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Abstract
The aim of the present study is to comparatively assess the performance of different machine

learning and statistical techniques with regard to their ability to estimate the risk of developing

type 2 diabetes mellitus (Case 1) and cardiovascular disease complications (Case 2). This is the

first work investigating the application of ensembles of artificial neural networks (EANN) towards

producing the 5‐year risk of developing type 2 diabetes mellitus and cardiovascular disease as a

long‐term diabetes complication. The performance of the proposed models has been compara-

tively assessed with the performance obtained by applying logistic regression, Bayesian‐based

approaches, and decision trees. The models' discrimination and calibration have been evaluated

using the classification accuracy (ACC), the area under the curve (AUC) criterion, and the

Hosmer–Lemeshow goodness of fit test. The obtained results demonstrate the superiority of

the proposed models (EANN) over the other models. In Case 1, EANN with different topologies

has achieved high discrimination and good calibration performance (ACC = 80.20%, AUC = 0.849,

p value = .886). In Case 2, EANN based on bagging has resulted in good discrimination and cali-

bration performance (ACC = 92.86%, AUC = 0.739, p value = .755).

KEYWORDS

bagging ensemble, Bayesian models, cardiovascular disease, decision trees, diabetes, logistic

regression, neural networks ensemble, risk
1 | INTRODUCTION

Diabetes mellitus (DM) is a chronic metabolic disease characterized by

elevated blood glucose levels, due to insufficient insulin secretion (type

1 diabetes mellitus [T1DM]) and/or insulin resistance (type 2 diabetes

mellitus [T2DM]). According to the International Diabetes Federation

(IDF; IDFDiabetesAtlas, 2015), it is estimated that 415million of people

haveDMandthatthisnumber isexpectedtorisebeyond642millionuntil

2040. T2DM is themost prevalent form of diabetes accounting for 91%

cases in the adult population in high‐income countries (IDF Diabetes

Atlas,2015).Dueto itsasymptomaticnatureat theearlystagesof thedis-

ease, it is estimated that 193million of cases are currently undiagnosed,

whichdenotes that avast amountofpatientswithT2DMareprogressing

towards complications unawares (IDFDiabetes Atlas, 2015).

Prolonged high blood glucose levels can lead to serious diseases

affecting the heart and blood vessels, eyes, kidneys, and nerves.
wileyonlinelibrary.com/journal/e
T2DM is strongly associated with disabling and mortality related

long‐term macrovascular and microvascular complications. Cardiovas-

cular disease (CVD) is the most common cause of death and disability

among patients with DM (IDF Diabetes Atlas, 2015).

The onset and the progress of T2DM may be delayed or even

prevented by initiating appropriate intervention (Zarkogianni et al.,

2015a). In particular, a number of prevention programs have demon-

strated that effective lifestyle behavioral changes (e.g., diet and physical

activity) can greatly reduce the risk of developing T2DM (IDF Diabetes

Atlas, 2015). On the other hand, optimal diabetes treatment plan plays

a crucial role in controlling the disease progression.Within this context,

computational risk prediction models for the onset and the evolution of

T2DM can greatly support clinical decision making and facilitate self‐

disease management (Verdú et al., 2016; Zarkogianni et al., 2015a).

There are several studies in the existing literature focusing on the

development of T2DM risk engines (Zarkogianni et al., 2015a). Logistic
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regression (Tabaei & Herman, 2002), Cox proportional hazards model

(Tuomilehto et al., 2010), recursive partitioning (Xie et al., 2010), and

Weibull parametric survival model (Kahn et al., 2009) are the most

commonly used methodologies for building these models. The predic-

tion horizon varies from 5 to 15 years and the models' discriminative

ability, as measured by means of c‐statistic, ranges from approximately

71% to 86% with the latter being achieved by applying the full

Framingham 7‐year risk calculator (Wilson et al., 2007). The most com-

monly identified T2DM risk predictors are age, family history of diabe-

tes, body mass index, hypertension, waist circumference, sex, ethnicity,

fasting glucose level, glycosylated hemoglobin, lipids, uric acid, or γ‐

glutamyltransferases, smoking status, and physical activity (Abbasi

et al., 2012; Collins, 2011). Taking into account that T2DM has genetic

predisposition, several genotype risk scores have been developed (Bao

et al., 2013). Most of them receive as input the genetic variants that

have been identified and/or confirmed within the frame of the

genome‐wide association studies for T2DM (Manolio, 2010) and the

genome‐wide association studies metadata analysis studies. Although

putative causal genes corresponding up to 15–20% increase in the

T2DM risk have been detected, the obtained area under the curves

(AUCs) have been reported within the range 55% to 68%. On top of

this, the addition of these genetic markers into the input space of con-

ventional risk models has not improved significantly their predictive

power (Wang et al., 2016). More genetic variants strongly correlated

withT2DM need to be identified in order to provide valuable informa-

tion towards predicting the risk.

