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Abstract— Objective: We present a review of wireless medical 

devices that are placed inside the human body to realize many 

and different sensing and/or stimulating functionalities. Methods: 

A critical literature review analysis is conducted focusing on 

three types of in-body medical devices, i.e., a) devices that are 

implanted inside the human body (implantables), b) devices that 

are ingested like regular pills (ingestibles), and c) devices that are 

injected into the human body via needles (injectables). Design 

considerations, current status and future directions related to the 

aforementioned in-body devices are discussed. Results: A number 

of design challenges are associated with in-body devices, 

including selection of operation frequency, antenna design, 

powering, and biocompatibility. Nevertheless, in-body devices are 

opening up new opportunities for medical prevention, prognosis, 

and treatment that quickly outweigh any design challenges 

and/or concerns on their invasive nature. Conclusion: In-body 

devices are already in use for several medical applications, 

ranging from pacemakers and capsule endoscopes to injectable 

micro-stimulators. As technology continues to evolve, in-body 

devices are promising several new and hitherto unexplored 

opportunities in healthcare. Significance: Unobtrusive in-body 

devices are envisioned to collect a multitude of physiological data 

from the early years of each individual. This big-data approach 

aims to enable a shift from symptom-based medicine to a 

proactive healthcare model. 

 
Index Terms—biotelemetry, implantables, ingestibles, 

injectables, in-body devices, wireless telemetry 

 

I. INTRODUCTION 

IRELESS medical devices used to sense physiological 

parameters (sensors) and/or stimulate the nervous 

system (stimulators) are becoming increasingly popular 

nowadays [1]-[5]. A comprehensive overview of related 

technologies, systems, application areas and research 

challenges is presented in [6]. In fact, statistics show that 27% 

of Americans already use some sort of wearable device, such 

as a smart watch that records heart rate and number of steps, 

or smart socks that track speed, calories, altitude, and distance 

[7]. Nevertheless, wearable devices are limited to monitoring 
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only specific types of physiological parameters that are readily 

accessible from outside the human body. Along these lines, 

wireless in-body medical devices that are placed directly 

inside the human body are promising an entire new realm of 

applications [8]-[10].  

As shown in Fig. 1, wireless in-body medical devices are 

divided into three categories based on the way of insertion into 

the human body, i.e., implantables, ingestibles, and 

injectables. Herewith, the term ‘wireless’ refers to in-body 

devices that communicate wirelessly with exterior 

monitoring/control equipment (e.g., a smart phone) without 

the need for wires that would otherwise penetrate through the 

tissues to ensure a connection. Specifically, implantable 

devices are placed inside the human body by means of a 

surgical operation, and entail the most traditional type of in-

body devices [11]. Over the years, they have evolved from 

bulky pacemakers to miniature deep brain implants [12]. 

Ingestible devices are capsule-looking devices that are 

ingested and swallowed like regular pills [10]. The most 

traditional ingestible device is the wireless endoscope that was 

first discovered in year 2000 [13]. Today, wireless ingestible 

capsules are integrated with advanced capabilities that can 

even monitor reactions to pharmaceuticals [14]. Finally, 

injectable devices are micro-devices that are injected into the 

human body by means of needles. They have been reported 

very recently for both sensing and neuro-stimulation 

applications [15]. As technology continues to evolve, in-body 

devices are becoming more powerful and concurrently more 

unobtrusive. In doing so, new resources are opening up for 

medical prevention, prognosis, and treatment that quickly 

outweigh any concerns about their invasive nature. 

 In the past, we presented an overview of implantable and 

ingestible devices, focusing on the challenges related to design 

and fabrication of the corresponding in-body antennas [16]. In 
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Fig. 1. Definitions of implantable, ingestible, and injectable devices for 

wireless biotelemetry. 
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this paper, we take a step forward, and discuss in-body devices 

from an application point of view, addressing design 

challenges related to communication, powering, and 

biocompatibility. Beyond implantables and ingestibles, the 

recently introduced area of injectable devices is also included 

in this review. Section II will address design considerations 

related to wireless in-body devices. Section III will discuss 

research and commercial applications of in-body devices, 

providing the current status and indicating future directions.  

