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Abstract

Advances in the field of closed-loop neuromodulation call for analysis and modeling

approaches capable of confronting challenges related to the complex neuronal response to

stimulation and the presence of strong internal and measurement noise in neural record-

ings. Here we elaborate on the algorithmic aspects of a noise-resistant closed-loop subtha-

lamic nucleus deep brain stimulation system for advanced Parkinson’s disease and

treatment-refractory obsessive-compulsive disorder, ensuring remarkable performance in

terms of both efficiency and selectivity of stimulation, as well as in terms of computational

speed. First, we propose an efficient method drawn from dynamical systems theory, for the

reliable assessment of significant nonlinear coupling between beta and high-frequency sub-

thalamic neuronal activity, as a biomarker for feedback control. Further, we present a

model-based strategy through which optimal parameters of stimulation for minimum energy

desynchronizing control of neuronal activity are being identified. The strategy integrates sto-

chastic modeling and derivative-free optimization of neural dynamics based on quadratic

modeling. On the basis of numerical simulations, we demonstrate the potential of the pre-

sented modeling approach to identify, at a relatively low computational cost, stimulation set-

tings potentially associated with a significantly higher degree of efficiency and selectivity

compared with stimulation settings determined post-operatively. Our data reinforce the

hypothesis that model-based control strategies are crucial for the design of novel stimulation

protocols at the backstage of clinical applications.
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Introduction

The use of electrical deep brain stimulation (DBS), during approximately the last 30 years, has

been proven to provide striking benefits for patients with advanced Parkinson’s disease (PD),

essential tremor and dystonia [1–4] who have failed conventional therapies. In the interim,

promising applications of this technique for the treatment of neuropsychiatric disorders have

emerged, including treatment-refractory obsessive-compulsive disorder (OCD), Tourette’s

syndrome, major depressive disorder, drug addiction and anorexia nervosa [5–9]. Challenges

however exist and are principally related to the optimization of the efficiency of stimulation

through refined strategies at multiple peri-operative levels. Particularly, in addition to the

appropriate patient selection and anatomical target determination [10], the outcome of DBS

may be strongly influenced by the quality of post-operative clinical management, i.e., the

adjustment of stimulation parameters and the selection of the optimal contact, usually over

periods of weeks to months [11]. Apart from being considerably time consuming, this trial-

and-error procedure may not necessarily yield the optimal trade-off between maximal thera-

peutic benefit and minimal stimulation-induced side-effects [12]. Moreover, it fails to keep

pace with the fact that movement and neuropsychiatric disorder symptoms may fluctuate over

significantly shorter time-scales of seconds to days. Chronically, the open-loop nature and

monomorph pattern of conventional high-frequency stimulation appears to favor tolerance/

habituation phenomena, while being associated with a significant rate of power consumption

[13].

Against this background, closed-loop DBS is emerging as a more robust alternative and one

of the most promising breakthroughs in the field of neuromodulation [14, 15]. In an optimal

closed-loop-stimulation scenario, delivery of maximally efficient stimulation protocols is

adjusted to the fast dynamics of movement and neuropsychiatric disorder symptoms through

utilization of specific biomarkers that capture the patient’s clinical state in real time [16].

Hence, any algorithm designed for a maximally efficient closed- loop DBS system shall con-

ceptually satisfy two core specifications [17]: the reliable assessment of optimal neurophysio-

logical biomarkers for feedback control and the robust identification of alternative stimulation

protocols that may be more therapeutically- and energy-efficient compared with the conven-

tional pattern of stimulation [18, 19].

Nonlinear coupling across multiple frequency bands in the basal ganglia and in cortical

structures is being increasingly highlighted as a potentially predictive biomarker of PD and

OCD pathophysiology [20–25]. To date, assessment of this biomarker has largely relied on

evaluation of phase-amplitude coupling by means of the Hilbert transform combined with lin-

ear band-pass filtering [20, 26]. Remarkably however, the respective phase reconstruction

method may be characterized by a high level of susceptibility to measurement noise and a high

rate of artificial phase slips [27, 28], thereby discarding possibly rich information that would be

revealed by employing noise-resistant or phase reconstruction-free methods [29, 30]. Mean-

while, model-based control policies for the determination of temporally alternative stimulation

protocols [31–41], though still limited, are most commonly oriented towards the minimum

energy desynchronizing control of neuronal activity. The rationale behind this objective lies in

indications that temporally alternative DBS waveforms, including stochastic waveforms, hold

the potential to drive the neuronal dynamics within the basal ganglia back to the normal desyn-
chronized state—namely to more irregular and less burst-like firing patterns [19, 42]—thereby

outperforming the action of standard DBS waveforms, the mechanism of which has been prin-

cipally attributed to the reinforcement-driven regularization of neural firing patterns in the

vicinity of the stimulated nucleus [43–45].
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Considering these observations collectively and employing concepts drawn from dynamical

systems and control theory, in this study we elaborate on the algorithmic aspects of a noise-

resistant and efficient closed-loop neuromodulation system for advanced PD and treatment-

refractory OCD (Fig 1A and 1B). Specifically, we first state a series of methods robust to the

presence of internal and measurement noise that are employed in order to reliably assess sig-

nificant nonlinear coupling between beta and high-frequency subthalamic activity, as a bio-

marker for feedback control in the closed-loop neuromodulation scheme. We then suggest a

model-based control strategy through which optimal parameters of stimulation for minimum

energy desynchronization of neuronal activity are being identified.

In our analysis, we opt for a phase-reduced bursting neuron model [40, 46, 47]. Our moti-

vation for this particular selection is twofold. First, phase reduction theory constitutes a power-

ful mathematical framework for the analysis of the synchronization and response properties of

nonlinear oscillatory activity based on a single phase variable [48]. Second, since bursting activ-

ity is a prominent characteristic of subthalamic neuronal activity in PD and OCD (Fig 1C)

[49–52], a qualitative model of neuronal bursting, like the well-established Hindmarsh-Rose

model for bursting, may be a highly appropriate point of reference for capturing the respective

neuronal dynamics [31, 53]. It should be noted that, depending on parameter selection, the

Hindmarsh-Rose model may capture a wide range of neuronal dynamics: from regular spiking

to bursting to chaotic regimes and fixed-point behavior. However, in this study, we focus on a

computational model able to qualitatively capture pathological neuronal dynamics, i.e., burst-

ing behavior. Accordingly, a major part of the phase-response dynamics of the reduced model

has been determined based on the Hindmarsh-Rose model for bursting [46, 47]. Importantly,

the employed phase-reduced model, which simulates the effect of stimulation on pathological

neuronal activity, is data-driven, i.e., microelectrode recordings (MERs) acquired during sub-

thalamic nucleus (STN) DBS surgical interventions for PD and OCD are used to estimate the

unknown model parameters off-line. Thereby, the ability of the model to simulate realistic

neuronal dynamics is further enhanced. A data-driven phase-reduced model of subthalamic

neuronal activity was employed in [40], where we adopted a measure of the invariant density
(steady-state phase distribution) of the simulated dynamical system, as a quantity inversely

related to the desynchronizing effect of temporally alternative patterns of stimulation, and fur-

ther provided evidence for a possible correlation of this measure with clinical effectiveness of

stimulation in PD. Determination of the precise optimal parameters of stimulation is accom-

plished through the application of a derivative-free optimization algorithm, in particular a

model-based pattern search method guided by simplex derivatives [54, 55]. This approach is

motivated by the fact that the neural response to DBS parameters is expected to be a complex,

non-differentiable function [19, 56].