Risk prediction models for long‐term diabetes complications

have been mainly focused on CVD and diabetic retinopathy (Brown

et al., 2000; Skevofilakas, Zarkogianni, Karamanos, & Nikita, 2010;

Stevens et al., 2001; Zarkogianni et al., 2015a). Referring to the for-

mer case, which constitutes the most important diabetes‐related

complication, the European Association for the study of diabetes

recommends using Framingham and Diabetes Epidemiology: Collabo-

rative analysis of Diagnostic criteria in Europe as preferred predic-

tion models for calculating the CVD risk. However, these models

are applicable to the general population and underestimate the risk

in the population of diabetes. On the other hand, IDF guidelines rec-

ommend using the UK Prospective Diabetes Study (UKPDS) risk

engine, which is dedicated to the T2DM population but results in

varying discriminative performance (c‐statistic: 65–86%) and poor

calibration. Age, sex, systolic blood pressure, smoking status, atrial

fibrillation, ethnicity, glycosylated hemoglobin, total cholesterol,

HDL cholesterol, along with fasting, and 2‐hr glucose constitute

the most commonly used risk factors.

Having recognized the need of developing more efficient risk pre-

diction models for the incidence of T2DM and its complications, the

present study focuses on the comparative assessment of different sta-

tistical and machine learning methods towards producing reliable risk

scores within a 5‐year time frame. In this context, models based on

artificial neural networks (ANNs) and ensemble learning are investi-

gated for the first time with respect to their ability to capture the onset

and the evolution of T2DM.

ANNs have been used in a great number of diagnostic decision

support systems for medical applications, and they have demonstrated

good predictive power (Buller, Buller, Innocent, & Pawlak, 1996;
Verma & Zakos, 2001; Zarkogianni, Vazeou, Mougiakakou, Prountzou,

& Nikita, 2011; Zarkogianni et al., 2015b). Ensembles of ANNs (EANN)

can improve both the generalization abilities and the performance of

an individual ANN, by compensating with each other the errors pro-

duced by each ANN (Sharkey, 1996). EANNs can be constructed by

applying variations on each ANN member in terms of initial random-

ized weights, topology, learning algorithm, training data, and input

space. There are several different ways of combining the outputs of

each member of the EANN, such as averaging, weighted averaging,

nonlinear combining, Bayesian, probabilistic, and stacked generaliza-

tion methods (Mougiakakou, Valavanis, Nikita, & Nikita, 2007;

Sharkey, 1996; Yang, Yang, Zhou, & Zomaya, 2010).

In this study, two different types of EANN have been investigated:

(a) bagging ensemble of ANNs and (b) ensembles of ANNs with differ-

ent topologies. Moreover, the majority voting scheme and averaging

have been adopted. For the development and the evaluation of the

models, two datasets have been used: (a) The Pima Indian Diabetes

(PID) dataset (Blake & Merz, 1998) and (b) the Hippokration dataset,

which has been granted from the General Hippokrateion Hospital of

Athens (Dagliati et al., 2014).

Several classification techniques have been applied on the PID

dataset such as ANNs, Bayesian‐based approaches, fuzzy logic, deci-

sion trees, K‐means, Support Vector Machines, random forests (RF),

Genetic algorithms, and K‐Nearest Neighbors, for producing the risk

of developing T2DM (Anirudha, Kannan, & Patil, 2014; Belciug &

Gorunescu, 2014; Bioch, Meer, & Potharst, 1996; Carpenter &

Markuzon, 1998; Gürbüz & Kiliç, 2014; Ilango & Ramaraj, 2010;

Kahramanli & Allahverdi, 2008; Michie, Spiegelhalter, & Taylor, 1994;

Nanni, Fantozzi, & Lazzarini, 2015; Patil, Joshi, & Toshniwal, 2010;

Perez, Yanez‐Marquez, Camacho‐Nieto, Lopez‐Yanez, & Arguelles‐

Cruz, 2015; Purwar & Singh, 2015; Seera & Lim, 2014; Sutanto &

Ghani, 2015; Yilmaz, Inan, & Uzer, 2014; Zhu, Xie, & Zheng, 2015). In

order to provide evidence of advancing the current state of the art,

the performance of the proposed models has been comparatively

assessed with those obtained by applying logistic regression,

Bayesian‐based approaches, and decision trees.
2 | MATERIAL AND METHODS

The proposed work is focused on two cases:

• Case 1. Prediction of the risk of developing T2DM within the 5‐year

time frame.