II. DESIGN CONSIDERATIONS FOR IN-BODY DEVICES 

Design of in-body devices is typically performed using 

analytical models of the human body and advanced 

electromagnetics (EM) simulation software. Experimental 

validation is further performed in-vitro using phantoms that 

emulate the electrical properties of biological tissues, and/or 

in-vivo using animals (rats, pigs, etc.) and potentially human 

subjects. Detailed overviews of numerical simulation and 

experimental validation concepts used to accurately emulate 

real-life scenarios for in-body devices are provided in [11], 

[17], [18]. Herewith, we will focus on specific challenges 

associated with the design of in-body devices, and 

specifically: selection of operation frequency, wireless 

interface design, powering, and biocompatibility. These 

considerations are discussed next, and are applicable to all 

types of in-body devices, including implantables, ingestibles, 

and injectables.  

A. Operation Frequency 

As shown in Table I, several frequency bands have been 

employed for in-body devices [19]-[45], with the most 

commonly used ones being the Medical Device Radio 

Communication Service (MedRadio) band of 403.5 MHz, and 

the Industrial, Scientific and Medical (ISM) band of 2.4 GHz. 

In general, selection of operation frequency involves several 

trade-offs. Specifically, low frequencies tend to be more 

attractive as they are associated with lower loss through the 

biological tissues. As an example, high frequencies in the 

order of 3-5 GHz imply attenuation as high as 20-30 dB for 

every 2 cm of biological tissue [10]. On the other hand, low 

frequencies limit the communication speed and imply large 

antennas and circuit components, which, in turn, increase the 

size of the in-body device. In fact, ingestible devices typically 

employ high-frequency telemetry links to achieve high data 

rates, better image resolution, and device miniaturization. 

B. Wireless Interface: from Inductive Links to Antennas 

Integration of wireless capabilities into the in-body device 

is highly critical as it enables unobtrusive and ubiquitous 

communication with the exterior monitoring/control 

equipment. Today, such equipment may be a smart phone, a 

smart watch, or another type of smart wearable garment. Data 

can further be wirelessly transmitted to remote physicians, 

family members, etc. 

The first wireless implants integrated inductive coupling 

technology at a frequency of 20 MHz or lower. This 

technology employed inductors within the implant and 

 

exterior device that were brought in close proximity to realize 

wireless communication via coupling between the two. 

However, inductive coupling has typically been associated  

with several limitations, including slow data rates and high 

sensitivity to misalignments between the inductors. As such, 

inductive coupling has recently given its place to wireless 

antenna communication. In-body antennas alleviate the 

aforementioned issues, and are becoming increasingly popular 

nowadays. Their design entails several challenges that are 

mainly related to miniaturization while achieving wide 

operation bandwidth, and have been extensively addressed in 

[16]-[18]. Antenna designs for in-body devices reported to 

date are summarized in Table II [19]-[45], and are further 

illustrated in Fig. 2. As seen: a) Planar Inverted-F Antennas 

(PIFAs) are typically employed for implantable devices as 

they provide several degrees of freedom for miniaturization, b) 

helical antennas are typically employed for ingestible devices 

as they provide circular polarization, omnidirectional radiation 

pattern, and consistent bandwidth across a range of tissues 

surround the device, and c) loop or dipole antennas are 

employed for injectable devices depending on the size and 

shape of the device. 

C. Powering 

In-body devices have been traditionally powered via 

batteries [46]. Drawbacks in this case are that batteries 

increase the size of the in-body device, raise patient safety and 

biocompatibility concerns, and require frequent replacement 

and/or recharging. In fact, despite recent advances in 

TABLE II 
ANTENNA DESIGNS USED FOR IN-BODY DEVICES 

 Antenna Designs 

Implantable Devices PIFA [19], [21]-[27], [30], [31] 
Patch [20] 

Loop [28] 

Monopole [32], [33] 

Ingestible Devices Helical [34], [37], [39], [40] 
Spiral [35], [36] 

PIFA [38] 

Injectable Devices Loop [42], [44] 
Dipole  [43], [45] 

 

