
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 19, NO. 3, MAY 2015 1137

A Novel Computerized Tool to Stratify Risk
in Carotid Atherosclerosis Using Kinematic

Features of the Arterial Wall
Aimilia Gastounioti, Member, IEEE, Stavros Makrodimitris, Spyretta Golemati, Member, IEEE,
Nikolaos P. E. Kadoglou, Christos D. Liapis, and Konstantina S. Nikita, Senior Member, IEEE

Abstract—Valid characterization of carotid atherosclerosis (CA)
is a crucial public health issue, which would limit the major risks
held by CA for both patient safety and state economies. This pa-
per investigated the unexplored potential of kinematic features
in assisting the diagnostic decision for CA in the framework of a
computer-aided diagnosis (CAD) tool. To this end, 15 CAD schemes
were designed and were fed with a wide variety of kinematic fea-
tures of the atherosclerotic plaque and the arterial wall adjacent to
the plaque for 56 patients from two different hospitals. The CAD
schemes were benchmarked in terms of their ability to discrim-
inate between symptomatic and asymptomatic patients and the
combination of the Fisher discriminant ratio, as a feature-selection
strategy, and support vector machines, in the classification module,
was revealed as the optimal motion-based CAD tool. The particular
CAD tool was evaluated with several cross-validation strategies and
yielded higher than 88% classification accuracy; the texture-based
CAD performance in the same dataset was 80%. The incorporation
of kinematic features of the arterial wall in CAD seems to have a
particularly favorable impact on the performance of image-data-
driven diagnosis for CA, which remains to be further elucidated in
future prospective studies on large datasets.

Index Terms—Carotid atherosclerosis (CA), computer-aided di-
agnosis (CAD), kinematic features, motion analysis, ultrasound
(US).

I. INTRODUCTION

CAROTID atherosclerosis (CA) is a chronic degenerative
disease, gradually resulting in the formation of lesions

(plaques) in the inner lining of the carotid artery. Atheroscle-
rotic plaques may lead to severe narrowing of the arterial lumen
with detrimental impact on blood supply and major risks for
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cerebrovascular disorders; it is well established that CA highly
predisposes to cerebral ischemic events, with the majority of
stroke events being provoked due to the disease [1]. The high
morbidity, disability, and mortality rates associated with stroke
in Europe [2] and in the United States [3], in combination with
the negative predictions for the future based on the current sec-
ular trends [4], pose a major need for valid risk assessment and
optimal treatment selection (carotid revascularization or con-
servative therapy with medication and dietary) for patients with
CA.

In current clinical practice, the therapeutic decision for pa-
tients with asymptomatic CA (i.e., with no history of CA-
induced neurological disorders) relies on the ultrasonograph-
ically measured degree of lumen stenosis [5]. However, there is
evidence that this marker is not sufficient [6], thereby motivating
the development of computer-aided-diagnosis (CAD) systems,
which incorporate additional markers to assist treatment plan-
ning. In particular, the development of CAD systems which
are based on 2-D ultrasound (US) image analysis is consid-
ered as a grand challenge by the scientific community, because
1) traditionally, vascular physicians select US examination in
diagnosis and follow-up for patients with CA, 2) the use of
affordable imaging techniques, such as US, is crucial to avoid
increasing the socioeconomic burden of the disease, and 3) 2-D
US is traditionally available on commercial US systems [7], [8].

A typical CAD tool consists of two main modules, namely
the feature-selection module, which spares the most clinically
useful features from redundant ones, and the classifier, which is
trained, using the selected subset of features. Advanced meth-
ods of image processing allow the extraction of a large number
of features, which may be difficult to interpret and to classify.
Therefore, feature selection is a crucial step in the CAD de-
sign to simplify both the feature vector and the classifier. It is
also very important to enhance the computational performance
of the CAD system in terms of execution time and memory
requirements.

