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Abstract
Objective. During deep brain stimulation (DBS) surgery for the treatment of advanced
Parkinson's disease (PD), microelectrode recording (MER) in conjunction with functional
stimulation techniques are commonly applied for accurate electrode implantation. However, the
development of automatic methods for clinical decision making has to date been characterized
by the absence of a robust single-biomarker approach. Moreover, it has only been restricted to
the framework of MER without encompassing intraoperative macrostimulation. Here, we
propose an integrated series of novel single-biomarker approaches applicable to the entire
electrophysiological procedure by means of a stochastic dynamical model. Approach. The
methods are applied to MER data pertinent to ten DBS procedures. Considering the presence of
measurement noise, we initially employ a multivariate phase synchronization index for
automatic delineation of the functional boundaries of the subthalamic nucleus (STN) and
determination of the acceptable MER trajectories. By introducing the index into a nonlinear
stochastic model, appropriately fitted to pre-selected MERs, we simulate the neuronal response
to periodic stimuli (130 Hz), and examine the Lyapunov exponent as an indirect indicator of the
clinical effectiveness yielded by stimulation at the corresponding sites. Main results. Compared
with the gold-standard dataset of annotations made intraoperatively by clinical experts, the STN
detection methodology demonstrates a false negative rate of 4.8% and a false positive rate of 0%,
across all trajectories. Site eligibility for implantation of the DBS electrode, as implicitly
determined through the Lyapunov exponent of the proposed stochastic model, displays a
sensitivity of 71.43%. Significance. The suggested comprehensive method exhibits remarkable
performance in automatically determining both the acceptable MER trajectories and the optimal
stimulation sites, thereby having the potential to accelerate precise target finalization during DBS
surgery for PD.
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1. Introduction

Since its first application in 1993, high frequency deep brain
stimulation (DBS) of the subthalamic nucleus (STN) has
evolved into a reference surgical procedure for the treatment of
levodopa-sensitive symptoms, in patients with advanced Par-
kinson’s disease (PD) (Benabid et al 1994, Limousin et al 1995,
Benabid et al 2009). Accurate electrode placement is, according
to the surgical consensus, a critical factor in achieving the best
clinical results and minimizing stimulation-induced side effects
(Benabid 2003, Lozano et al 2010). To compensate for certain
drawbacks related to preoperative stereotactic targeting (MRI
distortion, brain shift and increased risk of complications in
ventriculography), electrophysiological mapping techniques are
encompassed in the neurosurgical procedure by the vast
majority of medical centers (Abosch et al 2013, Lozano
et al 2010). The principal mapping tools used are microelec-
trode recording (MER) of neuronal activity in the target area
and intraoperative stimulation carried out through macro-
stimulation testing (Abosch et al 2013, Marceglia et al 2010).

The ultimate goal of MER techniques during STN-DBS
surgery is ascertainment of the trajectory with the highest
extension of typical STN activity (Marceglia et al 2010). An
increased background noise level, a high discharge rate and an
irregular or bursting pattern of activity are distinguishing fea-
tures of the STN with respect to the surrounding brain struc-
tures (Bour et al 2010). Following delineation of the functional
boundaries of the STN, its total length for each recording track
can be defined. An acceptable track should pass through
⩾ 3mm of the nucleus (Marceglia et al 2010). Apart from the
aforementioned criteria, intraoperative evaluation of macro-
stimulation-induced effects is a major contributory factor in the
selection of the optimal trajectory (Schlaier et al 2013, Reck
et al 2012). Typically, 60 μs pulses in trains of 130 Hz and a
variable intensity up to a few milliamps are delivered through
the low-impendance shaft of the microelectrode. The ratio
between the intensity threshold for the appearance of side
effects (motor contractions; oculomotor signs) and the intensity
threshold for clinical effectiveness (most frequently involving
rigidity improvement) defines the extent of the therapeutic
window (Pollak et al 2002, Gross et al 2006, Marceglia
et al 2010). By the end of electrophysiological mapping,
comparative appraisal of the data acquired through both MER
and macrostimulation, determines the selection of the optimal
trajectory and the optimal site for implantation of the DBS
electrode (Bour et al 2010, Reck et al 2012).