TABLE I 

FREQUENCY BANDS USED FOR IN-BODY DEVICES 

 Operation Frequencies 

Implantable Devices 

402 MHz [19]-[27] 

433 MHz [19], [22], [28] 
868 MHz [25], [28] 

915 MHz  [25], [28]-[30] 

1.4 GHz [31] 
2.45 GHz [19], [21]-[23], [27], [31] 

UWB around 6 GHz [32], [33] 

Ingestible Devices 

433 MHz [34] 
500 MHz [35], [36] 

800 MHz [34] 

1.2 GHz [34] 
1.4 GHz [37], [38] 

2.4 GHz [39], [40] 

Injectable Devices 

132 kHz [41] 

2 MHz [42], [43] 
13.56 MHz [44] 

915 MHz [45] 
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electronics and powering/charging technologies, batteries still 

occupy the majority of space in existing in-body devices. With 

these in mind, batteryless in-body devices are envisioned. The 

latter can be achieved via power harvesting techniques, or by 

enabling fully-passive operation, as outlined below.  

1) Power harvesting. Power harvesting technologies imply 

harvesting energy from environmental or bodily sources. 

Among others, this includes harvesting electromagnetic 

energy (RF [47], [48], ultrasound [49], etc.), tissue motion and 

heartbeat [50], thermal gradients in the body [51], human 

motion [52], and glucose oxidization [53]. Extensive research 

is currently being carried out to improve the efficiency of the 

aforementioned methods and make them suitable for powering 

in-body devices out of thin air.  

2) Fully-Passive Operation. A novel technology that aims to 

completely eliminate power storage requirements of any sort 

is related to fully-passive operation of the in-body device [12], 

[54]. Fully-passive in-body devices operate very much like an 

RFID and require an exterior interrogator in close proximity 

(e.g., exterior interrogator could be part of a hat in the case of 

brain implants, or part of a T-shirt in the case of pacemakers). 

As shown in Fig. 3, the interrogator sends a carrier signal (fc) 

that is wirelessly received by the in-body device. The in-body 

device, in turn, mixes the carrier signal with the sensed 

physiological parameter (fs) and immediately backscatters the 

mixing products (fc ± fs). The latter are received and further 

demodulated by the exterior interrogator to retrieve the sensed 

signal (fs).  

D. Biocompatibility 

Biocompatibility implies that a device operating inside the 

body won’t react with the surrounding tissues. A number of 

techniques have been explored to achieve biocompatibility for 

in-body devices, including use of biocompatible materials 

[55], coating with thin biocompatible polymers [23], addition 

of superstrates to cover the exposed metal parts [56], etc. For  

example, authors in [57] developed a coating that allows low-

cost silicon sensors to be inserted inside the human body for 

up to 24 hours. Nevertheless, these solutions typically provide 

for short-term biocompatibility, as eventually the body will 

wrap the device in a fibrous cocoon and try and push it 

towards the outside. To survive inside the biological tissue 

environment, devices must eventually be enclosed inside a 

steel jacket, as is the case with existing pacemakers. 

III. APPLICATIONS OF WIRELESS IN-BODY DEVICES: 

CURRENT STATUS AND FUTURE DIRECTIONS 

A. Implantable Medical Devices 

Implantable medical devices are typically placed inside the 

human body by means of a surgical operation, and may serve 

all sorts of sensing and stimulating functionalities. Example 

applications for wireless implantable medical devices reported 

to date are summarized in Table III. Some of the most 

representative implantable applications are further discussed 

below. 

1) Pacemakers: One of the most popular implantable medical 

devices is the pacemaker, a miniature device placed inside the 

chest or abdomen to help control cardiac arrhythmias [58]. 

The first pacemaker was implanted in 1958, and, since then, 

advances in electronics, electromagnetics, and wireless 

communications have significantly improved the pacemakers’ 

physical size and performance. In fact, most modern 

pacemakers do not exceed 1.2” in size, and some may 

additionally communicate critical diagnostic information 

about the patient and themselves (device status) to exterior 

devices. As an example, the world’s smallest pacemaker, the 

Medtronic Micra [59] (see Fig. 4(a)), is about the size of a 

large vitamin and can actually be implanted inside the heart. 