Finally, extending the results of our previous work, we attempt to provide indications for a

possible correlation of the invariant density measure with clinical effectiveness of stimulation

in treatment-refractory OCD. Overall, the results of this study corroborate the ability of the

presented modeling approach to identify stimulation settings potentially associated with a sig-

nificantly higher degree of efficiency and selectivity compared with stimulation settings deter-

mined post-operatively, while guaranteeing a relatively low computational cost.

Materials and methods

Data description

We used MER data acquired during 8 STN-DBS surgical interventions for advanced PD at

Evangelismos General Hospital of Athens and 8 STN-DBS surgical interventions for treat-

ment-refractory OCD at Grenoble University Hospital. Surgery was performed after provision
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Fig 1. Schematic of the closed-loop DBS system. (A) Case of advanced PD; LFP: local field potential; HFOs: high-frequency

oscillations; head model reproduced with permission from Inserm /Eric Bardinet, Jerome Yelnik and Luc Mallet. (B) Case of

treatment-refractory OCD. Applicability of cross-frequency coupling as a biomarker for feedback control in case of treatment-

refractory OCD may be subject-specific. Accordingly, the presence of bursting neuronal activity was included as an alternative

biomarker for feedback control in the respective closed-loop neuromodulation scheme; *short interburst interval and high
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of written informed consent by patients with advanced PD and after consideration of strict

ethical guidelines and inclusion criteria for patients with treatment-refractory OCD (the con-

sent procedure was approved by the National Consultative Ethics Committee on Health and

Life Sciences 2002). Patients’ clinical characteristics have been described in detail elsewhere

(cases 1–5 and 7–9 [28]; cases O1-O6 and O9 [49]; case P5 [57]). In case of PD, medication

was withdrawn at least 12 hours before surgery. All recordings were obtained, while patients

were awake and at rest, using five tungsten microelectrodes (2mm apart, tip diameter< 25

μm, Medtronic Inc., Minneapolis, MN (Evangelismos General Hospital of Athens) / FHC Inc.,

Bowdoinham, ME, USA (Grenoble University Hospital)). Signals acquired during STN-DBS

for advanced PD were pre-amplified, band-pass filtered between 0.1 Hz and 10 kHz, sampled

at 24 kHz (Leadpoint TM Neural Activity Monitoring System, Medtronic Inc., Minneapolis,

MN) and off-line band-pass filtered at 1-300Hz and 300Hz-6 kHz, applying four-pole Butter-

worth filters (Matlab, Mathworks, Natick, MA). Signals acquired during STN-DBS for treat-

ment-refractory OCD were pre-amplified, band-pass filtered at two frequency bands (1–300

Hz and 300 Hz-6 kHz) and sampled at 3 kHz and 48 kHz, respectively (Neurotrek System,

Alpha-Omega Engineering, Nazareth, Israel). A total of 31 acceptable MER trajectories (i.e.,

trajectories traversing the broadest extent of the nucleus) acquired during STN-DBS for PD

and 12 acceptable MER trajectories acquired during STN-DBS for OCD were selected for off-

line analysis. Preprocessing of each MER included its subdivision into three distinct neuronal

populations: spiking activity acquired by employing a five-point spike template [28, 58], back-

ground unit activity reconstructed according to [59], and local field potential (LFP) activity (1-

300Hz). In order to keep pace with the employed phase reduced bursting neuron model, fol-

lowing the assessment of the biomarker for feedback control, optimal parameters of stimula-

tion were determined only for sites at which bursting activity was recorded. A bursting or

burst-like firing pattern of neuronal activity was identified according to [60] (Fig 1C).

Noise-resistant assessment of cross-frequency coupling as a biomarker

for feedback control

The first objective of this study was to propose a method for the assessment of nonlinear cou-

pling between beta and high-frequency activity characterized by reduced sensitivity to internal

and measurement noise compared with the combined application of linear band-pass filtering

and the Hilbert transform [20–22, 24, 26]. We therefore employed a two-part technique for

the designed scheme (Fig 1). First, the beta-band-frequency (13-30Hz) envelope of the high-

pass filtered (200-300Hz) LFPs (or, alternatively, of the high-frequency signal component

(300-500Hz)) was assessed. Particularly, the high-pass filtered signal was full-wave rectified,

mean subtracted and downsampled to 1kHz. The derived signal was band-pass filtered at 13-

30Hz by applying the complex-valued filter proposed by [29]. This filter is designed based upon

minimization of the relative variance

q2 ¼
varjzj2

hjzj2i2
¼
hjzj4i
hjzj2i2

� 1; ð1Þ

where z is the filter output. In particular, z = f�x, where f is the filter’s impulse response, x is

the given signal and ‘‘�” denotes convolution. The robustness of this filter lies at its property to

intraburst frequency. (C) Exemplary identification of a bursting firing pattern of neuronal activity at Central, -2.56mm, Left STN,

case O2 (top) based on the interspike interval (ISI) histogram (bottom). The histogram is characterized by a positively skewed

distribution indicating a large fraction of short ISIs and a high intraburst frequency (μISI = 0.0179s; VarISI = 0.00069).

doi:10.1371/journal.pone.0171458.g001
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increase the signal to measurement noise ratio with respect to the complete dynamics of its

impulse response. Moreover, this filter has been proven to cope with strong internal noise that

constitutes a prominent characteristic of the recorded subthalamic neuronal activity. Accord-

ingly, the presented method accounts not only for the presence of measurement noise, but also

for the presence of intrinsic noise which is relevant to PD and OCD pathophysiology. Follow-

ing the employment of the complex-valued filter, we applied the 0–1 test for chaos [30] to a log-

arithmic transformation of the complex magnitude of the filter output in order to assess the

presence of significant nonlinear coupling between beta and high-frequency activity in the

STN of patients with PD or OCD. Nonlinear coupling corresponds to regular, non-chaotic

dynamics indicated by a test outcome approximately equal to 0.