Table I summarizes key studies in the particular research
area [9]–[17], which are based on the analysis of B-mode
US, i.e., the typical 2-D US imaging modality for the carotid
artery wall. In all cases, the underlying idea was computer-
assisted discrimination of high-risk atherosclerotic lesions
from low-risk ones, by estimating image-based features of
symptomatic and asymptomatic patients with CA and using
the estimated features to train appropriately designed CAD
tools.
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TABLE I
KEY STUDIES ON DEVELOPING COMPUTER-AIDED DIAGNOSTIC TOOLS, WHICH

ARE BASED ON B-MODE US IMAGE ANALYSIS TO STRATIFY RISK IN

ATHEROSCLEROTIC CAROTID ARTERIES

Feature Maximum
Study / year Classifiers selection accuracy

[9] 2003 SOM, kNN ST 73.1%
[11] 2007 NN ST 99.1%
[12] 2007 SVM, PNN PCA 73.4%
[13] 2009 SVM, PNN PCA 73.7%
[10] 2011 SVM, PNN ST 85%
[14] 2012 SVM, kNN, PNN, DT ST 89.5%
[15] 2012 SVM ST 79.3%
[16] 2012 SVM ST 83.7%
[17] 2013 SVM ST 91.7%

SOM: self-organizing maps; kNN: k-nearest neighbor; SVM: support
vector machines; NN: neural network; PNN: probabilistic neural net-
work; DT: decision trees; ST: statistical tests; PCA: principal component
analysis.

In most studies, feature selection was based on statistical tests,
while a few ones used principal component analysis (PCA) to
remove redundant features [12], [13]. Multiple classifiers, such
as self-organizing maps [9], support vector machines (SVM)
[10], [12]–[17], k-nearest neighbor (kNN) [9], [14], decision
trees (DT) [14], neural networks [11], and probabilistic neural
networks (PNN) [10], [12]–[14], were used, with SVM, PNN,
and kNN being most popular in the field. Moreover, DT and
discriminant analysis (DA) have been successfully used in CAD
tools for other vascular disorders involving the coronary artery
[18] and the pulmonary vessel tree [19], respectively.

Regarding image-based features, plaque texture has been
thoroughly investigated, with very encouraging results by CAD
tools [7]. The morphology of the arterial wall has also been
included in a limited number of CAD systems, without gaining
as much attention [7]. The role of kinematic features, which
are estimated with motion analysis from B-mode US image
sequences and represent dynamic phenomena and mechanical
interactions occurring during the cardiac cycle (CC), remains
unexplored, though. None of the related studies has considered
kinematic features in CAD systems for CA, while only a few
research groups have investigated potential motion-based risk
markers [20], [21].

Based on the above, the objective of this study is to elu-
cidate the role of kinematic features of the arterial wall in
computer-assisted risk stratification in CA by identifying an
optimal motion-based CAD tool for the disease. To this end,
15 CAD schemes are designed by combining three feature-
selection methods with five classifiers; specifically, two statis-
tical methods, namely the Fisher discriminant ratio (FDR) and
the Wilcoxon rank-sum test (WRS), and PCA are used for fea-
ture selection, while SVM, kNN, PNN, DT, and DA are used in
the classification module. Subsequently, kinematic features of
the atherosclerotic plaques and normal parts of the arterial wall
adjacent to the plaques are estimated for 56 symptomatic and
asymptomatic patients with CA from two different hospitals.
The designed CAD schemes are, then, fed with the estimated
kinematic features, they are optimized in terms of their design

Fig. 1. Examples of (a), (b) B-mode US images of the carotid artery, and (c),
(d) the selected ROIs for patients from (a), (c) the Attikon University Hospital
of Greece and (b), (d) the St. Mary’s Hospital of UK.

parameters, and they are benchmarked in terms of their ability
to discriminate between symptomatic and asymptomatic cases.
Finally, the optimal CAD scheme is also benchmarked against
texture-based classification in the same dataset.

II. MATERIAL AND METHODS

A. US Image Data: Acquisition and Preprocessing

A total of 56 elderly patients (aged 50–90) with established
CA (diagnosed carotid stenosis >50%), who were referred
to the St. Mary’s Hospital of U.K. (N = 28) [21] and the
Attikon General University Hospital of Greece (N = 28) [22]
for carotid artery US scanning, were selected. Among those
patients, 28 (St. Mary’s: 18, Attikon: 10) had experienced an is-
chemic cerebrovascular event, i.e., stroke or transient ischemic
attack (“symptomatic” group), while 28 patients (St. Mary’s: 10,
Attikon: 18) had no neurological symptoms (“asymptomatic”
group), within a 6-month time period before the time of ex-
amination. No statistically significant differences were found
in the ages or in the degrees of stenosis between patient sub-
groups (“symptomatic” and “asymptomatic” or “St. Mary’s”
and “Attikon”). The differences in US image recordings of the
two hospitals, in terms of US equipment and operator, form a
challenging dataset, which constitutes a key feature of this study.