This pacemaker delivers an estimated average 12-year battery 

longevity, and can be safely scanned using either a 1.5T or 3T 

full-body Magnetic Resonance Imaging (MRI). 

2) Intra-Cranial Pressure (ICP) monitors: Elevated ICP is 

typically a result of cerebral edema, cerebrospinal fluid 

disorder, head injury, and/or localized intracranial mass lesion. 

In turn, elevated ICP increases the risk of severe brain damage 

and may cause disabilities or even death. With these in mind, a 

number of unobtrusive implantable solutions have been 

reported for measuring the IOP. For example, in [60], [61], a 

MEMS pressure sensor was reported to detect changes in ICP 

and wirelessly transmit them to an exterior device (see Fig. 

4(b)). The system’s operation frequency was set to 2.45GHz, 

and indicated a maximum pressure error of only 0.8mmHg. In 

[62], an RF oscillator was employed that was designed to 

detect changes in the ICP based on changes in its oscillation 

frequency. This device operated at 2.4GHz and was 

demonstrated to accurately identify pressures in the 10-

70mmHg range. Both of the aforementioned sensors were 

battery-powered, which, in turn, increased the overall size of 

the implant and required frequent replacement and/or 

recharging. To avoid batteries, [63], [64] introduced a passive 

capacitive MEMS ICP sensor that was powered via inductive 

RF coupling. The sensor formed an LC tank with a coil placed 

on the skull, and the tank’s resonance frequency changed as a 

function of changes in the ICP. The latter was eventually 

 
Fig. 3. Concept of fully-passive operation to realize batteryless in-body 

devices. 

 
 

 

(a) (b) (c) 
Fig. 2. Example antenna designs for in-body devices: (a) Planar Inverted-

F Antennas (PIFAs) typically employed for implantable devices [17], b) 

helical antennas typically employed for ingestible devices [39], and c) 

loop or dipole antennas typically employed for injectable devices [45]. 
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detected by an exterior reader device. In-vitro measurement 

results proved the capability of these sensors to detect ICP 

variations ranging from 0 to 70mmHg at 2.5mmHg intervals. 

3) CardioVascular Pressure Monitors: Chronic blood 

pressure monitoring is of utmost importance for continual 

assessment of various conditions of the cardiovascular system 

(e.g., restenosis, hypertension, heart failure), as well as for 

tracking the progress of surgical interventions (e.g., 

monitoring repaired aneurysms) [65] However, the traditional  

gold standards of blood pressure measurement, such as 

external pressure cuffs or intra-arterial catheter-based systems, 

exhibit several drawbacks. Examples include lack of patient 

comfort, infrequent measurement, possible occlusion of blood 

flow, and long-term complications (trauma and infection). As 

such, fully implantable devices are becoming quite popular for 

long-term monitoring of blood pressure. The latter allow for 

continuous monitoring without hindering the individual’s 

daily activities, and have no associated risks of infection as 

would typically be the case for catheters or wires. Rapid 

progress in microfabrication technologies has enabled the 

production of low cost, highly accurate sensors that may be 

safely implanted into patients for chronic pressure monitoring. 

Implantable blood pressure monitors based on MEMS 

capacitive sensors [66], a Surface Acoustic Wave (SAW) 

resonator [67], and Pulse Transit Time (PTT) measured by 

using an accelerometer [68] have been proposed. Recent 

industry developments include a pressure sensor fabricated by 

Boston Scientific for measurement of pressures within an 

aneurysm sac following endovascular aneurysm repair 

(EVAR) [69], as well as the first FDA approved implantable 

blood pressure device from CardioMEMS for detection of 

heart failure within the pulmonary artery [70]. Moreover, the 

potential of a device, originally developed for energy 

harvesting from arterial motion, to monitor cardiovascular 

system parameters has been demonstrated [71]. 