In the context of microelectrode mapping, methods
aiming at enhanced objectivity and reduced operation time
have been extensively investigated (Falkenberg et al 2006,
Danish et al 2008, Zaidel et al 2009, Wong et al 2009, Novak
et al 2011, Cagnan et al 2011, Pinzon-Morales et al 2011). In
that respect, combinatorial application of quantitative features
related to the local field potential (LFP) and/or the high-pass
filtered signal (i.e. the high-frequency background activity or

the spiking activity) has been evaluated. Nevertheless,
whereas multi-feature approaches provide increased accuracy
and reliability for STN targeting, the use of an unique robust
biomarker would substantially simplify and accelerate
intraoperative nucleus detection. In addition to the afore-
mentioned perspective, a complementary single-biomarker
approach applicable to the process of intraoperative stimula-
tion would lead to significant improvement of the entire
electrophysiological procedure, by optimizing clinical deci-
sion making and decreasing total surgical time.

There is emerging evidence suggesting correlation of
subthalamic oscillatory synchronization with clinical impair-
ment in PD (Kühn et al 2009, Pogosyan et al 2010), and,
conversely, desynchronization of the neuronal activity as a
possible mechanism of action of STN-DBS (Carlson et al 2010,
Walker et al 2011, Hauptmann et al 2007, Modolo and Beu-
ter 2009, Wilson et al 2011, Johnson et al 2013). In light of this
evidence, the main objective of this study was to evaluate
collective dynamical and response properties of the subthalamic
oscillatory activity as crucial hallmarks for the selection of the
optimal stimulation site during DBS for PD. Specifically, we
aimed to assess the applicability of two complementary single-
biomarker approaches within the principal mapping techniques
that are commonly used intraoperatively: MER and macro-
stimulation testing. Within this frame of reference, based upon
MERs acquired during ten surgical interventions, we initially
assessed a multivariate phase synchronization index (Carmeli
et al 2005, Allefeld et al 2007, Polychronaki 2011) as a com-
bined measure of local and spatially extended oscillatory syn-
chronization (Moran and Bar-Gad 2010), keeping susceptibility
to measurement noise to a minimum (Rossberg et al 2004, Sun
et al 2008). Implementation of the proposed index was intended
to point to the acceptable trajectories, i.e. the trajectories that
would be the best candidates for macrostimulation (Marceglia
et al 2010). This feature was subsequently employed as one of
the constituent parameters of a stochastic phase model appro-
priately fitted to pre-selected MERs. Based on this model, we
assessed the Lyapunov exponent (Pikovsky et al 2001) as a
quantity reflecting subthalamic synchronization dynamics in
response to periodic inputs (130 Hz) and further evaluated its
predictability in identification of the sites where stimulation
yielded the best clinical benefit. The entire automatic metho-
dology was evaluated based on the decisions made intrao-
peratively by clinical experts.

2. Patients and methods

2.1. Patients and surgery

During a one-year period, ten patients underwent implantation
of DBS electrodes in the STN, at the Department of Neuro-
surgery at Evangelismos General Hospital of Athens. Three
women and seven men participated with informed consent
and the permission of the local ethics committee. Their ages
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ranged from 50 to 70 years, with a mean of 60 years. The
clinical criteria included idiopathic PD (as documented by a
positive response to levodopa) with motor fluctuations and/or
dyskinesias. The mean disease duration was 14.5 years
(range: 10–19 years). The mean motor Unified Parkinson’s
Disease Rating Scale (UPDRS) score preoperatively in the
off-medication state was 61.5 (range: 40–75) and 22.9 (range:
12–32) in the on-medication state. Anti-parkinsonian medi-
cation was withdrawn at least 12 hours before surgery.
Table 1 summarizes patient clinical characteristics.

Stereotactic surgery was based on pre-operative anatomical
targeting of the STN, MER and high frequency test stimulation
(Sakas et al 2007, Boviatsis et al 2010). Patients underwent
application of a CRW stereotactic frame (Cosman–Ro-
berts–Wells; Radionics, Burlington, MA, USA) under local
anesthesia and in a way that the anterior commissure/posterior
commissure (AC-PC) plane was approximately parallel to the
base plane of the frame. Anatomical targeting of the STN was
achieved via both indirect visualization according to a stereo-
tactic atlas (Schaltenbrand and Wahren 1977) and direct
visualization according to an image fusion technique. This
technique involved a combination of frameless T2-weighted
magnetic resonance imaging (MRI) and framebased computed
tomography (CT) and was developed on a Radionics hardware/
software system (StereoPlan; Integra Radionics, Burlington,
MA, USA). The coordinates obtained with both indirect and
direct methods were combined for determination of the anato-
mical target point used during microelectrode mapping. The
surgical procedure was performed under local anesthesia.
Fourteen mm diameter, burr holes were centered over a point
anterior to the coronal suture and 3.4 cm lateral to midline.
Stereotactic arc settings ranged from 55° to 70° for declination,
and slide settings were 10°–15°. Microelectrodes were placed
on a five-channel holder with central, lateral, medial, anterior
and posterior positions, 2 mm apart (Ben’s gun). The initial
point of MER was typically within the white matter, superior
and rostral to the thalamic reticular shell. A micropositioner