The local institutional review boards approved US image ex-
aminations and all subjects gave their informed consent to the
scientific use of the data. For each subject, the carotid artery was
scanned in the longitudinal direction according to a standard-
ized protocol (dynamic range, 60 dB; persistence, low) and a
B-mode US image sequence was recorded at a rate higher than
25 frames/s for at least 3 s (2–3 consecutive CCs). Dynamic
B-mode US imaging of longitudinal sections of the arterial
wall allows the estimation of tissue motion in two dimensions,
namely longitudinal, i.e., along the vessel axis, and radial, i.e.,
along the vessel radius, and perpendicular to the longitudinal
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Fig. 2. Schematic presentation of the steps followed to estimate statistical measures of (a) pixel-wise kinematic and (b) pair-wise strain indices, using the results
of motion analysis for a ROI or a pair of ROIs. D-T-S: diastole-to-systole.

one. Fig. 1(a) and (b) shows examples of B-mode US image
recordings for patients with atherosclerotic plaques at the pos-
terior arterial wall.

For each clinical case, an experienced vascular physician
traced four regions of interest (ROIs), namely the posterior
(PWL) and anterior wall-lumen (AWL) interfaces, and the
plaque top (PTS) and bottom surfaces (PBS) [see Fig. 1(c) and
(d)]. PWL and AWL are normal parts of the arterial wall adjacent
to the plaques and they were included in motion analysis, be-
cause recent studies have revealed US image-based features of
healthy parts of the arterial wall close to the plaque as potential
risk markers for CA [21], [23]. Subsequently, image intensities
([0: black, 255: white]) were linearly adjusted so that the median
grey level value of the blood was 0, and the median grey level
value of the adventitia was 190 [24]. This preprocessing step
was necessary to ensure comparable measurements between the
two subsets of image recordings.

B. Feature Extraction

All pixels composing the four ROIs, as well as the whole
plaque region (i.e., the region contoured by PTS and PBS), were
selected as motion targets. The radial and longitudinal positions
of the targets across time were estimated using ABMKF−K2 , a
recently proposed motion estimator with enhanced accuracy in
motion tracking of the arterial wall from both artifacts-free and
artifacts-corrupted image recordings [21], [25].

From the produced waveforms, a wide variety of kinematic
and strain indices can be estimated (see Fig. 2). Specifically,
kinematic indices can be produced by estimating target-wise in-
dices representing 1) median and standard deviation in velocities
during the CC, 2) motion amplitudes, defined as the absolute
difference between the corresponding maximum and minimum
target positions, and 3) diastole-to-systole displacements, for
each CC [see Fig. 2(a)]. Strain indices can be estimated, using
motion waveforms for pairs of pixels [Fig. 2(b)] and they ex-
press relative movements between ROIs or local deformations
in an ROI during the CC [21], [26]. In all cases, descriptive
statistical measures of the mean (over the CCs) values of the
target- or pair-wise indices are calculated.

In this study, 1144 kinematic indices for PWL, AWL, PTS,
PBS, and the plaque region were estimated. Moreover, 93 strain
indices were used to express relative movements between 1)
PWL and AWL, 2) PTS and PBS, 3) PTS and PWL or AWL,
and 4) PBS and PWL or AWL (if the plaque was located at
the posterior or the anterior wall, respectively), and local defor-
mations in PWL, AWL, and PTS. As a result, a total number
of 1236 kinematic features were produced for each patient. Ta-
ble II defines the aforementioned features, following the index
encoding of Fig. 2.