4) Neurosensors: Deep brain neurosensors have recently 

attracted significant interest for several applications, including 

epilepsy, Parkinson’s, Alzheimer’s, addictions, etc. In one 

case [48] RFID-inspired neural tags were considered for 

wireless brain-machine interfaces. Batteries were avoided, and 

power storage was performed via RF energy harvesting 

techniques.  In another case [72], a wireless neurosensor was 

presented for recording neural signals from the cortex of 

monkeys. The sensor in employed a head-mounted device 

with a ‘screw-on’ interconnect to the implant, and integrated a 

head-mounted battery. Recently, wireless fully-passive 

implanted neurosensors have been reported (see Fig. 4(c))  

[12], [73]-[75]. These devices operate without internal power 

supply elements and exhibit a highly simplified implant circuit 

topology. Also, no intra-cranial wires or cables are used. As an 

example, one of the latest fully-passive brain neurosensors 

occupies a footprint of 10 mm × 8.7 mm, and can read 

emulated neuropotentials as low as 20 μVpp [75]. This is a 25 

times improvement in sensitivity compared to previously 

reported fully-passive configurations [73]. 

5) Neurostimulators: Several implantable neurostimulators 

have been reported to stimulate the nervous system and 

recover functionality for Parkinson’s, dystonia, depression, 

stroke, artificial limbs, spasticity, Alzheimer’s, sleep apnea, 

chronic pain, obesity, epilepsy, hypertension, heart failure, 

incontinence, auditory and visual impairments, etc. For 

example, retinal neurostimulators may restore vision [76] [77] 

(see Fig. 4(d)), cochlear implants may improve hearing [78], 

stimulators in the subthalamic nucleus may manage 

Parkinson’s disease [79], brain-computer interfaces may 

develop robotic hands/arms/legs that can be controlled by 

thoughts [80], and stimulators in the grey matter may inhibit 

chronic pain [81]. 

A number of future applications are envisioned for 

implantable devices that will take advantage of breakthroughs 

in electronics, materials, power harvesting, etc. Examples 

include heart stents capable of wirelessly transmitting the 

health of an artery, implants that can detect performance-

enhancing drugs, closed-loop glucose meters and insulin 

pumps that monitor and correct blood sugar levels, and 

implants capable of detecting the presence of oral cancers.  

B. Ingestible Medical Devices 

Ingestible medical devices are miniature capsule-looking 

devices, and are taken through the mouth like regular pills 

[10], [13]. While traveling through the gastrointestinal tract 

and digestive system, ingestible medical devices may collect 

images, transmit real-time video, sense several physiological 

parameters, deliver drugs, etc. Collected data are eventually 

transmitted to a nearby monitoring/control device for display 

and further post-processing. Example applications for wireless 

ingestible medical devices reported to date are summarized in 

Table III. Some of the most representative ingestible 

applications are further discussed below. 

1) Imaging Capsules: Smart endoscopy capsules used for 

imaging the gastrointestinal tract and digestive system are the 

most well-known form of ingestible medical devices. For 

example, Given Imaging provides pill-sized disposable 

capsules that can visualize the small bowel, esophagus, and 

colon without sedation or invasive endoscopic procedures [82] 

(see Fig. 5(a)). To date, prototyping systems with data rates as 

high as 2 Mbps have been reported for wireless capsule 

endoscopy that employ advanced compression techniques to 

achieve up to 15-20 frames per sec [83]. To obtain clearer  

 

 

(a) (b) 

 

 

(c) (d) 

Fig. 4. Example implantable devices reported to date: (a) Medtronic 

Micra pacemaker placed next to a large vitamin for comparison [59], (b) 

intra-cranial pressure monitoring sensor [60], (c) deep brain neurosensor 

[12], and (d) subretinal neurostimulator [76]. 
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images, fluorescence-based ingestible capsules have also been 

reported [84]. These systems typically include three sub- 

modules, namely optical imaging, electronics control and 

image acquisition, and information processing and 

transmission. 