• Case 2. Prediction of the 5‐year risk of experiencing the first fatal or

nonfatal CVD incidence as a long‐term T2DM complication.
2.1 | Datasets

2.1.1 | Case 1: PID dataset

The PID dataset contains data from the 5‐year follow‐up of 768 Pima

Indian women at least 21 years old living near Phoenix, Arizona, USA

(Blake & Merz, 1998). In this population, 268 women developed

T2DM within the 5‐year time frame. As it is presented in Table 1,



TABLE 1 Description of the Pima Indian Diabetes dataset

Variables Mean value � standard deviation

Number of times pregnant 3.85 � 3.37

Plasma glucose concentration
at 2 hr in an oral glucose
tolerance test

120.89 � 31.97

Diastolic blood pressure 69.11 � 19.36

Triceps skin fold thickness 20.54 � 15.95

2‐hour serum insulin 79.80 � 115.24

Body mass index 31.99 � 7.88

Diabetes pedigree function 0.47 � 0.33

Age 33.24 � 11.76
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several clinical, physical, and epidemiological risk factors measured at

the baseline visit have been taken into consideration in order to pro-

duce the risk of developing T2DM.

2.1.2 | Case 2: Hippokrateion dataset

The Hippokrateion dataset has been granted from the General

Hippokrateion Hospital of Athens. It contains data from the 5‐year fol-

low‐up of 560 T2DM patients without experiencing CVD incidence

before the first visit. In this dataset, 40 out of the 560 T2DM patients

(7.14%) experienced fatal or nonfatal CVD within the 5‐year follow‐up

period. It comprises 27 features, which are summarized inTable 2, pro-

viding information related to demographics, lifestyle, laboratory exam-

inations, complications or comorbidities, and treatment.
2.2 | Methods

2.2.1 | Ensembles of ANNs

In general, ANNs are inspired by the way a biological brain solves prob-

lems using large clusters of neurons connected by axons. ANNs are
TABLE 2 Description of the Hippokrateion dataset

Continuous variables
Mean value �

standard deviation C

Age 58.56 � 10.70 Hy

Diabetes duration 7.68 � 7.38 An

Body mass index 29.50 � 5.54 Se

Systolic blood pressure 139.47 � 20.55 Di

Diastolic blood pressure 82.71 � 10.74 Re

Glycosylated Hemoglobin 7.44 � 1.82 Ca

Blood glucose 164.95 � 56.20 Di

Total cholesterol 226.43 � 49.92 B‐

Triglycerides 167.08 � 110.68 Sm

High‐density lipoprotein cholesterol 48.27 � 16.41 Pr

Low‐density lipoprotein cholesterol 147.34 � 42.34 Hy

As

Di
Su
Di
Ins
typically organized in weighted interconnected layers containing a

number of nodes each of which applies an activation function. The

input layer is responsible for feeding the patterns to the hidden layers

where the main processing is performed. The hidden layers communi-

cate with the output layer in order for the latter to produce the final

decision. During the learning stage, the weights of the ANNs are

adjusted according to the input training patterns.

The multilayer feedforward neural network constitutes the base

classifier of the EANNs. The back‐propagation learning algorithm has

been used for training the ANNs, and the initial weights have been cal-

culated based on the Nguyen–Widrow method (Nguyen & Widrow,

1990). In order to construct the EANNs, two different approaches

have been followed resulting in two model versions:

• Model version 1: following the Bagging Ensemble approach, the

bootstrap sampling with replacement procedure has been applied

to the initial training dataset in order to produce different training

datasets for each member of the EANN.

• Model version 2: the ensemble includes ANNs with different num-

ber of hidden layers and neurons in the hidden layers.

In both model versions, the outputs of each member of the ensem-

ble have been combined on the basis of the majority voting scheme

and averaging for classification and regression purposes, respectively.
2.2.2 | Logistic regression

The binary logistic model (BLM) describes the relationship between the

independent predictors and the outcome variables, by generating the

coefficients of a linear formula to predict the logit transformation of

the probability (Tay, 2016).