For direct comparisons of the CAD performance in the same
study group, using either kinematic or textural features, plaque
texture was measured by applying a multiresolution approach
for image analysis, which is based on wavelet packets [10].
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TABLE II
KINEMATIC FEATURES WHICH WERE ESTIMATED FOR EACH PATIENT, USING

THE PRODUCED MOTION WAVEFORMS OF THE TARGETS OF A ROI OR A PAIR OF

ROIS

ROI(s) Index encoding of Fig. 2 Kinematic features

Kinematic indices
PWL I1–I154 F1–F154
AWL I1–I154 F155–F308
PTS I1–I154 F309–F462
PBS I1–I154 F463–F616
plaque region I1–I528 F617–F1144
Strain indices
PWL I529–I535 F1145–F1159

I550–I556
AWL I529–I535 F1160–F1173

I549–I556
PWL, AWL I536–I542 F1174–F1180
PTS I529–I535 F1181–F1194

I550–I556
PTS, PBS I536–I549 F1195–F1208
PTS, PWL, or AWL I529–I542 F1209–F1222
PBS, PWL, or AWL I529–I542 F1223–F1236

ROI: region of interest; PWL: posterior wall-lumen, AWL: anterior wall-
lumen; PTS: plaque top surface; PBS: plaque bottom surface.

Briefly, for each patient, systolic and diastolic images were de-
composed up to three levels using the wavelet packets, leading
to 126 detail subimages. Then, the mean and standard deviation
of image intensities of the produced subimages were estimated,
resulting in a total number of 252 textural features. This ap-
proach was selected among other textural measures, consider-
ing that wavelet-based image decomposition is a state-of-the-art
methodology in the area of texture analysis and it has been used
in the latest studies on texture classification of atherosclerotic
tissue from B-mode US images [10], [14]–[17].

C. Design of CAD Schemes

In this study, 15 CAD schemes were designed, based on
combinations between three feature-selection methods (FDR,
WRS, and PCA) and five classifiers (SVM, PNN, kNN, DT, and
DA). In the following, the main underlying principles and the
corresponding parameterization (based on previous experience
in the particular research area [9]–[19]) of these modules are
briefly described.

Feature selection aims at the identification of those features,
which are able to better separate the “symptomatic” and “asymp-
tomatic” groups. In FDR and WRS, a feature is considered to
have a strong discrimination power, if it corresponds to a high
FDR value and a low p-value, respectively. Therefore, features
are sorted in descending FDR value or ascending p-value, and
an optimal feature subset is a set of m features, consisting of the
1st, 2nd, . . . , mth features. In PCA, the set of features is con-
verted into a reduced number of uncorrelated features (principal
components), while retaining most of its information content.
This transformation is defined in such a way that the first princi-
pal component has the largest possible variance, i.e., it accounts
for as much of the variability in the data as possible, while com-
ponents having variance less than a threshold (thr) are removed.

The design parameter of both FDR and WRS is m (in [1–100]),
while PCA is affected by thr (in [0.0001–0.1]).

SVM are learning machines based on intuitive geometric prin-
ciples, aiming to the definition of an optimal hyper plane, which
separates the training data so that a minimum expected risk
is achieved [27]. Compared to other classifiers, SVM is less
affected by the so-called “curse of dimensionality” and is there-
fore suitable for large sets of features [28]. The training method
is based on a nonlinear mapping of the dataset, using kernels
that have to satisfy Mercer’s theorem. In this study, a Gaussian
radial basis function (RBF) kernel was used. In this case, the
SVM training algorithm is affected by the parameter s (in [0.5–
10]), defining the spread of RBF, which has to be appropriately
adjusted to optimize the performance of the classifier.

The PNN is a multilayered feedforward neural network,
which is faster, more accurate, and less sensitive to outliers
than multilayer perceptron networks [29]. The first layer (input
layer) computes distances from the input vector to the training
input vectors and produces a vector whose elements indicate
how close the input is to a training input. The second layer
(radial basis layer) takes into account the classes to which the
training examples belong to and produces a vector of proba-
bilities for the input vector. In this layer, an RBF is applied to
each distance to compute the influence for each training vector.
Finally, a competitive output layer picks the maximum of these
probabilities and classifies the input vector to the corresponding
class. In this study, a Gaussian RBF was used and the design
parameter of PNN was s (in [0.5–10]). kNN is conceptually sim-
ilar to PNN; kNN is a simple classifier, in which a feature vector
is assigned the class that is most common among its k nearest
neighbors, based on some similarity measure (distance func-
tion) [30]. The classification performance of kNN depends on
the parameter k (in [3–11]) and the distance function (in {city
block, Chebyshev, standardized Euclidean, cosine, Euclidean,
Hamming, Jaccard, Minkowski}).

