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Abstract—Mammography is the main imaging technique for
breast cancer diagnosis and prevention. Many image processing
techniques though require the breast region to be adequately
defined in order to provide reliable results. Pectoral muscle
segmentation is one of the most challenging tasks in this domain
since the limits between the muscle and the actual breast region
are sometimes quite difficult to distinguish. In the current
work, a method to perform pectoral muscle segmentation on
mammographic images based on the notion of Radial Lengths
(RL) is presented. The mean value of RLs is used to reveal
edge regions in mammograms. The edges produced would be
discontinued and resemble mostly to edge segments. Points at
those segments are then randomly selected and candidate edge
lines start propagating having those points as a start. A number
of criteria are set to define how well the line follows the actual
muscle edge. A single line representing the pectoral muscle edge
is finally selected based on a number of fitting criteria. The
proposed method is compared to state of the art methods in the
field and found to clearly outperform them.

Index Terms—pectoral muscle, segmentation, breast, mammo-
gram.

I. INTRODUCTION

MAMMOGRAPHY is the main imaging technique to
screen women for the detection and diagnosis of breast

cancer. But reading mammograms is known to be a very
demanding job for radiologists, since judgments depend on
training, experience, and subjective criteria [1]. To this end,
Computer Aided Diagnosis (CAD) system can provide invalu-
able help not only in alleviating radiologists by automatically
performing certain tasks but also provide a second opinion
that is generally considered objective. Things get complicated
though when pectoral muscle is present on the mammogram.
The success of CAD systems depend on an accurate differen-
tiation between the pectoral muscle and breast tissue mass [2].
There are number of reasons why this happens, but the main
reason is that it reduces the search area for abnormalities and
makes it limited to the relevant region of the breast without
excessive influence from the background of the mammogram,
which typically includes annotations and artifacts that could
have an adverse effect on the analysis [3]. On the other
hand though, segmentation of the pectoral muscle has been
proven to be quite tricky since delineation between the pectoral
muscle and breast tissue is not evident in most cases [4], [5].

Various methods have been proposed in the literature to
define and segment the pectoral muscle. Kwok et al. [6] used
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Hough transform to receive a straight line estimation of the
pectoral muscle and then refine the estimation using iterative
”cliff detection”. One disadvantage of the method is its weak-
ness to detect edges between different textures since intensity
edges in many cases are replaced by fuzzy texture edges on
the pectoral boundary. Ferrari et al. [7] suggested the use of
a number of specially designed gabor filters to enhance the
pectoral muscle edge. The image is convolved with the gabor
filters and using vector-summation, a magnitude and a phase
image are generated. The magnitude value of each image pixel
is propagated along the phase direction and the resulting image
is used to detect candidate pectoral muscle edges. A post
processing step is then used to find the true muscle edge. One
disadvantage of the method though is that when the glandular
tissue obscures the pectoral muscle, the segmented pectoral
muscle may be underestimated [8]. Ma et al. [9] presented a
method based on adaptive pyramids and an other one based on
minimum spanning trees. The two methods did not perform
well when strong lined were present inside and parallel to the
actual muscle border. Li et al. [8] used anatomical features of
the pectoral muscle homogeneous texture and high intensity
deviation to define an initial pectoral muscle edge, Liu et
al. [10] combined the iterative Otsu thresholding scheme and
the mathematic morphological processing to find a rough
border of the pectoral muscle. The multiple regression analysis
(MRA) was then employed on the rough border to obtain an
accurate segmentation of the pectoral muscle. Mustra et al.
[11] presented a pectoral muscle detection method based on a
combination of contrast enhancement using adaptive histogram
equalization and polynomial curvature estimation on selected
region of interest. Hong et al. [12] proposed a topographic
representation called the isocontour map, in which a salient
region forms a dense quasi-concentric pattern of contours to
segment various breast regions including pectoral muscle.