Logistic model tree (LMT) is based on the combined use of logistic

regression and decision tree learning (Landwehr, Hall, & Frank, 2005).
ategorical variables Number (percentage)

pertension No: 300 (53.57%), yes: 260 (46.43%)

giotensin‐converting
enzyme inhibitor

No: 445 (79.46%), yes: 115 (20.54%)

x Male: 263 (46.96%), female: 297 (53.04%)

abetic parents No: 304 (54.29%), yes: 256 (45.71%)

tinopathy No: 485 (86.61%), yes: 75 (13.39%)

lcium antagonists No: 463 (82.68%), yes: 97 (17.32%)

uretics No: 481 (85.89%), yes: 79 (14.11%)

blockers No: 507 (90.54%), yes: 53 (9.46%)

oker No: 289 (51.61%), yes: 146 (26.07%), only
in the past: 125 (22.32%)

oteinuria No: 513 (91.61%), microalbuminuria:
28 (5.00%), albuminuria: 19 (3.39%)

polipid diet No: 469 (83.75%), Statines: 74 (13.21%),
fibrates: 17 (3.04%)

pirin No: 509 (90.89%), 100 mg: 44 (7.86%),
325 mg: 7 (1.25%)

et No: 412 (73.57%), yes: 148 (26.43%)
lfonylurea No: 411 (73.39%), yes: 149 (26.61%)
guanides No: 513 (91.61%), yes: 47 (8.39%)
ulin No: 504 (90%), yes: 56 (10%)
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In particular, an LMT is a decision tree with linear regression models at

its leaves, which are produced according to the LogitBoost algorithm

(Friedman, Hastie, & Tibshirani, 2000).
2.2.3 | Bayesian model‐based approaches

In general, a Bayesian network consists of a directed acyclic graph and

a set of probability distributions for each node (Pearl, 1988). Nodes

and arcs in the directed acyclic graph represent random variables and

direct correlations between variables, respectively.

A specialized form of the Bayesian network is the probabilistic

Naïve Bayes classifier, which relies on two simplifying assumptions.

Firstly, the predictive attributes are conditionally independent given

the class, and, secondly no hidden or latent attributes influence the

prediction process (John & Langley, 1995; Witten & Frank, 2005).
2.2.4 | Decision tree‐based models

A decision tree has been built based on the C4.5 algorithm, which uses the

concept of information entropy (Quinlan, 1993). At each node of the tree,

the attribute that most effectively splits its set of samples into one class or

the other is selected according to the normalized information gain.

A rule‐based classifier that infers rules by partial C4.5 decision

trees (PART) has been applied (Frank &Witten, 1998). Each rule is con-

structed using the best leaf of each partial C4.5 decision tree.

An ensemble of C4.5 decision trees has been created following the

diverse ensemble creation by oppositional relabeling of artificial training

examples (DECORATE) approach (Melville & Mooney, 2003). DECORATE

uses specially constructed artificial training examples, which are given cate-

gory labels that disagree with the current decision of the ensemble.

The use of RF has also been investigated in this study (Breiman,

2001). RF combines a multitude of decision trees, which are trained

with subsets randomly drawn from the initial training dataset.
TABLE 3 Number of neurons in the hidden layers

Case 1 Case 2

Model version 1 {3} {27}

Model version 2 {4}, {5}, {6}, {4}‐{3}, {4}‐{2} {27}, {28}, {29}, {30}, {31}

Note. In model version 1, the number of neurons is identical for all the
members of the ensemble. In model version 2, each member of the ensem-
ble has different number of hidden layers and neurons.
2.2.5 | Evaluation criteria

The PID dataset has been split into 50% for training and 50% for test-

ing. Referring to the Hippokrateion dataset, 70% of the whole dataset

has been used for training and the remaining 30% for testing the

models' performance.

The models' predictive performance has been measured for both

discrimination and calibration. In order to evaluate the models' discrim-

inative ability, the classification accuracy (ACC) and the AUC has been

calculated (Swets, 1988). The ACC represents the percentage of the

correct predicted outcomes. The AUC constitutes the most reliable

measure of the ability of model to separate the individuals who devel-

oped the disease from those who did not, by providing higher risk

scores to the former case. The curve is created by plotting the true

positive rate against the false positive rate at various threshold set-

tings. An AUC of 100% indicates perfect discrimination ability, and

an AUC of 50% proves worthless performance.