In addition to being a phase reconstruction-free method for the determination of regular

or chaotic dynamics in a deterministic dynamical system, the 0–1 test for chaos retains the

advantage, over the traditional methods for detecting chaos (using the maximal Lyapunov

exponent), of displaying reduced sensitivity to measurement noise [61]. Briefly, for the first

n = 1, . . ., nmax = 1000 samples of the input signal and Nc = 100 values of c chosen randomly

in the interval (0, π), we evaluated the translation variables

pcðnÞ ¼
Xn

j¼1

VðjÞcosðjcÞ and qcðnÞ ¼
Xn

j¼1

VðjÞsinðjcÞ; ð2Þ

where V is the amplitude of the input signal. Secondly, considering the presence of measure-

ment noise, we quantified for n � nmax
10
¼ ncut the damped mean squared displacement of the

translation variables, as follows

D�c ðnÞ ¼ McðnÞ � ðEVÞ
2 1 � cosnc

1 � cos c
þ h � ðEVÞ2sinð

ffiffiffi
2
p

nÞ; ð3Þ

where Mc(n) is the mean squared displacement of the translation variables, defined as

McðnÞ ¼ lim
N!1

1

N

XN

j¼1

½pcðjþ nÞ � pcðjÞ�
2
þ ½qcðjþ nÞ � qcðjÞ�

2
;

EV is the expectation of V, while parameter h was defined based upon optimization of the

outcome of the test across a subset of 12 MER trajectories in PD and 12 MER trajectories in

OCD. We next computed the strength of correlation of D�c ðnÞ with linear growth as

Kc ¼ corrðξ;ΔÞ ¼
covðξ;ΔÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðξÞvarðΔÞ

p 2 ½� 1; 1�; ð4Þ

where ξ = [1 2 � � � ncut] and Δ ¼ ½D�c ð1Þ D
�
c ð2Þ � � � D

�
c ðncutÞ�. The outcome of the test, Kt, was

given by

Kt ¼ median ðKcÞ ð5Þ

A test outcome, Kt < 0.1 indicated the presence of regular dynamics [62], i.e., the presence

of significant cross-frequency coupling.

With respect to parameter determination, we used 1s (i.e., 1000 samples) of the input signal,

since this value yielded the best trade-off between low computational cost and optimal out-

come of the test. In addition, Nc = 100 different values of c have been proven to constitute an

appropriate variable selection in [30].

The performance of the 0–1 test outcome was compared with the performance of an alter-

native measure of cross-frequency coupling, the modulation index. This index is based on the

Algorithmic design of a noise-resistant and efficient closed-loop DBS system
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Kullback-Leibler (KL) distance between two distributions and its calculation involves applica-

tion of the Hilbert transform combined with linear band-pass filtering [26, 63].

Model-based control strategy for the identification of the optimal

stimulation protocol

The phase-reduced model. We used a previously published stochastic phase-reduced

model [40], inclusively allowing for the phase-response dynamics of a bursting neuron in both

weak and strong perturbation regimes [46, 47]. The phase-reduced model is described by the

following Ito stochastic differential equation (derivation of Eq (6) is provided in S1 Text):

d�
dt
¼ oþ Krsinð2pðc � �þ aðK; rÞÞÞ þ vC þ ðsIRIð�Þ þ

ffiffiffiffiffiffi
DC

p
Þ xðtÞ þ

sI

2
R0Ið�ÞðsIRIð�Þ

þ
ffiffiffiffiffiffi
DC

p
Þ þ Δð�;bÞ

X

k

dðt � tkÞ ð6Þ

where vC � sC
2
R1

0
dsCðsÞ

R1

0

d�R0Cð�ÞRCð� � osÞ and

DC � sC
2
R1

� 1

dsCðsÞ
R1

0

d�RCð�ÞRCð� � osÞ. Considering a rectangular stimulation waveform,

parameter βmay be expressed as: β = wI0 / C [64], where w represents the stimulus pulse width

(expressed in μs), I0 is the stimulus current amplitude (expressed in A) and C = 1μF/cm2.

Variable ϕ 2 [0,1) denotes the oscillator’s phase, ω is its natural frequency, while K, r and ψ
symbolize the coupling strength, the degree of synchrony and the mean phase of the oscilla-

tors, respectively, in the surrounding neural population. These parameters were evaluated

based on the processing of the MERs, as described in [28, 40]. Parameter α represents the

phase shift inherent to nonlinear coupling. This parameter was considered equal to ¼, so as to

better capture the partially synchronous quasiperiodic dynamics (0< r< 1) of the subthalamic

neuronal activity in the pathological state [28, 65]. ξ(t) is the zero mean Gaussian white noise,

added independently to the oscillator, and η(t) is the colored (common) noise with zero mean,

unitary variance and autocorrelation function C(t). Parameters σI and σC denote the intensity

of independent and common noise, and were determined based on the spiking activity and the

LFP signal component, respectively [40]. Phase sensitivity functions RI(ϕ) and RC(ϕ) were eval-

uated according to [40, 46, 66]. Function Δ(ϕ, β) represents the phase response curve (PRC) to

a single (DBS) impulse and was evaluated according to [47] (S1 Fig). Values of β were appro-

priately scaled according to the size of perturbations upon which the PRC was constructed.

Variable τk denotes the input times (0� k<1). We considered that the inter-impulse inter-

val (IPI) Δτn = τn+1 − τn obeys a Poisson distribution with parameter λ and that stimulus trains

have a mean frequency f (expressed in Hz).

We emphasize that the MERs used for the estimation of model parameters are exclusively

those for which cross-frequency coupling and/or bursting activity was identified, as described

in the previous section. Through this assignment, phase model (6) is being appropriately elab-

orated to capture the regular dynamics of pathological neuronal activity, in addition to simu-

lating the effect of stimulation on this activity.

The recorded neuronal activity had to follow a bursting-like pattern in order to be compati-

ble with the model, which is a bursting neuron model. Essentially, the first part of the closed-

loop scheme is crucial for model parameter estimation in the second part.