A DT consists of internal nodes (i.e., nodes with outgoing
edges) and leaves (or decision nodes) that form a rooted tree.
Each internal node splits the instance space into two or more sub-
spaces and each path from the root to a leaf is transformed into a
rule by conjoining the tests along the path to form the antecedent
part and taking the leaf’s class as the class prediction. Therefore,
in a DT classifier, a set of rules for the different classes is derived
from input features of the training data and is then used to clas-
sify a new input vector [31]. For optimal performance of the DT,
the most suitable split criterion (in {Gini, twoing, deviance})
and the transformation function (tf) for the posterior probabil-
ities (scores) should be defined. In this study, the following
tfs were investigated for scores x: {x, 2x − 1, log(x/(1 − x)),
“set score for the class with the largest score to 1, and scores
for all other classes to 0,” “set score for the class with the
largest score to 1, and scores for all other classes to −1”,
1/(1 + e∧(−x)), 1/(1 + e∧(−2x)), 2/(1 + e∧(−x)) − 1, sign
of x}.

DA is a classification method, which assumes that different
classes generate data based on different Gaussian distributions.
The DA classifier is trained with a fitting function, which esti-
mates the parameters of a Gaussian distribution for each class,
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while a new vector is classified by finding the class with the
lowest misclassification cost. In DA, the only parameter which
needs to be defined is the type of DA, i.e., linear, quadratic,
diagonal linear, or diagonal quadratic DA [32].

D. Optimization and Benchmarking

The designed CAD schemes were implemented in MATLAB
(The MathWorks, Natick, MA, USA), using the Bioinformat-
ics and the Statistics Toolboxes. Subsequently, they were fed
with the set of kinematic features, i.e., vectors of 1236 motion-
based indices for 56 patients, and were optimized in terms of
the corresponding design parameterization, i.e., the parameters
of both the feature-selection and the classification modules. The
optimization step was necessary to reveal the full potential of
motion-based CAD schemes. The CAD performance was mea-
sured in terms of classification accuracy, i.e., percentage of cor-
rectly classified cases, using leave-one-out cross validation. In
leave-one-out, a single observation (patient) is used as the test-
ing sample, and the remaining observations compose the train-
ing dataset; this is repeated such that each observation is used
once as the testing sample. Leave-one-out is a popular resam-
pling technique for performance evaluation for classification
schemes, because it preserves unbiased results for small-sized
samples [33].

The potential of the optimal motion-based CAD scheme was
further validated with the following two-step process. First, the
corresponding CAD performance was compared with the op-
timal performance, which can be achieved by a texture-based
CAD scheme in the same dataset. To this end, the designed
CAD schemes were fed with vectors of 252 textural features
for 56 patients and the optimal texture-based CAD scheme was
identified with the same aforementioned optimization process.

In a second step, the performance of the optimal motion-
based CAD scheme was measured using eight different cross-
validation strategies, namely tenfold, hold-out, repeated random
subsampling with either overlapping (resub1) or nonoverlapping
(resub2) training and testing sets in both stratified and nonstrat-
ified versions [33]. Stratified strategies produce more valid con-
clusions on the generalization performance of the classifier than
nonstratified ones, because stratification assures that the train-
ing dataset is reasonably representative. In this step, the CAD
performance was measured in terms of classification accuracy,
sensitivity (percentage of correctly classified symptomatic pa-
tients as symptomatic), and specificity (percentage of correctly
classified asymptomatic patients as asymptomatic). The area
under the receiver operating characteristic (ROC) curve was
also used to measure the CAD performance; the ROC curve de-
scribes the inherent discrimination capacity of the CAD scheme
and the area under the ROC curve (auc) ranges from 0.5 (random
discriminatory accuracy, which represent no realistic classifier)
to 1.0 (perfect discriminatory accuracy) [34].