system (Microtargeting Drive; Medtronic, Minneapolis, MN)
was used to advance the microelectrode in submillimeter steps.
At each site, signals were recorded for ⩽10 s. Visual and
auditory analyses were performed on-line by two clinical
experts. The electrophysiological criteria used to distinguish the
STN were an increased background noise level and neuronal
firing rate, an irregular pattern of activity and/or cellular
responses to passive movements of the patients’ extremities. At
the end of MER mapping, the total penetrated length of the
STN was noted for each recording track. Following determi-
nation of the trajectories traversing the broadest extent of the
nucleus, macrostimulation was performed usually at three
selected depth positions with an external pulse generator
(Medtronic Screener Model 3625; Medtronic, Minneapolis,
MN). The stimulation parameters utilized were a frequency of
130 Hz, a pulse width of 60 μs and amplitudes up to 5 V.
Rigidity improvement was judged on passive movements of the
contralateral wrist, whereas the assessment of side effects was
mainly based on observation of certain motor contractions and/
or of tonic eye deviation and/or blurred vision. Once the site
with the best therapeutic window was identified, the DBS lead
(Medtronic electrodes 3389 and 3387) was advanced 2mm, in
order for the contacts to ‘encompass’ the optimal target point,
and finally anchored with a Navigus cap (Image Guided Neu-
rologics, FL, USA). Final lead placement was confirmed with
fluoroscopy. The same procedure was then repeated for the
other side, in cases of bilateral surgery. Post-operative MRI was
performed within two days to confirm the location of the DBS
electrodes before they were connected to the internal pulse
generator (IPG) (Kinetra; Medtronic, Minneapolis, MN).

2.2. Data description

A commercially available microrecording system (Leadpoint
TM Neural Activity Monitoring System; Medtronic, Min-
neapolis, MN) was used to acquire and store data. Five 60 μm
tungsten tip microelectrodes (Medtronic, Minneapolis, MN)

Table 1. Presentation of patients’ clinical details.

Case

Age
(years)
and sex

Disease
duration
(years)

Hemisphere(s)
tested

Motor UPDRS
on/off drugs
pre-op

Motor UPDRS
on/off drugs
post-op

Lev. equiv.
pre-op/
post-op

Site with the best
therapeutic
windowa

Clinical
outcome

1 59, f 11 Right STN/
left STN

12/40 14/38 850/750 C 0/A −0.5 Moderate

2 53, f 16 Right STN 16/52 8/18 1450/600 A −1.0 Excellent
3 66, m 19 Left STN 28/72 24/62 1000/600 P −2.0 Moderate
4 53, m 10 Right STN/

left STN
16/53 18/24 1100/300 P 0/L −2.0 Excellent

5 62, m 18 Right STN/
left STN

23/68 18/38 1400/500 M −1.0/P 0 Excellent

6 50, m 16 Right STN 26/66 24/28 1400/450 P 0/C 0 Excellent
7 70, m 13 Right STN 24/58 20/34 750/450 C −1.0 Excellent
8 62, m 15 Right STN/

left STN
32/70 30/41 1800/750 P −1.0/P +1.0 Excellent

9 64, m 14 Right STN 28/75 22/32 1600/600 L −1.5 Excellent
10 67, f 13 Left STN 24/61 26/54 1150/850 M −1.0 Moderate

m, male; f, female; pre-op, preoperatively; post-op, postoperatively; C, central; L, lateral; A, anterior; P, posterior; M, medial.
a

mm above anatomical target point (0 mm); +, mm below anatomical target point (0 mm).
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were used for recording. The recorded signal was pre-
amplified, band-pass filtered between 0.1 Hz and 10 kHz and
1000× amplified (Nicolet Vicking IV; Nicolet Biomedical,
Madison, USA). The signal was sampled at 24 kHz using a
16-bit A/D converter (CED Power1401; Cambridge Electro-
nic Design, Cambridge, UK). In total, data from 70 MER
trajectories obtained from ten STN-DBS procedures were
retrospectively analyzed in Matlab (Mathworks, Natick, MA),
(table 1). Initially, the acquired signals were digitally band-
pass filtered at 1–141 Hz and 0.5–10 kHz applying four-pole
Butterworth filters.