Algorithmic design of a noise-resistant and efficient closed-loop DBS system
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After solving phase Eq (6), we employed the Perron-Frobenius operator, P, in order to

extract the stochastic phase map from one stimulus cycle to the next:

pnþ1ð�Þ ¼ P pnð�Þ; ð7Þ

where pn(ϕ) and pn+1(ϕ) are the densities of the phases at the time of the nth and (n + 1)th
impulses, respectively [40]. By discretizing the phase into m = 500 bins, operator P was

approximated using a m × m transition matrix (or stochastic kernel), A = [αij]. The iterative

process (7) converges to the steady-state phase distribution, i.e., the invariant density, pst(ϕ).

The invariant density vector, pst 2 R
m
�0

, is the eigenvector corresponding to the dominant

(unit) eigenvalue of the transition matrix. In accordance with [40], we assessed the variance of

the elements of the invariant density vector, s2
pst

, as a quantity inversely related to the desyn-

chronizing effect, but potentially also to clinical effectiveness of stimulation. We may express

this variance in terms of the Euclidean norm of pst, as

s2

pst
¼

1

m
kpst � mpst

1k
2

2
; ð8Þ

where mpst
is the mean of the elements of the invariant density vector and 1 is the m by 1 vector

of ones. It should be noted that we did not assess the variance of the phase variable, ϕ, which

would be analogous to the desynchronizing effect of stimulation. Rather, we wanted to place

emphasis on the properties of the derived largest eigenvector of the transition matrix by assess-

ing the variance of its elements. Identification of the optimal stimulation protocol was based

on minimization of the cost function

FðxÞ ¼
1

m
kpst � mpst

1k
2

2
þ gP; ð9Þ

where x is the vector of stimulation parameters, i.e., x = [x1 x2 x3 x4] = [w I0 f λ], and P = I02wf�R
is the stimulation power [67]. Parameter g is a penalizing scalar (we set g = 0.25), while R repre-

sents the electrode impendance (we considered R = 1000O).

Model-based derivative-free optimization. We considered the determination of the

d = 4 optimal stimulation parameters for minimum energy desynchronizing control of neuro-

nal activity as a constrained optimization problem defined as:

minx2R4FðxÞ ð10Þ

subject to 30� x1� 210,

0:001 � x2 � 0:004;

20 � x3 � 150;

3 � x4 � 30

Determination of the pulse-width constraints was based on evidence that pulse durations

lower than 60 μs may lead to increased selectivity of stimulation, i.e., activation of the targeted

neural elements without activation of distant pyramidal tract fibers, and therefore possibly also

to an increased therapeutic window of DBS [68].

Cost function (9) is expected to exhibit non-smooth behavior. We therefore employed a

clever derivative-free optimization algorithm, in particular a model-based pattern search

method guided by simplex derivatives (SID-PSM) [54, 55]. This algorithm belongs to the

Algorithmic design of a noise-resistant and efficient closed-loop DBS system
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general class of direct search methods of directional type. Its distinguishing feature is the use

of past objective function evaluations to improve the computational algorithmic efficiency.

Direct search methods of directional type are iterative algorithms, where the process of

finding a new iterate (xk+1) can be organized in a search step and a poll step. The search step is

optional, not required to ensure the convergence of the algorithm, and typically used to

improve the numerical efficiency. In SID-PSM, past function evaluations are used to compute

a local quadratic model of the objective function, which is minimized in a region of interest (a

ball around the current iterate xk). The corresponding minimizer is then evaluated for the orig-

inal objective function and, if it decreases the value of the current iterate F(xk), it is accepted as

the new iterate xk+1. In this case, the iteration is declared as successful and the poll step is

skipped.

If the search step fails in obtaining a better point, the algorithm will obligatorily perform

the poll step, where a local search around the current best point xk is considered by evaluating

the feasible points belonging to the poll set Pk = {xk + αkdk: dk 2 Dk}. In this case αk represents

a step size parameter and Dk a set of directions with good geometrical properties, typically cor-

responding to a positive generating set [69]. This evaluation process is opportunistic, meaning

that a new point is accepted as a new iterate once it decreases the value of the objective func-

tion, without evaluating the remaining poll points. Thus, the order by which the directions are

tested is relevant for the algorithmic performance. Using previous evaluated points, SID-PSM

computes a descent indicator, based on simplex derivatives, and directions are tested according

to the angle that they make with this descent indicator. If a better point is found during this

testing procedure, the new point is accepted as a new iterate xk+1, and the iteration is declared

as successful. Otherwise, xk+1 = xk and the iteration will be unsuccessful.

At the end of each iteration, the step size is updated: decreased at unsuccessful iterations

and maintained or increased for successful ones. Points evaluated during both search and poll

steps at iteration k are stored in a list, Xk, allowing the computation of the quadratic models

and of the descent indicators at no further expense in terms of function evaluations.

Incorporating quadratic models. Given a sample set Y 0k ¼ fy0
0

k; y01k; . . . ; y0pkk g � Xk

(where y0
0

k ¼ xk), a quadratic polynomial basis e = {e0(x), e1(x), . . ., eq(x)} and a quadratic poly-

nomial model mðy0kÞ ¼ aT
k eðy

0
kÞ, the condition for quadratic polynomial interpolation can be

expressed as

Mðe;Y 0kÞ ak ¼ FðY 0kÞ; ð11Þ

where

Mðe;Y 0kÞ ¼

e0ðxkÞ e1ðxkÞ � � � eqðxkÞ

e0ðy0
1

kÞ e1ðy0
1

kÞ � � � e1ðy0
1

kÞ

..

. ..
. ..

. ..
.

e0ðy0
pk
k Þ e1ðy0

pk
k Þ � � � eqðy0

pk
k Þ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

and FðY 0kÞ ¼

FðxkÞ

Fðy01kÞ

..

.

Fðy0pkk Þ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

:

System (11) is determined, if pk = q = (d + 1)(d + 2) / 2 − 1, overdetermined, if pk> q, and

underdetermined, if pk< q. The quadratic polynomial model may also be written as

mðy0kÞ ¼ ck þ gT
k y0k þ

1

2
y0Tk Hky

0

k; ð12Þ

where gk and Hk represent the gradient and the Hessian of the model, respectively. The quality

of the quadratic model as approximation to the original function is strongly dependent on the
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norm of Hk. Thus, when a reasonable number of points is already available, but system (11) is

still underdetermined (d + 1� pk< q), a minimum Frobenius norm (MFN) solution is com-

puted by minimizing the Frobenius norm of the Hessian Hk subject to the interpolation condi-

tions:

min
1

4
kHkk

2

F ð13Þ

subject to ck þ gT
k ðy

0i
kÞ þ

1

2
ðy0 ikÞ

THkðy0
i
kÞ ¼ Fðy0 ikÞ; i ¼ 0; 1; . . . ; pk:

If q< pk� (d + 1)(d + 2) − 1, a regression quadratic model is considered by solving the

problem:

min
1

2
kMðe;Y 0kÞak � Fðy0kÞk

2
: ð14Þ

When there are more points available than the ones required to build the overdetermined

model, a subset of Xk is selected, with 80% of the points chosen near to the current iterate, xk,
and the remaining 20% chosen far from it. The search step will be defined by minimizing the

quadratic model in

Lðxk; DkÞ ¼ fx 2 Rd : kx � xkk � Dkg;

a ball centered at xk, with radius Dk ¼ skak� 1 max
d2Dk� 1

kdk. Parameter σk equals to 1, if the previ-

ous iteration was unsuccessful, or 2, otherwise.