III. RESULTS

Table III presents the classification accuracy that was
achieved by each motion-based CAD scheme after having been
optimized. FDR generally yielded higher accuracy values than

TABLE III
CLASSIFICATION ACCURACY OF 15 OPTIMIZED CAD SCHEMES, GENERATED

BY COMBINING THREE FEATURE-SELECTION METHODS WITH FIVE

CLASSIFIERS, USING KINEMATIC FEATURES OF THE ARTERIAL WALL

Classifier Feature selection SVM PNN kNN DT DA

FDR 0.88 0.75 0.82 0.75 0.71
WRS 0.80 0.64 0.75 0.68 0.68
PCA 0.70 0.57 0.73 0.80 0.77

Boldface indicates maximum accuracy.

Fig. 3. Computing time, in s, of three feature selection methods (left axis) and
five classifiers (right axis) for different dataset sizes (i.e., # of patients).

TABLE IV
CLASSIFICATION ACCURACY OF 15 OPTIMIZED CAD SCHEMES, GENERATED

BY COMBINING THREE FEATURE-SELECTION METHODS WITH FIVE

CLASSIFIERS, USING TEXTURAL FEATURES OF THE ARTERIAL WALL

Classifier Feature selection SVM PNN kNN DT DA

FDR 0.66 0.63 0.70 0.73 0.68
WRS 0.71 0.64 0.71 0.71 0.71
PCA 0.63 0.57 0.66 0.80 0.64

Boldface indicates maximum accuracy.

other feature-selection methodologies, while SVM and kNN
were the most effective classifiers. These CAD components
were also computationally efficient (see Fig. 3). Highest clas-
sification accuracy (88%) was achieved by the combination of
FDR (with m = 23) with an SVM classifier (with s = 5.73).
In an attempt to also assess the computational cost in cases of
medium- and large-scale clinical studies, the CAD components
were applied to synthetic datasets consisting of 1236 motion-
based indices for 50–300 patients. According to the results (see
Fig. 3), the presented CAD schemes would be sufficiently effi-
cient in such cases.

Table IV presents similar results for texture-based CAD
schemes. In this case, the DT classifier yielded higher clas-
sification performances than other classifiers, while the WRS
was the most effective feature-selection methodology. The op-
timal performance (80%) was achieved by the combination of
the PCA (with thr = 0.017) with the DT classifier (with Gini
as split criterion and tf = “set score for the class with the largest
score to 1, and scores for all other classes to 0”).
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Fig. 4. Bar charts for the classification accuracy, sensitivity, specificity, and
auc, when eight different stratified or nonstratified cross-validation strategies
were applied to the optimal motion-based CAD scheme.

Based on the comparison of Tables III and IV, it was con-
cluded that the incorporation of kinematic features in CAD was
superior to texture-based CAD, in terms of classification per-
formance. The bar charts of Fig. 4 summarize the results from
the CAD performance evaluation of the optimal motion-based
CAD scheme, using eight different cross-validation techniques.
In all cases, accuracy, sensitivity, specificity, and auc were higher
than 0.74, 0.67, 0.83, and 0.70, respectively. However, if only
the stratified cross-validation methods are considered, the min-
imum accuracy, sensitivity, specificity, and AUC values were
higher (0.88, 0.82, 0.96, and 0.90, respectively). At this point,
it is also worth mentioning that the optimal motion-based CAD
scheme reached classification accuracy of 96%, when it was
applied separately to the patients of each hospital.

Table V lists the 23 kinematic features, which are used in the
optimal motion-based CAD scheme. For each feature, the index
(according to the encoding of Table II), a short description, the
mean values in the two patient groups (i.e., symptomatic and
asymptomatic groups), and the FDR between the two patient
groups are presented. Considering the descriptions of the fea-
tures, this CAD scheme incorporates kinematic indices, which
represent motion properties of AWL, PTS, and the whole plaque
region, as well as strain indices, which express local deforma-
tions in PWL and the relative longitudinal movement between
PTS and the healthy part of the wall adjacent to the plaque
(PWL or AWL). Generally, compared with asymptomatic pa-
tients, symptomatic ones were found to have higher radial and
lower longitudinal movements of AWL. Moreover, the same
patient group displayed higher inhomogeneity in radial and lon-
gitudinal movements within PTS; the same was observed for
radial and longitudinal movements within the plaque region. In
addition, it was found that, in symptomatic patients, local de-
formations in the longitudinal direction both between different
regions of PWL and between PTS and PWL/AWL increased
with respect to asymptomatic subjects.

