms Detection of malignancies and calcifications  

Transpara ScreenPoint Medical 
screenpoint-medical.com 2D and 3D mammograms Detection and likelihood of cancer 

Accipio MaxIQ AI 
http://www.maxq.ai/ Head CT Triaging of intracranial haemorrhage  

Paige AI 
 

Paige 
https://paige.ai/ Digital slides Diagnosis for digital pathology 

US: Ultrasound; MRI: Magnetic Resonance Imaging; CT: Computed Tomography; PET: Positron Emission Tomography. 
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uptake in popular frameworks supported by a substantial 
community base has been catalytic. In fact, fine-tuning and 
feature extraction transfer learning approaches as well as 
inference using pre-trained networks can be now invoked as 
would any typical programming function, widening the deep 
learning research base and hence adoption in new applications. 

Yet, challenges remain, calling for breakthroughs ranging 
from explainable artificial intelligence methods leveraging 
advanced reasoning and 3D reconstruction and visualization, to 
exploiting the intersection and merits of traditional (shallow) 
machine learning techniques performance and deep learning 
methods accuracy, and most importantly, facilitating clinical 
translation by overcoming generalization weaknesses induced 
by different populations. The latter potentially being due to 
training with small datasets. 

At the same time, we should highlight a key difference in the 
medical domain.  Deep learning-based computer vision tasks 
have been developed on “enormous” data of natural images that 
go beyond ImageNet (see for example the efforts of Google, 
and Facebook). This paradigm is rather worrying as in the 
medical domain matching that size is not readily possible.  
While in medicine we can still benefit from advances in transfer 
learning methods and computational efficiency [265], [266] in 
the future we have to consider how can we devise methods that 
rely on fewer data to train that can still generalize well. From 
an infrastructure perspective, computational capabilities of 
exascale computing driven by ongoing deep learning initiatives, 
such as the CANDLE  initiative, project revolutionary solutions 
[267]. 

Emerging radiogenomics paradigms are concerned with 
developing integrative analytics approaches, in an attempt to 
facilitate new knowledge harvesting extracted from analysing 
heterogeneous (non-imaging), multi-level data, jointly with 
imaging data. In that sequence, new insights with respect to 
disease aetiology, progression, and treatment efficacy can be 
generated. Toward this direction, integrative analytics 
approaches are systematically considered for in-silico 
modelling applications, where biological processes guiding, for 
example, a tumour expansion and metastasis, need to be 
modelled in a precise and computationally efficient manner. For 
that purpose, investigating the association between imaging and 
-omics features is of paramount importance towards 
constructing advanced multi-compartment models that will be 
able to accurately portray proliferation and diffusion of various 
cell types’ subpopulations.  

In conclusion, medical imaging informatics advances are 
projected to elevate the quality of care levels witnessed today, 
once innovative solutions along the lines of selected research 
endeavors presented in this study are adopted in clinical 
practice, and thus potentially transforming precision medicine. 
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