Incorporating descent indicators. At the beginning of each poll step, a sample set

Yk ¼ fy
0
k; y1

k; . . . ; y
rk
k g � Xk (where y0

k ¼ xk) with some desirable geometric properties may be

identified. This sample set should be part of a ball of the same or larger radius of the smallest

ball enclosing the poll set Pk. The simplex gradient of F at xk, gk ¼ rSk
FðxkÞ, is the solution of

the following system

ST
k gk ¼ δkðF; SkÞ; ð15Þ

where Sk ¼ ½y
1

k
� xk � � � y

rk
k � xk� and δkðF; SkÞ ¼ ½Fðy1

kÞ � FðxkÞ � � � Fðy
rk
k Þ � FðxkÞ�

T
. Again,

this system allows determined (rk = d), underdetermined (rk< d) or overdetermined (rk> d)

solutions. Underdetermined and overdetermined forms of simplex gradients are computed by

rSk
FðxkÞ ¼ VkΣk

� 1U k
TδkðF; SkÞ=Dk; ð16Þ

where UkΣkVk
T is the singular value decomposition of the scaled matrix S

T
k=Dk and Δk is

defined as in the previous section.

Importantly, the quality of simplex gradients as approximations to some form of real func-

tion derivatives has been established even in the non-smooth case [70] and depends on the

geometrical properties of the sample set. SID-PSM uses the geometrical notion of Λ-poisedness
to determine the quality of the geometry of the sample set and considers that a sample set Yk is

Λ-poised, if kΣ � 1

k k � L, for some positive constant Λ. Thus, the negative simplex gradient

� rSk
FðxkÞmay be considered as a direction of potential descent, namely this gradient consti-

tutes a descent indicator, which is used for ordering the poll vectors. In particular, the polling

procedure will start by first testing the poll vectors that make the smallest angle with the nega-

tive simplex gradient. S2 Fig displays an exemplary record of the objective function value in

terms of the total number of function evaluations for SID-PSM.
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Assessment of a possible correlation of the invariant density measure

with clinical effectiveness of stimulation in OCD

In order to assess a possible correlation of the invariant density measure with clinical effective-

ness of stimulation in treatment-refractory OCD, we evaluated s2
pst

simulating the application

of regular 130 Hz stimulation and based upon the model parameters estimated for two subsets

of recordings: a total of 39 MERs of subthalamic neuronal activity acquired during DBS for

OCD and characterized by a high mean discharge rate (39.7 ± 14.71 Hz), a high intraburst fre-

quency and a short interburst interval (μISI = 0.0289 ± 0.0114s, Var ISI = 0.0038 ± 0.0056) vs. a

total of 39 MERs of subthalamic neuronal activity characterized by a low mean discharge rate

(13.53 ± 7.13Hz), a low intraburst frequency and a long interburst interval (μISI = 0.1072 ±
0.093s, Var ISI = 0.0265 ± 0.0542). This specific approach was based on indications correlating

the efficacy of standard STN-DBS for OCD with locations of neuronal activity characterized

by a high discharge rate and intraburst frequency, and a short interburst interval [50]. Statisti-

cal significance was determined by means of the Mann—Whitney U test.

Results

Noise-resistant assessment of nonlinear coupling

Fig 2A illustrates exemplary LFPs acquired intraoperatively along a particular MER trajectory.

For assessment of the modulation index, after linear band-pass filtering the LFP signals

between 13 and 30 Hz, the respective phase series is estimated by means of the Hilbert trans-

form. As illustrated in Fig 2B, the derivative of the phase so estimated, i.e. the instantaneous

angular frequency, is characterized by a high rate of singularities reflecting a high rate of artifi-

cial phase slips. At a singularity (or phase slip), the instantaneous angular frequency reaches

values that exceed the limits imposed by the band-pass filter [71] (inset; Fig 2B). The high rate

of artificial phase slips is probable to render the calculation of cross-frequency coupling unreli-

able, particularly in the presence of increased noise levels. On the contrary, a phase-recon-

struction-free method does inherently not suffer from the ambiguity associated with phase

singularities. This fact is demonstrated through four representative cases in Fig 2C. While

results obtained by means of the modulation index and the test outcome are in good agree-

ment in case of a relatively high signal to noise ratio (SNR) (cases P5, P6; Fig 2C), the modula-

tion index fails to discriminate sites with significant non-linear coupling from sites without, in

case of a low SNR (cases P7, P8; Fig 2C).

In the two representative cases of Fig 3A, employment of the 0–1 test for chaos following

the application of the complex valued-filter, singled out sites with significant nonlinear cou-

pling between beta and high-frequency activity (indicated by a test outcome smaller than 0.1).

Conversely, following the application of a conventional Butterworth band-pass filter, the 0–1

test for chaos did not discriminate sites with significant non-linear coupling from sites with-

out. This result was corroborated across the total of the MER trajectories examined and

highlighted the robustness of the two-part technique, i.e., the combined application of the com-

plex-valued filter and the 0–1 test for chaos. In case of PD, reduced sensitivity to measurement

noise in the 0–1 test for chaos was warranted by assigning a positive value to parameter h in

Eq (3) (h = 1, Fig 3B). On the contrary, this assignment did not prove to be a prerequisite in

case of OCD (h = 0, Fig 3B).