2) Ingestible Sensors: Ingestible capsules are often used to 

sense physiological parameters inside the body as a means to 

diagnose a number of conditions. For example, an ingestible- 

sensor scheme developed by Proteus Digital Health has 

already been FDA approved, and is being rolled out for heart-

failure related drugs [85]. In another case [14], a sensor was 

presented for detecting the ingestion of a pharmaceutical tablet 

or capsule (see Fig. 5(b)). Clinical trials in 412 subjects 

demonstrated 99.1% detection accuracy and 0% false 

positives. The system further allowed direct correlation 

between drug ingestion, health-related behaviors (e.g., 

physical activity), and critical metrics of physiological 

response (e.g., heart rate, sleep quality, and blood pressure). 

More recently, custom-made ingestible capsules were 

demonstrated that can measure the concentration of different 

gases during digestion in the gut [86]. It is  noted that changes 

in production of certain gases in the human gut have been 

linked to gastrointestinal disorders including painful 

constipation, irritable bowl syndrome, and colon cancer. 

3) Drug Delivery Capsules: This class of applications refers 

to electronic pills that are used to precisely deliver a certain 

drug along the gastrointestinal tract. In one case, a 

micropositioning mechanism was reported that can be easily 

integrated into a capsule, and deliver 1 ml of targeted 

medication [87]. The micropositioning mechanism allows a 

needle to be positioned within a 22.5
o
 segment of a cylindrical 

capsule and be extendible by up to 1.5mm outside the capsule 

body. In another case, a smart pill was designed to release 

powdered medication just before reaching the ileocecal valve, 

where the small and large intestine meet (see Fig. 5(c)) [88]. 

Once activated through a magnetic proximity fuse, the capsule 

opens up and releases its powdered payload.  

A number of future applications are envisioned for 

ingestible devices. Examples include: personalized drug 

delivery capsules to treat digestive disorders and diseases, 

higher-bandwidth data transmission to enable better diagnosis, 

ingestible sensors that are taken along with regular pills to 

affirm that a patient has taken the correct dosage, electronic 

capsules that monitor physiological reactions to the dose, 

capsules that activate and sense in specific parts of the 

gastrointestinal tract and digestive system, devices that can 

track electrical activity at the gastrointestinal tract while also 

measuring transit times, and smart capsules that release 

specialized drug profiles at specific target locations or when 

they detect a certain sensing event.  

C. Injectable Medical Devices 

Given their minimally invasive nature and smart 

capabilities, injectables are seen by many as the next 

generation of medical devices. Example applications for 

wireless injectable medical devices reported to date are 

summarized in Table III. Specifically, the term ‘injectable’ 

may refer to two classes of devices, as outlined below: 

1) Micro-sensors injected into the human body by means of a 

needle. Very recently, Profusa demonstrated an injectable 

sensor, namely the Lumee Oxygen sensor, that can monitor 

oxygen levels in the surrounding tissues (see Fig. 6(a)) [89]. 

The sensor has the thickness of a few human hairs and the 

 

 

(a) (b) 

 
(c) 

Fig. 5. Example ingestible devices reported to date: (a) Given Imaging 

capsules for visualizing the gastrointestinal tract [82], (b) ingestible 

capsule to monitor medication adherence [14], and (c) ingestible capsule 

for targeted drug delivery [88]. 

TABLE III. EXAMPLE REPORTED APPLICATIONS OF IMPLANTABLE, INGESTIBLE, AND INJECTABLE WIRELESS MEDICAL DEVICES. 

Implantable Devices Ingestible Devices Injectable Devices 

Pacemakers [58], [59] 

Defibrillators [16] 

Intra-cranial pressure monitors [8], [25], [60]-[64] 

CardioVascular pressure monitors [65]-[70] 

Deep brain neurosensors [12], [32], [48], [72]-[75]  

Retina stimulators [76], [77] 

Cochlear implants [16], [78] 

Parkinson’s stimulators [79] 

Brain computer interfaces for prosthetic limbs [80] 

Chronic pain stimulators [81] 

Glucose monitors [16] 

Drug infusion systems [16] 

Identity verification chips [16] 

Imaging of the digestive system [82]-[84] 

Medication adherence [14] 

Heart failure detection [85] 

Gastrointestinal disorder detection [86] 

Drug delivery capsule [87], [88] 

pH sensing of the esophagus [16] 

Pressure/temperature sensing of the 
gastrointestinal tract [16] 