In the current work a method to perform pectoral muscle
segmentation based on Radial Lengths is presented [13].
Radial Lengths are used to first define a number of can-
didate muscle edge points and then provide guidance in a
line propagation process. The paper is organized as follows:
Section II presents Radial Lengths, while the actual pectoral
muscle determination method is given in section III. Section
IV contains information about the dataset used, while results
and conclusion are given in sections V and VI.

II. RADIAL LENGTHS

In our previous work [13] we demonstrated the ability
to reveal diagnostically critical information in mammograms
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Fig. 1. Demonstration of Radial Lengths Method on an image slice. Radial
lines start propagating at every image point after a value KP is subtracted
from the image gray value at the corresponding point. Propagation will stop
if the image boundaries are met. Points belonging to high density regions
(Point A) will present smaller radial length values (rA1, rA2), while points
belonging to fat tissue regions (Point B) will present larger radial length values
(rB1, rB2).

using a series of equally rotated radials that propagate until
they meet a certain limit. In this work we propose again
the use of radial lengths in the process of pectoral muscle
segmentation in a modified manner though.

The original concept was to consider the mammographic
image as a three dimensional shape where the image gray
value at a certain point (x0, y0) defined the z-axis value of the
shape boundary. Given an image point (x0, y0) and therefore
an image gray value I(x0, y0) at that point, if a certain value
Kp is subtracted from I(x0, y0), it would be like moving
inside the interior of the three dimensional shape. Then a line
starting from (x0, y0) at a given angle in relation to axis x but
remaining always parallel to the surface defined by axes x, y,
could begin propagating until the shape boundary is found.
The final length of the propagated line is termed Radial Length
(RL). If a point (x0, y0) is located in a dense breast region
would present a high gray value and therefore the relating
lines would have smaller lengths (Fig. 1, Point A) in relation
to fat tissue regions which present lower gray values (Fig. 1,
Point B). For each image point, a fixed number of equally
rotated lines were considered providing an equal number of
radial lengths ( ri ), the mean value of which is used to form
IRL

I
(x0,y0)
RL =

N∑
i=1

r
(x0,y0)
i

N
, (1)

where N is the total number of radial lengths ri calculated
around point (x0, y0).

One important parameter is the selection of the appropriate
rotation angle between two adjacent radial lines. Since these
lines are equally rotated, angle selection comes down to total
number of lines selection problem. In general a larger number
of lines provides better results with higher computational
cost. In our experiments we used a total number of 32 lines.
Furthermore, pectoral muscle edge is generally expected to

have a certain orientation. Edge’s angle in relation to the image
coordinate system is expected to vary between (− 3π

4 , 0). Since
radial lines that meet the pectoral edge perpendicular are more
effective in describing its location, only lines with angles
between (pi4 ,

pi
2 ) are selected. Six radial lines present the

appropriate orientation and therefore used in the determination
of IRL.

Parameter KP at each image point is calculated using (2) on
a local window Wi with length WL, centered at the specific
point.

KP = a · (max(Wi)−min(Wi)), (2)

where a is user defined that takes values in (0, 1) and
max(Wi) and min(Wi) refer to the maximum and minimum
gray value inside the window Wi, respectively. In our experi-
ments a = 0.15 and WL = 20.

III. PECTORAL MUSCLE EDGE DETERMINATION

In this section the actual process of pectoral muscle segmen-
tation is presented. The main steps of the algorithm are the
following: At first all images are sub sampled so as to become
256×256 and mirrored if necessary so that the pectoral muscle
occupy the upper left region of the image. On each image I
(1) is used to produce IRL. IRL then is used to determine a
number of candidate pectoral muscle edge points from which
lines (Li), representing the edge between the muscle and the
image, start propagating using IRL as a guide. For each Li a
number of characteristics is calculated and if their values fall
within predefined limits these lines are considered as candidate
muscle edge lines (LineCandi ). A final selection between all
LineCandi is then performed in order to define the best fitting
pectoral muscle edge.

A. Candidate edge points

The determination of the appropriate candidate edge points
is of great importance for the overall success of the algorithm
since performance and speed depend largely on it. Although
the algorithm can provide adequate results even if just a few
actual muscle edge points are determined, in general the larger
the number of candidate points that truly belong to the muscle
edge the more liable and fast the final result.