Nonlinear coupling may be a reliable biomarker for feedback control in case of

STN-DBS for PD. Cross-frequency coupling was identified at a total of 18 MERs—sites

within the STN of 8 patients with PD (case P1: 2 sites; case P2: 1 site; case P3: 3 sites; case P4: 2

sites; case P5: 3 sites; case P6: 2 sites; case P7: 1 site; case P8: 4 sites). Approximately 67% of

Algorithmic design of a noise-resistant and efficient closed-loop DBS system
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Fig 2. Performance comparison between the modulation index and the 0–1 test outcome. (A) Exemplary LFP signals acquired along

the lateral MER trajectory for the identification of the right STN in a case of PD (P8). (B) The respective instantaneous angular frequency

series are characterized by a high rate of singularities. Here, angular frequency is defined as the derivative of the (unwrapped) phase

estimated by means of the Hilbert transform after linear band-pass filtering the signal between 13 and 30 Hz. By setting as thresholds the

limits of the band-pass filter (red horizontal lines), slip occurences are identified at the time points of threshold crossing (inset). (C)

Algorithmic design of a noise-resistant and efficient closed-loop DBS system
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these sites (n = 12) was located at the dorsal border of the STN (Fig 3C). These results are

rather predictable given that beta-HFO coupling is closely correlated with the pathophysiology

of PD and strongest at the dorsal border of the STN [20–24]. They further corroborate the

potential appropriateness of nonlinear coupling between beta and high-frequency neuronal

activity as a biomarker for feedback control in PD. Neuronal activity at 13 out of the 18 sites

with cross-frequency coupling followed a bursting or burst-like firing pattern (case P1: 1 site;

case P2: 1 site; case P3: 3 sites; case P4: 1 site; case P5: 3 sites; case P6: 2 sites; case P7: 1 site;

Comparative assessment of the modulation index and the 0–1 test outcome in four representative cases of PD. Results obtained by means of

both measures are in good agreement in case of a relatively high signal to noise ratio (SNR) (cases P5 and P6: identification of significant

cross-frequency coupling at +0.5 mm). On the contrary, in the presence of increased noise levels, the high rate of artificial phase slips

renders the calculation of cross-frequency coupling by means of the modulation index unreliable. In particular, the index fails to discriminate

sites with significant non-linear coupling from sites without, in case of a low SNR (cases P7 and P8: significant cross-frequency coupling at -3

mm and at -1.5 mm/+1 mm, respectively, identified only by means of the 0–1 test for chaos).

doi:10.1371/journal.pone.0171458.g002

Fig 3. Exemplary and cumulative results of the methodology applied for the assessment of cross-frequency coupling as a biomarker for

feedback control. (A) Exemplary results corresponding to a case of PD and a case of OCD. Figures at the top display the power spectrum of the filtered

signals (13-30Hz) along each exemplary trajectory. (B) Determination of parameter h (Eq (3)), based upon optimization of the outcome of the 0–1 test

for chaos across a subset of 12 MER trajectories in PD and 12 MER trajectories in OCD. According to the results, in case of PD, sensitivity to

measurement noise had to be further decreased by assigning a unitary value to parameter h. (C) Cross-frequency coupling was identified at at least 1

site within the STN of each patient with PD (total:18 MERs). Approximately 67% of these sites was located at the dorsal border of the STN, while at

72.2% of these sites neuronal activity followed a bursting or burst-like firing pattern and was considered for further processing in the phase-reduced

bursting neuron model. Contrary to the case of PD, cross-frequency coupling was identified within the STN of only 2 patients with treatment-refractory

OCD (total:4 MERs).

doi:10.1371/journal.pone.0171458.g003
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case P8: 1 site). These sites were considered for further processing in the bursting neuron

model. At the remaining 5 sites a rather irregular firing pattern was observed, and therefore

these sites were excluded from subsequent analysis.

Nonlinear coupling may display subject-specific applicability as a biomarker for feed-

back control in case of STN-DBS for OCD. Contrary to the case of PD, cross-frequency

coupling was identified at only 4 MERs—sites within the STN of 2 patients with OCD (case

O2: 2 sites; case O3: 2 sites) (Fig 3C). The latter fact may be attributable to the lower number of

acceptable MER trajectories in case of STN—DBS for OCD. Otherwise, it implies that nonlin-

ear coupling between beta and high-frequency activity may not consistently be an appropriate

biomarker for feedback control in closed-loop STN-DBS for treatment-refractory OCD [25]

and that an alternative biomarker should, therefore, additionally be considered (Fig 1B). For

this reason, on the basis of evidence pointing to a correlation of subthalamic bursting neuronal

activity, characterized by certain features, with symptom severity and stimulation efficacy in

OCD [50], we assessed, for the remaining of the cases wherein no cross-frequency coupling

was identified, the presence of bursting neuronal activity with specific characteristics, i.e., a

short interburst interval and a high intraburst frequency (μISI = 0.0242 ± 0.0113s, Var ISI =

0.0059 ± 0.0083). Specifically, we considered for further processing a total of 12 MERs (case

O1: 1 site; case O2: 2 sites; case O3: 2 sites; case O4: 1 site; case O5: 1 site; case O6: 1 site; case

O7: 2 sites; case O8: 2 sites).

Performance of the model-based control strategy in terms of efficiency,

selectivity of stimulation and computational cost

The performance of the model-based direct search method (SID-PSM) in the determination of

the optimal parameters of stimulation in cases of PD and OCD was compared with the perfor-

mance of a non-model-based generalized pattern search method ([72]; Matlab, Mathworks,

Natick, MA), in terms of the resulting values of the invariant density, stimulation power and

total computation time. At each site, we acquired five evaluations of optimal stimulation

parameters by means of each distinct solver and assessed the respective mean values illustrated

in Fig 4A–4C. In both optimization procedures, current amplitude was consistently main-

tained at its minimal value (I0 = 0.001A). The optimal pulse width determined by means of the

model-based direct search method in case of PD proved to be equal to 33.36 ± 1.06 μs

(mean ± standard error mean) and in case of OCD, equal to 33.75 ± 1.29 μs (mean ± standard

error mean) (Fig 4D). Given that pulse durations lower than 60 μs have been associated with

increased selectivity of stimulation [68], this result indicates a potentially outstanding perfor-

mance of the model-derived stimulation parameters in terms of selectivity of stimulation. We

should further comment on the fact that, following the application of the model-based direct

search method, the mean optimal stimulation frequency proved to be significantly higher in

case of OCD compared with PD (p<0.05, Mann—Whitney U test), while a similar outcome

was obtained with respect to the mean optimal pulse width and the mean optimal Poisson

parameter (Fig 4D). We suggest that differences in the underlying pathophysiology [49, 50]

may have led to the observed differences in optimal stimulation frequency in case of PD vs.

treatment-refractory OCD. The derived mean optimal stimulation frequency of 39 ± 3.43 Hz

in case of PD is in partial accordance with Class III evidence that STN-DBS at patient-specific

frequencies in the range 31–100 Hz may improve motor Unified Parkinson’s Disease Rating

Scale (mUPDRS) scores equally effectively with high-frequency stimulation in patients with

PD [73].