IV. DISCUSSION

Valid risk stratification in CA is a crucial public health issue
toward enhanced patient safety and low socioeconomic burden

of the disease. Motivated by recent findings, which suggested
that motion-based markers are able to contribute to objective
characterization of atherosclerotic plaques in the carotid artery
[21], this study went one step further by thoroughly investigating
that the CAD scheme which reveals the full potential of motion
analysis in risk stratification in CA. The novelty of this work
lies not only in the incorporation of motion analysis in CAD
tools for CA, which has not been attempted in related published
work (see Table I), but also in the framework which was used to
identify and evaluate the optimal motion-based CAD scheme.

The special features of this framework, which are hereafter
described, enhance validity and they limit bias in the generated
conclusions on the CAD performance. First, a medium-sized,
yet carefully designed, balanced, and challenging, dataset was
used; the study group consisted of two equal-sized subsets of
patients from two different hospitals. Moreover, a wide variety
of kinematic features of the plaque and healthy parts of the arte-
rial wall adjacent to plaque were investigated. In addition, in an
attempt to consider intra-ROI variability of motion properties
and to avoid invalid results due to outliers, motion-based mea-
surements were repeated for multiple targets, or pairs of targets,
of the selected ROIs. From the CAD aspect, the optimal CAD
scheme was selected among 15 alternatives, which were first
systematically optimized for the particular clinical application in
terms of their design parameterization. The most effective CAD
tool was further evaluated using several cross-validation tech-
niques, which are suitable for relatively small datasets. Finally,
to provide objective comparisons with state-of-the-art work in
the field, the optimal motion-based CAD scheme was bench-
marked against the texture-based CAD performance.

Among 15 candidate CAD schemes, a combination of the
SVM classifier and the FDR feature-selection tool was revealed
as the optimal choice for motion-based plaque classification.
In this case, classification accuracy reached 88%, which was
maintained in all the evaluation tests using different stratified
cross-validation strategies (see Fig. 4). The same CAD scheme
achieved 96% classification accuracy when applied separately
to the patient data of each hospital. This is considered a reason-
able finding, as US examination by the same operator using the
same US equipment reduces heterogeneity in image recordings
for cases with similar kinematic features of the arterial wall; in
this case, motion analysis, which is affected by US image qual-
ity [21], [25], reveals potential differences between subgroups
of patients even on relatively small datasets. However, larger
datasets may be necessary to maximize the CAD performance
and maintain high classification accuracy for multisource image
recordings.

Based on the above, and considering that none of the related
studies (see Table I) has tested CAD schemes on multisource
image recordings, direct comparisons can be performed only for
the single-source CAD performance (96%). These comparisons
place the proposed CAD scheme among the most effective ones,
while the multisource CAD performance (88%) also falls within
the range of previously published results, thereby revealing the
potential of motion analysis in the field. This conclusion is
further reinforced if we consider that the particular CAD scheme
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TABLE V
LIST OF KINEMATIC FEATURES WHICH ARE INCORPORATED IN THE OPTIMAL MOTION-BASED CAD SCHEME

Index Description S AS FDR Index Description S AS FDR

over targets of AWL
F163 Maximum of median radial

velocity
0.222 0.102 0.244 F197 Minimum of std of longitudinal

velocity
0.303 0.421 0.188

F165 Median of median radial velocity 0.114 0.025 0.347 F214 Median of std of radial velocity 0.111 0.027 0.312
F176 Minimum of median velocity

angle
−0.367 −0.172 0.276 F289 Maximum of D-T-S displacement

angle
0.926 0.675 0.192

F181 Skewness of median velocity
angle

–0.036 0.265 0.177 F295 Minimum of absolute longitudinal
D-T-S displacement

0.033 0.059 0.270

over targets of PTS
F406 Kurtosis of radial motion

amplitude
3.259 2.751 0.205 F426 Skewness of longitudinal motion

amplitude
0.567 0.185 0.187

F413 Kurtosis of total motion amplitude 3.336 2.719 0.228 F461 Skewness of absolute radial
D-T-S displacement

0.771 0.470 0.175

F419 Skewness of amplitude angle 0.266 0.604 0.192 F462 Kurtosis of absolute D-T-S radial
displacement