2.3. Signal preprocessing

The extracellular signal recorded from the microelectrode
(figure 1(a)) conveys the sum of two complementary signals
acquired by the aforementioned frequency-band separation:
the multi-unit activity reflected in the high frequency signal
component and the LFPs reflected in the low-frequency signal
component (Logothetis 2002). The LFPs predominantly
represent synaptic events in a neural population within a large
radius (0.5–3 mm) of the electrode tip (Mitzdorf 1987). By

contrast, the multi-unit activity reflects the spiking activity of
a neural population within a small radius (200–300 μm) of the
electrode tip (Logothetis 2002). The multi-unit activity actu-
ally consists of spiking activity of one or just a few large
isolated cells and background unit activity, which represents
the sub-noise level spiking activity of the surrounding neural
population (Moran and Bar-Gad 2010).

Accordingly, the methods we present here were based on
the assessment of multi-scale neuronal activity: (a). spiking
activity quantified through the spike detection process, (b).
activity of small neural populations quantified through the
background unit activity extraction process (Moran
et al 2008), and (c). activity of large neural populations
reflected in the LFPs (figures 1(b)–(d)).

2.3.1. Mechanical artifacts—extraction of spiking and
background unit activity. Occasional events, like vibrational
effects, 50/60 Hz power-line interference and static discharge
may result in high amplitude artifacts (Dolan et al 2009).
Automatic detection and elimination of high amplitude
artifacts was based on noise level estimation, as proposed
by Dolan et al (2009). Low amplitude artifacts were also

Figure 1. Multi-scale neuronal activity and optimal filtering. (a) Example of a raw extracellular signal recorded in the right STN, case 2
(recording site depth: A +0.5). (b)–(d) The three derived signals: LFPs, spiking activity (a.u. = arbitrary units) and background unit activity,
respectively. (e)–(g) The trajectories of the filtered signals z t( ) (see section 2.4.2) obtained from series (b)–(d), respectively, after low-
frequency amplitude modulation (of series (c) and (d)) and down-sampling to 1 kHz.
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detected and excluded from further analysis as described by
Cagnan et al (2011).

The spike detection process involved application of
morphological criteria based on a five-point spike template
(Wong et al 2009, Cagnan et al 2011). Specifically, we
employed an amplitude threshold set at 3.5 times the
estimated noise level, and hard-coded thresholds for the
peak-to-peak spike width and the distance between zero
crossings flanking the candidate spike.

Reconstruction of the background unit activity
(figure 1(d)) was performed eliminating the bias of dominant
spikes (Moran et al 2008). Thus, following identification of
the spiking activity, the surrounding time windows (−0.5 to
+2.5 ms around the spike identification point) were removed
and the empty segments were replaced by randomly chosen
3 ms spike-free windows from the same recorded trace. Small
inconsistencies between the real and the inserted spike-free
segments were considered negligible for power alterations in
the low-frequency range (Moran and Bar-Gad 2010).

2.4. MER—automatic detection of STN borders and
identification of acceptable trajectories

For automatic delineation of the functional boundaries of the
STN during MER based on a single-biomarker approach, we
quantified and integrated dynamic interactions between pairs
of the three distinct signals: (1) the spiking activity, (2) the
background unit activity, and (3) the LFPs (figures 1(b)–(d)).
To this end, we performed phase synchronization analysis
(Tass et al 1998, Carmeli et al 2005, Allefeld et al 2007,
Polychronaki 2011), restricted to the beta frequency band, in
light of strong evidence that beta oscillatory synchronization
in the STN is dramatically increased in the pathological state
(Kühn et al 2005, Weinberger et al 2006, Moran and Bar-
Gad 2010).

2.4.1. Envelope extraction. Importantly, in addition to the
LFPs, the envelope of the high-frequency signal component
may also yield power in the low-frequency range (1–141 Hz)
(Logothetis 2002, Moran and Bar-Gad 2010). In that respect,
the low-frequency envelope of the background unit activity
signal was extracted employing the full-wave rectification
(FWR) method, before a four-pole Butterworth filter was
applied (passband 1–141 Hz). This filter was also used in
order to recover the low-frequency amplitude modulation of
the spiking activity. All signals were further down-sampled
to 1 kHz.