Calibration measures how close the predictions are to the actual

probability. The most commonly used measure of calibration is the

Hosmer–Lemeshow goodness of fit test (Lloyd‐Jones, 2010), which

forms subgroups, typically using the deciles of the estimated risk.

Within each subgroup, the actual against the predicted number of

the disease incidents is compared by applying the χ2 test.
3 | RESULTS AND DISCUSSION

3.1 | Parameters tuning

The ensemble sizes in model versions 1 and 2 have been chosen equal

to 50 and five ANNs, respectively. Because the input space dimension

is different for each case, the chosen number of neurons in the hidden

layers is also different per case (Table 3).

In the LMT, the minimum number of instances at which a node is

considered for splitting is 15, and a logistic model is built at a node only

if it contains at least five instances. The structure learning algorithm of

the Bayesian network is the hill climbing method K2 (Cooper &

Herskovits, 1992). The naive Bayes network structure is used initially.

The Bayesian score metric is employed during the learning of the net-

work structure. The number of parents of each node is one. Direct esti-

mates of the conditional probability distributions are calculated.

Regarding the decision tree‐based models, the confidence factor

used for pruning has been set to 0.25. The minimum number of

instances per leaf (Decision Tree, DECORATE) and rule (PART) has

been equal to two. The number of folds used for reduced‐error pruning

in DecisionTree and PART has been chosen to three. The desired num-

ber of member classifiers and the maximum number of iterations in

DECORATE have been determined to 15 and 50, respectively. The

number of the base classifiers in RF has been set to 100.
3.2 | Evaluation of the models' performance

The models' discrimination and calibration performance are presented

in Tables 4 and 5, respectively. In Table 4, the highest obtained ACC

and AUC for each case is highlighted in bold. In Table 5, all the bold p

values are higher than .05 and indicate acceptable calibration perfor-

mance. It can be shown that themodel version 2 has achieved superior per-

formance over all the othermodels in Case 1 (ACC=80.20%, AUC=0.849,

p value = .886). On the other hand, model version 1 has demonstrated the

best performance in Case 2 (ACC = 92.86%, AUC = 0.739, p value = .755).

Although BLM has achieved the highest ACC (93.45%) in Case 2, it has

resulted in low discrimination ability (AUC = 0.612).

The obtained AUC values are higher in Case 1 from those in Case 2

for all the models, as opposed to the ACC values. This is due to the unbal-

anced nature of the Hippokrateion dataset. From Table 5, it can be

inferred that the model version 1, along with the Bayesian‐based models

and decision tree‐based models apart from the RF have bad calibration

performance in Case 1. Moreover, model version 2, along with BLM,

Bayesian‐based models and decision tree based models except from

Bayes Net and RF have bad calibration performance in Case 2.

In order to justify the effectiveness of the ensemble approach, the per-

formance of the EANNs has been compared with the one obtained by



TABLE 5 Models' calibration performance as measured by applying
the Hosmer–Lemeshow goodness of fit test

Case 1 Case 2
p value p value

Model version 1 .031 .755

Model version 2 .886 .000

ANN .235 .065

BLM .122 .000

LMT .146 .105

Bayes net .000 .353

Naïve Bayes .000 .000

Decision tree .000 .000

PART .000 .000

DECORATE .000 .000

RF .522 .400

Note. ANN = artificial neural network; BLM = binary logistic model;
DECORATE = diverse ensemble creation by oppositional relabeling of arti-
ficial training examples; LMT = logistic model tree; RF = random forests.

All the bold p values are higher than .05 and indicate acceptable calibration
performance.

TABLE 4 Models' discrimination performance as measured by the
ACC and the AUC

Case 1 Case 2

Algorithm ACC AUC ACC AUC

Model version 1 80.50 0.867 92.86 0.739

Model version 2 80.20 0.849 92.86 0.731

ANN 79.43 0.848 92.86 0.535

BLM 80.47 0.858 93.45 0.612

LMT 77.60 0.840 92.86 0.487

Bayes net 71.35 0.803 92.86 0.500

Naïve Bayes 75.52 0.824 92.26 0.572

Decision tree 74.22 0.698 91.07 0.360

PART 73.70 0.753 87.50 0.333

DECORATE 75.26 0.817 89.29 0.439

RF 75.00 0.828 92.86 0.688

Note. ACC = classification accuracy; ANN = artificial neural network;
AUC = area under the curve; BLM = binary logistic model;
DECORATE = diverse ensemble creation by oppositional relabeling of arti-
ficial training examples; LMT = logistic model tree; RF = random forests.