In order to define the candidate edge points (ICand), IRL
is first smoothed using an averaging filter with size 2 × 2
pixels and then, the relative horizontal differences (IdiffRL ) are
calculated

IdiffRL (xi, yi) =
IRL(xi, yi)− IRL(xi, yi − 1)

IRL(xi, yi)
. (3)

A threshold (TC = 0.5) is then applied to IdiffRL to convert
it into binary format. All 8-connected regions are defined and
regions with less than 20 members are rejected.
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Fig. 2. Candidate pectoral muscle edge points selection. (a) Original image, (b) IRL, (c) IdiffRL , (d) Candidate edge points (ICand).

B. Candidate edge lines

From the candidate edge points, a number of lines is
produced by propagation.

Before continuing with the propagation, an image (IGuid)
that will be used as a guidance during the propagation process
needs to be defined

IGuid(xi, yi) =


100 if IMask(xi, yi) = 0,

0.01 · IRL(xi, yi) if IdiffRL (xi, yi) > TC ,
IRL(xi, yi) else,

(4)
where IMask is a mask image referring to the actual breast

region. It is defined via a three class segmentation process
on the original image gray levels, using k-means algorithm.
IMask is comprised of all points belonging to the two teams
with the larger mean values.

Therefore, IGuid presents a very high value at locations out-
side the breast region, very low values at candidate edge points
locations and values defined by IRL at all other locations.

Fig. 2 presents the process described so far on image
mdb003. More specifically, the original image (Fig. 2-a), IRL
(Fig. 2-b), IdiffRL (Fig. 2-c) and ICand (Fig. 2-d) are provided.

C. Line propagation

At first, a single point is randomly selected (x0, y0) from
all the candidate edge points and a line starts propagating. The
propagation is firstly done upwards and then downwards.

During the propagation process, the orientation (AnglProp)
of the propagating line near its growing end will need to be
defined. In order to define that, a circle (Cor) is centered at the
line’s ending point (xe, ye) and the intersection point (xi, yi)
between the line and circle is defined (Fig. 3). Then, AnglProp
is given by

AnglProp =

 arctan
(
ye−yi
xe−xi

)
if upward propagation,

arctan
(
yi−ye
xi−xe

)
if downward propagation.

(5)
A special care needs to be taken for the calculation of

AnglProp when the first propagation step from the initial

(xe,ye)

(xi,yi)

Propagating 

line

R

Fig. 3. Orientation determination near the ending point (xe, ye) of an upward
propagating line using a circle with radius R centered at (xe, ye).

point (x0, y0) is attempted. More specifically, from ICand the
8-connected region to which (x0, y0) belongs, is specified.
A circle Cor is then centered at (x0, y0) and AnglProp is
calculated using (5), where (xe, ye) = (x0, y0) and (xi, yi) are
the coordinates of the lower intersecting point between the 8-
connected region and Cor. We use the lower intersecting point
since the line is propagating upwards at this step.

The basic concern during the propagation process from an
initial point (xe, ye), is to find an appropriate image point
(xP , yP ) in the neighborhood of the initial (xe, ye) that fulfills
a number of criteria and draw a line that connects them. The
propagation continues considering (xP , yP ) as the new initial
point (xe, ye) and look for a new appropriate point (xP , yP )
in it’s neighborhood. Something that needs to be defined is the
actual point neighborhood. Given the AnglProp value of the
propagating line segment, a number of rotated radials (qj) is
considered. These radials have their starting points at (xe, ye),
their length is R and they are distributed around a central radial
whose orientation matches the orientation of the initial line.

The radials’ ending points define the requested neighbor-
hood (NP ) (Fig. 4). A smaller value for R produces smoother
propagating lines but with larger computational cost. In our
case R is set equal to 5 pixels. The number of the radials
used did not seem to affect significantly the final result.