Gastric stimulators [9] 

Neurostimulators [15] 

Glucose sensors [44] 

Oxygen sensing sensors [89] 

Peripheral artery disease monitors [89] 

Athletes’ muscle performance trackers [89] 

Shoulder subluxation rehabilitation [90] 

Knee osteoarthritis rehabilitation [90] 

Hand contraction treatment [92] 

Ulcers treatment [93] 

Hemicranias treatment [94] 

Urinary incontinence treatment [95] 
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length of a piece of long-grain rice, and is made of hydrogel 

permeated with fluorescent dye that is sensitive to oxygen. To 

read the device, light is shined on the skin, and an optical 

reader is picking up the emissions. Notably, the brightness of 

the fluorescence diminishes as oxygen binds to chemical 

receptors in the dye. Envisioned applications include, but are 

not limited to, monitoring of peripheral artery disease, and 

tracking of athletes’ muscle performance. 

2) Micro-stimulators injected into the human body by means 

of a needle. Injectable stimulators are currently explored as a 

less invasive and unobtrusive alternative to the implantable 

stimulators discussed above [15]. A typical injectable 

neurostimulator includes stimulating electrodes, an antenna for 

biotelemetry and power harvesting, and electronics used to 

control the stimulation (see Fig. 6(b)). In fact, preliminary 

results using injectable stimulators to treat post-stroke 

shoulder subluxation and knee osteoarthritis have already 

demonstrated very promising results [90]. In fact, in-vivo tests 

where subjects self-administered stimulation for 6 or 12 weeks 

demonstrated reduction in shoulder subluxation by 

55% ± 54% and decrease in pain by 78% ± 18%. 

3) Three-dimensional (3-D) medical electronics that are 

directly built inside the human body through sequential 

injections. A recently developed technology demonstrates that 

3-D fabrication of medical devices can be directly performed 

at the target biological tissues using sequential injections. 

Materials to be injected for realizing such flexible and 

miniaturized electronics entail biocompatible packaging 

materials and liquid metal inks. As a proof-of-concept, a 

variety of ElectroCardioGram (ECG) and stimulator 

electrodes have already been sequentially built at the target 

tissues, and validated both in-vitro and in-vivo (see Fig. 6(c)) 

[91]. Impedance measurements indicated that the formed 

electrodes had an overall electrical resistance of 16kOhm. 

Injectable medical devices are expected to significantly 

grow over the next few years. Challenges to be addressed in 

the future are mostly related to powering and fabrication of 

injectable antennas/electronics within a tiny footprint. Once 

these challenges are resolved, a number of future applications 

are envisioned for injectable devices including treatment of 

hand contraction [92], ulcers [93], hemicranias [94], seizures, 

urinary incontinence [95], sleep apnea, etc. 

IV. CONCLUSION 

A review was presented for in-body wireless medical 

devices (implantables, ingestibles, injectables), addressing the 

state-of-the-art technology, and discussing future 

opportunities. Overall, design of in-body devices is highly 

challenging, and needs to concurrently address concerns 

related to operation frequency selection, antenna design, 

powering, and biocompatibility. Currently, extensive research 

efforts are pursued to address such technological concerns, 

along with developing novel sensing methods, materials, and, 

eventually, new clinical applications for in-body devices. 

Overall, in-body devices are opening up new opportunities for 

medical prevention, prognosis, and treatment that quickly 

outweigh any design challenges and/or concerns on their 

invasive nature. 

In the future, unobtrusive in-body devices are envisioned to 

collect a multitude of physiologic data from the early years of 

each individual. Babies, children, and young healthy people 

would employ such unobtrusive devices to monitor heart rate, 

physical activity, nutritional status, calories burned, sleep 

duration, organ function, breathing rate, etc. Eventually, in the 

case of medical need, healthcare data collected over the years 

would enable personalized and, thus, much more efficient and 

cost-effective intervention. This big-data approach aims to 

enable a shift from reactive and symptom-based medicine to a 

proactive healthcare model. Applications are numerous, 

ranging from elderly monitoring to monitoring individuals in 

developing countries or individuals in the military, space, and 

sports arenas.  
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