The highest obtained ACC and AUC for each case is highlighted in bold.
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applying a single ANN. Although ANN has achieved good performance in

Case 1 (ACC = 79.43%, AUC = 84.80%, p value = .235), it has resulted in

low discrimination ability (AUC = 53.50%) in Case 2. In both Cases, the

superiority of the EANN over the ANN has been demonstrated.

Overall, the EANNs' ability to produce more reliable risk scores

compared to the other models is attributed to the diversity obtained

among the members of each ensemble. Due to the unbalanced nature

of the Hippokrateion dataset, all the models, except from the pro-

posed ones, have been over fitted to the majority class during the

training stage, which is proven by the low values of AUC. Another

important finding is that model version 1 is more capable of handling

this unbalanced dataset than model version 2 in terms of calibration

(p value = .755 vs. .000).
A comparison between the obtained results and those reported

in the literature is carried out. Although a direct and fair comparison

is not feasible due to different datasets, input spaces, and evaluation

frameworks, substantial inferences can be obtained. Referring to

Case 1, Detect‐2 (Alssema et al., 2011), Australian type 2 diabetes

risk assessment tool (AUSDRISK; Chen et al., 2010), European

prospective investigation into cancer study‐Norfolk (EPIC‐Norfolk;

Simmons et al., 2007), and German Diabetes Risk Score (GDRS)

(Schulze et al., 2007) are the most well‐studied 5‐year risk prediction

models. These models have been based on logistic and Cox propor-

tional hazard regression. The reported AUCs are 76.40%, 78%,

76.20%, and 84%, respectively. Detect‐2 and AUSDRISK have had

good calibration performance, and the calibration p values for the

EPIC‐Norfolk and GDRS have not been reported. The model version

2 has resulted in slightly greater AUC (84.90%).

Regarding Case 2, taking into account that the UKPDS risk

engine is one of the most widespread CVD risk prediction models

dedicated to the population of T2DM, its performance has been

evaluated within the framework of the present study on the

Hippokrateion dataset and has been compared with the one obtained

by applying model version 1. The UKPDS risk engine resulted in lower

AUC (58.74%) than model version 1 (73.90%) and not acceptable

calibration performance (p value = .00).

It should be pointed out that the proposed models have been

developed and evaluated using data corresponding to homogeneous

populations in terms of race and ethnicity, and in Case 1, only the

female population has been considered. This benefits the proposed

models compared to the aforementioned state of the art models espe-

cially when the reported results have been produced by validating the

models using independent cohorts of individuals (AUSDRISK, EPIC‐

Norfolk, UKPDS). Moreover, EANNs have higher complexity than

logistic and Cox hazard regression, making thus the interpretation of

the predicted outputs more difficult. On the other hand, this sophisti-

cated technique has the capacity to handle unbalanced datasets and to

result in greater accuracy than simpler models (e.g., BLM and LMT).

Based on the outcomes of the proposed work, it can be inferred

that ANNs combined with ensemble learning have great potential to

support medical decision‐making for the management of diabetes. It

should be stressed that feature selection is out of the scope of the

present study, because all the risk factors, which have been taken into

consideration, have been well established in the literature of strongly

influencing the onset of T2DM and the incidence of CVD as long‐term

T2DM complication. Future work concerns the validation of the pro-

posed models using other cohorts of individuals or patients. On top

of this, the latest achievements towards identifying molecular bio-

markers associated with the onset and progress of T2DM using high‐

throughput‐omic technologies such as microarrays, next generation

sequencing, and mass spectrometry (Floegel et al., 2013) pave the

way for enriching the models' input space by taking, also, into account

the biological profile. The enhanced integration of heterogeneous

datasets, from behavioral down to molecular (genomic, transcriptomic,

epigenomic, proteomic, and metabolomic) level, constitutes important

challenge and has great potential to early detect indicative abnormali-

ties relevant to the onset and the progress of the disease and to

increase the accuracy of the risk scores.
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4 | CONCLUSIONS

A comparative assessment of different machine learning and statistical

methodologies towards the development of risk prediction models for

the incidence and the evolution of T2DM has been conducted. The

obtained results justify the need to apply more sophisticated tech-

niques in order to achieve accuracy and reliability. EANNs can signifi-

cantly contribute in this direction by having the capacity to handle

the unbalanced nature, which usually occurs in medical datasets, and

furthermore to capture an individual's health evolution.
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