Statistical analysis corroborated a significantly higher performance of the model-based

direct search method, in terms of both stimulation power and computation time
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corresponding to the optimal stimulation settings, compared with the non-model-based gen-

eralized pattern search method (p<0.0001, Mann—Whitney U test), while an almost equiva-

lent effect was observed on the invariant density measure (pPD = 0.3299, pOCD = 0.4705, Mann

—Whitney U test) (Fig 5).

The results corresponding to the stimulation settings determined by means of the model-

based control strategy (combined application of the stochastic phase-reduced model and the

model-based direct search method) were further compared with the results obtained by simu-

lating application (through employment of the stochastic phase-reduced model) of the stimu-

lation settings determined post-operatively, during the last follow-up of patients having

undergone STN-DBS for PD or OCD (Tables 1 and 2). The comparison was performed in

terms of the values of the invariant density measure and stimulation power. Statistical analysis

corroborated the ability of the model-based control strategy to identify stimulation settings

that yield significantly lower values of the invariant density measure and stimulation power

compared with the respective values acquired by simulating application of the stimulation set-

tings determined post-operatively (p<0.0001, Mann—Whitney U test) (Fig 6A and 6B). This

result combined with the reported possible correlation of the invariant density measure with

Fig 4. Implementation results of the model-based vs. the non-model-based approach. The model-based direct search method (SID-PSM) was

compared with a non-model-based direct search method ([72]; Matlab, Mathworks, Natick, MA) in terms of the acquired parameters of stimulation, based

on 13 MERs acquired during STN-DBS surgery for advanced PD and 12 MERs acquired during STN-DBS surgery for treatment-refractory OCD. For each

site, we acquired five sets of parameter values, by means of each distinct solver, and assessed the respective mean values displayed in (A)-(C). The

current amplitude, after application of both optimization procedures, was consistently maintained at its minimal value (I0 = 0.001A). (D) Mean values of the

optimal stimulation settings following the application of the model-based direct search method. The mean optimal stimulation frequency proved to be

significantly higher in case of OCD compared with PD (*p = 0.02, Mann—Whitney U test). Errorbars indicate standard error mean.

doi:10.1371/journal.pone.0171458.g004
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Fig 5. Performance of the model-based vs. the non-model-based approach in terms of efficiency of stimulation

and computational speed. Comparison of the model-based direct search method (SID-PSM) with a non-model-based

direct search method ([72]; Matlab, Mathworks, Natick, MA) corroborated a significantly higher performance of the former

method, in terms of both stimulation power and computation time (*p<0.0001, Mann—Whitney U test), while an almost

equivalent effect was observed on the invariant density measure (pPD = 0.3299, Mann—Whitney U test). Errorbars

indicate standard error mean.

doi:10.1371/journal.pone.0171458.g005

Algorithmic design of a noise-resistant and efficient closed-loop DBS system

PLOS ONE | DOI:10.1371/journal.pone.0171458 February 21, 2017 16 / 26



clinical effectiveness of stimulation in PD [40], but probably also in OCD (see next section),

points to a potentially superior performance of the model-based stimulation parameters in

terms of therapeutic and energy efficiency of stimulation. The differential desynchronizing

effect on neuronal activity exerted by the model-based stimulation settings vs. the stimulation

settings determined post-operatively is qualitatively reflected in the distinct form of the respec-

tive stochastic kernels (Fig 6C and 6D).

Table 1. Stimulation settings determined post-operatively during the last follow-up visit for patients with advanced PD.

case Brain Hemi-sphere pulse width (μs) voltage (V) frequency (Hz)

P1 Right 60 3.8 140

Left 60 2.6 140

P2 Right 60 1.8 130

Left 60 1.7 130

P3 Right 60 2.2 130

Left 60 2 130

P4 Right 60 1.5 130

Left 60 1.3 130

P5 Right 60 3.4 130

Left 60 2.2 130

P6 Right 90 2.7 150

Left 90 2.9 150

P7 Right 60 3.7 150

Left 60 2.9 150

P8 Right 90 3.2 140

Left 60 2.7 140

doi:10.1371/journal.pone.0171458.t001

Table 2. Stimulation settings determined post-operatively during the last follow-up visit for patients with treatment-refractory OCD.

case Brain Hemi-sphere pulse width (μs) voltage (V) Frequency (Hz)

O1 Right 60 2 130

Left 60 2 130

O2 Right 60 4 130

Left 60 4 130

O3 Right 60 1.9 130

Left 60 2 130

O4 Right 60 2.4 130

Left 60 2.4 130

O5 Right 60 2 130

Left 60 2 130

O6 Right 60 1.5 130

Left 60 1.5 130

O7 Right 60 3 130

Left 60 2.3 130

O8 Right 60 2 130

Left 60 2 130

doi:10.1371/journal.pone.0171458.t002
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Fig 6. Performance of the model-based control strategy in terms of efficiency of stimulation. (A)-(B) Statistical analysis corroborated the ability of

the model-based control strategy (combined application of the stochastic phase-reduced model and the model-based direct search method) to identify

stimulation settings that yield significantly lower values of the invariant density measure and stimulation power compared with the respective values

obtained by simulating application (through employment of the stochastic phase-reduced model) of the stimulation settings determined post-operatively,

during the last follow-up of patients with PD and OCD (*p<0.0001, Mann—Whitney U test). Errorbars indicate standard error mean. (C)-(D) The depicted

stochastic kernels were acquired by fitting the phase-reduced bursting neuron model to an exemplary set of MERs acquired during STN-DBS surgery for

PD and OCD, respectively, and simulating application of the post-operative (left panels) vs. the model-based stimulation settings (right panels). The

stronger desynchronizing effect on neuronal activity exerted by the model-based stimulation settings is qualitatively reflected in the intense form of the

respective stochastic kernels.

doi:10.1371/journal.pone.0171458.g006
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Possible correlation between the invariant density measure and clinical

effectiveness of stimulation in OCD

Fig 7 displays the results obtained by assessing the invariant density measure based on a total

of 39 MERs of subthalamic neuronal activity acquired during DBS for OCD and characterized

by a high discharge rate, a high intraburst frequency and a short interburst interval vs. a total

of 39 MERs of subthalamic neuronal activity characterized by a low discharge rate, a low intra-

burst frequency and a long interburst interval. Remarkably, the desynchronizing effect of stan-

dard 130Hz stimulation proved to be significantly stronger in the former case compared with

the latter (p<0.01, Mann—Whitney U test). This result points to a possible correlation of the

invariant density measure with clinical effectiveness of stimulation in OCD, since values of

this measure are proven to be lower at locations of neuronal activity that have been correlated

with the best clinical outcome of STN-DBS for OCD [50].

