Development of multi-scale computational methods based on time-stepping to study neuronal networks dynamics in motor disorders

Partners: School of electrical and computer engineering (N.T.U.A.), «Evangelismos» Hospital

Duration: 2008 - 2010

The project aims at the development of tools for a deeper understanding of the physiology of neurological functions and their divergence from normal functionality, and the use of these tools to control neurological disorders. In collaboration with the team of neurosurgeons of the Neurosurgery Clinic at the Hospital "Evangelismos", for the first time in Greece we collect and analyze data of intracranial recordings from patients who underwent surgery for electrode placement for "deep stimulation" of the nuclei of the brain. The project is divided into three components: (a) the development of mathematical models starting from the microscopic level, based on the physiology of neural cells to effectively approach the dynamic behavior of real cases, (b) the development of modern computational methods for the systematic analysis of models to identify the critical parameters, which determine changes in the behavior of the neural system with the appearance of malfunctions (eg. Alzheimer's Parkinson) and (c) the development of modern control methods for the regulation and control of emerging pathologies.