In our experiments we used 9 radials and the radial
angles used in relation to the initial line orientation are
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In order to select the appropriate neighborhood point for
the propagation process a scaling factor based on a Gaussian
curve (Sgauss) is used

Sgaussj = e−
(
j − jC
σR

)2

, (6)

where j is the index of each radial and jC is the index of
the central radial which in our case is 5. Also, σR = 4 · jT ·
Arand, where Arand is a randomly selected number between
0 and 1 and jT the total number of radials. A new Arand
value is calculated every time a new neighborhood region is
determined.

The radial j for which

Fj =

(
1

1 + Sgaussj

)
IGuid(xj , yj) (7)

is minimized, is selected and therefore its ending points
(xj , yj) become the new (xP , yP ) points of the propagating
line.

D. Line elimination

The procedure described so far will produce a number of
candidate pectoral muscle edge lines (LineCi ), therefore there
is a need to define how well the candidate lines follow the
muscle edge. In order to accomplish that, two measures are
performed.

The first measure is the average value (Vi) of IGuid using
only the points of LineCandi and is calculated using

Vi =
1

NV

N∑
x=1

M∑
y=1

(IGuid(x, y) · δ(LineCandi (x, y))), (8)

Region 

B

Region 

A

Candidate 

line

Fig. 5. Candidate pectoral muscle edge line (candidate line) and relating
RegionA and RegionB . RegionA would typically be part of the pectoral
muscle region, while RegionB would typical be part of the actual breast
region.

where

NV =
N∑
x=1

M∑
y=1

(δ(LineCandi (x, y)))

and δ(x) is delta Dirac.
Small values of Vi indicate that LineCandi follows a path

that is very close to a strong edge. If Vi is larger than a
threshold (V Thres = 2.5) LineCandi is rejected. But strong
edges could also be found at the border between breast region
and the background.

Therefore, a second measure to eliminate those lines is
required. This measure is based on the difference of the
mean values (Si) between two regions of the original image
I , defined perpendicular to LineCandi . The two regions are
defined by performing a morphological dilation on the candi-
date line with a disk shaped structural element with radius
Drad=5 pixels and then subtracting the original line. This
operation provides two distinct regions. The region closer to
the left image side should ideally belong to the muscle region
(RegionAi ) while the other should ideally belong to the breast
region (RegionBi ) (Fig. 5).

Si = SAi − SBi , (9)

where

SAi =
1

NA

∑
x

∑
y

(I(x, y) · δ(RegionAi (x, y))), (10)

SBi =
1

NB

∑
x

∑
y

(I(x, y) · δ(RegionBi (x, y))) (11)

and
NB =

∑
x

∑
y

(δ(RegionBi (x, y))),

NA =
∑
x

∑
y

(δ(RegionAi (x, y))).

Large values of the Si measure indicate that RegionAi
and RegionBi differ significantly and therefore that LineCandi

provides a satisfactory segmentation of the pectoral muscle.



5

(a) (b)

Fig. 6. Pectoral muscle segmentation results on mammogram images using
the proposed method on (a) mdb125 and (b) mdb130.

(a) (b)

Fig. 7. Image with axillary folds (mdb040). (a) Candidate pectoral muscle
edges. (b) Pectoral muscle segmentation result using proposed method.

If Si is smaller than a certain threshold (SThres = 10),
LineCandi is rejected. This would generally be the case for
lines following the breast region border.

E. Final line selection

An adequate number of candidate lines that fulfill the crite-
ria set, needs to be defined in order to increase the possibility
of efficient pectoral muscle identification. Therefore, the line
determination procedure is repeated selecting different initial
point each time. The maximum number of repetitions is set
to three times the number of candidate edge points, while the
repetition will stop if the number of lines become greater than
50. The LineCandi with the smaller Vi value is selected. Fig.
6 shows two images segmented using the proposed method.

There are many cases though, where two edges are present
within the muscle region (Fig. 7). This would commonly
happen if axillary folds are present during the mammogram
procedure. In those cases, the algorithm will have to be able
to identify the existence of multiple edges and keep those
LineCandi that present larger area values (ELinei ). ELinei is
defined as the area between the given edge and the upper left
point of the image.