3.519 2.746 0.240

over targets of plaque region
F665 Kurtosis of std of longitudinal

velocity
3.954 3.230 0.195 F1062 Correlation (0°) of radial D-T-S

displacement
0.898 0.912 0.192

F749 Kurtosis of total D-T-S
displacement

3.762 2.782 0.283 F1070 Correlation (90°) of radial D-T-S
displacement

0.831 0.842 0.186

F793 Kurtosis of absolute D-T-S
longitudinal displacement

4.093 3.148 0.247 F1074 Correlation (135°) of radial D-T-S
displacement

0.817 0.820. 0.195

over pairs of targets of PWL
F1151 Kurtosis of LSI 12.710 21.141 0.223 F1150 Skewness of LSI –2.043 –3.519 0.236
over pairs of targets of PTS and PWL/AWL
F1214 Skewness of LSI 2.541 1.442 0.287

For Each Feature, the Index (according to the encoding of Table II), a Short Description, the Mean Values for Symptomatic (S) and Asymptomatic (AS) Patients, and the Fisher
Discriminant Ratio (FDR) Between the Two Groups of Patients are Presented.
std: standard deviation; D-T-S: diastole-to-systole; PWL: posterior wall-lumen, AWL: anterior wall-lumen; PTS: plaque top surface; LSI: longitudinal strain.

also outperformed the texture-based CAD performance in the
same dataset.

With SVM having been particularly popular in studies toward
US-image-based characterization of atherosclerotic plaques, the
results of Table III confirmed the suitability of this classifier to
the development of CAD tools for CA. However, it is worth
mentioning that, for textural features, the CAD performance was
maximized by a CAD scheme which relied on the combination
of the DT classifier with PCA. Given that DT [14] and PCA [12],
[13] have been used in a limited number of texture-based CAD
tools for CA and their combination has not been investigated,
this finding would be very useful in the design of future studies
on texture-based classification of atherosclerotic plaques.

The optimal motion-based CAD scheme incorporates 23
kinematic and strain features which are related with motion
properties of AWL, PWL, PTS, and the whole plaque region, as
well as relative movements between PTS and the healthy part of
the wall adjacent to the plaque. Although different indices were
identified as potential risk markers in the latest authors’ works
where only the patients from the St. Mary’s [21] or the Attikon
hospital were considered [22]; all studies revealed that the mo-
bility features of the atherosclerotic lesion itself and healthy
parts of the wall close to the lesion are equally important in
risk stratification in the disease. Based on these results, plaque
vulnerability seems to be significantly affected by dynamic phe-
nomena which occur in a wide region around the atherosclerotic
lesion. In this study, these dynamic phenomena were captured
in 2-D motion analysis. Although it has been recently suggested
that 2-D motion carries sufficient information for characterizing

the arterial wall [21], [22], [35], investigating the CAD contri-
bution of out-of-plane motion constitutes an interesting future
perspective.

The performance of the proposed motion-based CAD scheme
provides an encouraging feedback on the role of kinematic fea-
tures of the arterial wall in the therapeutic decision for CA and
it is expected to motivate the incorporation of motion analysis
in future-related studies designing CAD tools for the disease.
Inspired by recent studies on cerebral aneurysms [36], [37], it
would also be interesting to combine image-based motion anal-
ysis with computational fluid dynamics in an attempt to gain
insight in the biomechanical behavior of vulnerable atheroscle-
rotic lesions. Kinematic features seem to have the potential to
contribute to valid clinical assessment of the disease pheno-
type, which remains to be proved by future retrospective and
prospective studies on enriched datasets with frequent patient
follow-ups.

V. CONCLUSION

This study revealed the potential of motion analysis in risk
stratification in CA, by proposing a novel CAD scheme, which
is based on kinematic features to assist the identification of
vulnerable atherosclerotic lesions. The proposed CAD scheme
is a combination of an FDR feature-selection module with an
SVM classifier and it achieved 88% classification accuracy in
a challenging dataset consisting of patients from two different
hospitals. The motion-based CAD performance was thoroughly
evaluated using multiple cross-validation techniques and it was
also found to be superior to texture-based characterization of
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atherosclerotic plaques in the same dataset. Based on the above,
motion analysis seems to have a valuable role in the field of
image-driven CAD for CA and should be included in future
attempts toward personalized and objective diagnosis for the
disease.
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