Discussion

Bikson et al. (2015) [74] remark: “Approaches using closed-loop stimulation are inherently

state dependent and require computational neurostimulation.” Elaborating on this concept and

considering the implications of the current approach, we make the following two key observa-

tions: first, though evidence about the pathophysiology of medically refractory movement and

neuropsychiatric disorders remains to date to a large extent inconclusive, a growing body of

basic and clinical work supports the important role of nonlinear coupling between beta and

high-frequency activity in the pathophysiology of PD [75], thereby pointing to a possible utility

of this measure as a state biomarker in closed-loop neuromodulation approaches for PD. Nev-

ertheless, any attempt to reliably assess this biomarker should be made by carefully considering

the presence of strong internal and measurement noise in the recorded neural activity. In

this study, we presented an innovative technique drawn from dynamical systems theory

Fig 7. Possible correlation between the invariant density measure and clinical effectiveness of

stimulation in OCD. Assessment of the mean ± standard error mean value of the invariant density measure

based on a total of 39 MERs of subthalamic neuronal activity acquired during DBS surgery for treatment-

refractory OCD and characterized by a high mean discharge rate (39.7 ± 14.71 Hz), a high intraburst

frequency and a short interburst interval (μISI = 0.0289 ± 0.0114s, VarISI = 0.0038 ± 0.0056) vs. a total of 39

MERs of subthalamic neuronal activity characterized by a low mean discharge rate (13.53 ± 7.13 Hz), a low

intraburst frequency and a long interburst interval (μISI = 0.1072 ± 0.093s, VarISI = 0.0265 ± 0.0542). The

mean desynchronizing effect of standard 130Hz stimulation proved to be significanlty stronger in the former

case compared with the latter (*p< 0.01, Mann—Whitney U test).

doi:10.1371/journal.pone.0171458.g007
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guaranteeing low sensitivity to noise, and corroborated the presence of cross-frequency cou-

pling in each case with advanced PD. Thereby, we provided indications for a possible appro-

priateness of this approach in optimization of closed loop neuromodulation systems.

Second, throughout this paper, we attempted to provide compelling evidence for the critical

role of computational neurostimulation in closed-loop identification of novel stimulation

protocols [56, 76]. The computational model employed operates on the principles of phase

reduction and phase-resetting that are inherently characterized by simplicity and analytical

tractability [48, 77–79], and further incorporates the dynamics of neuronal bursting activity

that constitutes a hallmark of PD and OCD pathophysiology. In addition to the employment

of the phase-reduced bursting neuron model, employment of direct search optimization based

on quadratic modeling has significantly contributed to the performance of the presented

approach. Crucially, since the quality of simplex gradients as approximations to the real deriv-

atives of the objective function has been demonstrated in the non-smooth case [70], SID-PSM

comprised an ideal choice for the problem under consideration, i.e., the non-smooth dynamics

of the neuronal response to stimulation.

In previous work, we provided important indications for the realistic substructure of the

stochastic phase-reduced model and further highlighted a possible correlation of the invariant

density measure with clinical effectiveness of stimulation in PD [40]. By extending the latter

result to the case of treatment-refractory OCD, we here prove that the proposed model-based

control strategy holds the potential to exhibit remarkable performance in terms of therapeutic

and energy efficiency of stimulation for both pathologic conditions. By yielding a mean opti-

mal pulse width equal to ~33μs, the model-based control strategy may further achieve out-

standing performance in terms of selectivity of stimulation. Importantly, application of model-

based direct search has been associated with a significantly higher computational speed com-

pared with non-model-based derivative-free optimization.

There are several methodological considerations inherent to this work. Even though this

study may provide a rigorous theoretical foundation for the design of a therapeutically- and

energy-efficient closed-loop neuromodulation system, it should be pointed out that the sto-

chastic model employed here does not capture large-scale neuronal interactions within key cir-

cuits involved in the pathophysiology of PD or OCD. Nonetheless, similar approaches have led

to valid interpretations of the neuronal response to stimulation [80]. Another consideration is

related to the potential effect of dopaminergic treatment on the performance of the proposed

methodology. This assessment was not feasible in the current study, since the available data

were acquired after a long period of withdrawal of medication. Third, clinical validation of the

presented predictions should comprise a basic priority in future studies. Clinical validation

may be possible once novel neural probes or systems offering the capability of concomitant

DBS and microelectrode recording are introduced in clinical practice [81]. We also emphasize

the necessity to test whether the findings of this study are replicated in macroelectrode record-

ings, and whether the model-based predictions are validated clinically based on current neuro-

modulation technologies [82]. Furthermore, modeling approaches similar to those proposed

in this study may display greater fidelity in the framework of constant current stimulation.

The transition from the use of constant-voltage to constant-current DBS devices is being

motivated by the rationale that constant-current stimulation will accommodate for inter-

patient and temporal fluctuations in the impedance of the tissue and electrode-tissue interface

[83, 84].

Last, special mention should be made of further important factors for efficient closed-loop

neuromodulation. These include the optimization of the stimulation waveform [85], of the

circuit topology [86, 87] and of contact selection [88], as well as the incorporation of neuro-

chemical control [89, 90] and the adjustment of closed-loop DBS systems to the phenotypical

Algorithmic design of a noise-resistant and efficient closed-loop DBS system

PLOS ONE | DOI:10.1371/journal.pone.0171458 February 21, 2017 20 / 26



heterogeneity of movement and neuropsychiatric disorders [91, 92]. Cumulative research

towards these directions may ultimately favor the optimization of less invasive, groundbreak-

ing treatment options including closed-loop optogenetic control [93, 94].

Supporting information

S1 Fig. The phase response curve employed in the stochastic model (evaluated according

to Mauroy et al. (2014) [47]).

(TIF)

S2 Fig. Progression of the model-based direct search method for a single trial (Central

-4.3mm, Right STN, case O3). (A) Cost function minimization was achieved after a total of

13 iterations and approximately 38 function evaluations. According to the algorithm, optimal

stimulation settings for this particular example included a pulse width of 30μs (B), a current

amplitude equal to 1mA (C), a stimulation frequency of 60Hz (D) and a Poisson parameter

equal to 13 (E).

(TIF)

S1 Text. Supplementary information for “Algorithmic design of a noise-resistant and effi-

cient closed-loop deep brain stimulation system: A computational approach”.

(PDF)

S1 File. Minimal underlying data set.

(XLSX)
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54. Custódio AL, Vicente LN. Using sampling and simplex derivatives in pattern search methods. SIAM J.

Optim. 2007; 18: 537–55.
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