To accomplish that, ELinei values from all the remaining
LineCandi are calculated and given as input to a k-means

Fig. 8. Image mdb098. The proposed algorithm failed to define any pectoral
muscle edge.

clustering algorithm that performs a partitioning into two
sets. If the mean area values of LineCandi on each set differ
significantly, then all LineCandi that belong to the set with the
smaller area values are rejected. The two sets are considered
to differ significantly if the mean value of the smaller area set
is less than half the mean value of the set with the larger mean
value.

Again, the LineCandi with the smaller Vi value is selected.

IV. DATASET

In order to perform the evaluation of the proposed method
images from the mini-Mias database are used. These images
are 1024 × 1024 pixels with 200µm/pixel. The database
consists of 322 images from 161 patients with odd numbered
ones representing right mammogram and even numbered ones
representing the left. From those images a subset with 84
images is constructed. The subset contains the same images as
the ones used in [7] in order to provide results that can easily
be compared and evaluated.

V. RESULTS

The proposed method is evaluated using the normalized
area error [7] between the defined pectoral muscle edge and
a corresponding hand-drawn edge image provided by [7].
The normalized area error consists of two parameters, the
false positive pixels parameter (FPi) and the false negative
pixels parameter (FNi). FPi is the number of pixels that are
identified falsely as belonging to the pectoral muscle region
divided by the total number of pixels that really belong to the
muscle area (NTT ). FNi on the other hand is the number of
pixels that are falsely identified as not belonging to the muscle
region divided again by the total number of pixels that really
belong to the muscle area.

It should be noted that from the 84 images, there is one
case (mdb098) where our method failed to define any pectoral
muscle edge. This image is given at Fig. 8. It can be seen
though, that the muscle region is quite small and subtle.

The performance of the proposed algorithm in comparison
with a number of state-of-the-art methods is given in table I.
It can be seen that the proposed method provides the lowest
value among all other methods as regards the FN value. On
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TABLE I
SEGMENTATION PERFORMANCE ANALYSIS BY NORMALIZED AREA ERROR

Gabor [7] AP [9] ID [8] Proposed

FP 0.0058 0.0371 0.0145 0.0197

FN 0.0577 0.0595 0.0552 0.0471

FP < 0.05 & FN < 0.05 45 50 48 57

min(FP, FN) < 0.05 & 0.05 < max(FP, FN) < 0.10 0 18 28 17

min(FP, FN) < 0.05 & max(FP, FN) < 0.10 0 11 7 7

0.05 < FP < 0.10 & 0.05 < FN < 0.10 22 0 0 1

0.05 < min(FP, FN) < 0.10 & max(FP, FN) > 0.10 0 0 1 1

FP > 0.10 & FN > 0.10 17 5 0 0

the other hand, FP value of the proposed method is larger than
Gabor and ID method. However, if the distribution of results to
the various error range categories is considered, the proposed
method outperforms all others. More specifically, 57 (about
69%) of cases belong to the lowest error range category for the
proposed method, as compared to 48 (about 57%) for ID, 50
for AP (about 60%) and 45 (about 54%) for Gabor method.
Furthermore, as far as the Gabor method is concerned, 17
cases (about 20%) belong to the highest error range category
which is the largest value among all comparing methods for
the particular category.

VI. CONCLUSION

A method to perform pectoral muscle segmentation on
mammograms is presented. The method is based on Radial
Lengths to provide an initial estimation of the muscle edge
points and then perform a line propagation process from each
such point. A number of fitting criteria are defined in order to
define which of the propagated lines is the best estimation of
the muscle edge and reject all others. The method is performed
on specific 84 images from the miniMias dataset for which a
hand-drawn pectoral muscle edge is available. Results indicate
that the proposed method can effectively segment pectoral
muscle providing comparable and in some aspects improved
performance in comparison to the main methods in the field.
Future work include the evaluation of the method on larger
datasets and also the use of more evaluation criteria.
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