2.4.2. Data-driven optimal filtering. On account of the
presence of measurement noise (Hurtado et al 2004,
Rossberg et al 2004, Sun et al 2008), a complex-valued,
linear bandpass filter was applied, prior to the phase
reconstruction procedure as described by Rossberg et al
(2004). In particular, optimization was performed under the
constraint of a spectral window ranging within 10–33 Hz,
taking into consideration that beta band activity may also be
expressed at frequencies below 13 Hz or above 33 Hz
(Tsirogiannis et al 2010). Exemplary trajectories of the

filtered signals (z(t)) corresponding to the multi-scale
neuronal activity are illustrated in figures 1(e)–(g).

2.4.3. Instantaneous phase reconstruction. In order to
maximize reliability in the detection of phase
synchronization, phase evolution ϕ was obtained from the
complex magnitude of the filtered signal (z(t)) by means of
the method of neighborhood-based phase estimation (NPE)
proposed by Sun et al (2008). Adoption of this method was
motivated by its improved efficacy over application of the
Hilbert transform (figure 2(b)). The principle of NPE is based
on Takens’ theorem (Takens 1981) and on the fact that in the
phase space reconstructed by time-delay embedding, the state
recurrences of a reference vector are represented by its nearest
neighbors. Selection of embedding dimension d and number
of neighbors N (figure 2(a)) is discussed in section 2.4.6.

2.4.4. Bivariate phase synchronization index. We employed
as a measure for bivariate phase synchronization an index
based on the Shannon entropy (Tass et al 1998), detailed in
appendix A.

Eventually, at each recording site along a specific
trajectory, a set of synchronization index time series ρ1,2(t),
ρ1,3(t) and ρ2,3(t) corresponding to the pairs of the oscillatory
signals (spiking activity—background unit activity, spiking
activity—LFPs and background unit activity—LFPs) was
assessed and their mean amplitudes ρ1,2, ρ1,3, ρ2,3 were
retrieved (figures 3(e)–(g)).

2.4.5. STN detection and determination of acceptable MER
trajectories. For delineation of the STN borders based on a
robust single biomarker, we used a multivariate phase
synchronization measure (figure 3(h)) as a means to
quantify dynamic interactions between the three scales
(K = 3) of neuronal populations (Carmeli et al 2005) given by

∑λ λ
= +

′ ′
=Q

K
1

log

log ( )
, (1)i

K

i i

1

where λ′i are the normalized eigenvalues λ′ = λ( )i K
i belonging

to the K×K matrix of bivariate phase synchronization indices
(Allefeld et al 2007, Polychronaki 2011). In particular,
eigenvalue decomposition was applied on the following
matrix:

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

ρ ρ
ρ ρ
ρ ρ

=P

1

1

1

. (2)

1,2 1,3

1,2 2,3

1,3 2,3

A MER trajectory was considered acceptable if there
existed a distance ⩾ 3 mm (Marceglia et al 2010) along which
Q remained above the synchronization index threshold Qthres
(evaluation of Qthres is described in the next paragraph). The
first site (located dorsally) along that distance was defined as
the dorsal border of the STN, whereas the last site (located
ventrally) was defined as the ventral border of the STN. The
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detection process described is evaluated in section 3 with
respect to its efficacy to point to acceptable MER trajectories
that are likely to be further considered during macrostimula-
tion testing.

2.4.6. Optimal embedding parameters and threshold
calculation. In order to determine the optimal embedding
dimension and number of nearest neighbors for the NPE
method, we examined how the mean value of
synchronization index Q within the STN boundaries
evolved as a function of these parameters, in a total of 21
trajectories defined as acceptable by the clinical experts
(figure 2(a)). Results showed that Q increased very slowly
after N had reached particular values (40⩽N⩽ 50) even for
small values of embedding dimension (d= 3). On the other
hand, over-embedding (d > 11) reduced markedly the
performance of the method. We set N= 70 and d= 3, since
these values yielded the maximal estimate of
synchronization index Q.

Synchronization index threshold Qthres was determined
by optimizing the performance of the STN-detection method
with respect to the annotations made intraoperatively.
Specifically, Qthres was defined as the maximum threshold
whose application minimized the false negative and false
positive rates in the 70—MER—trajectories data set

=Q( 0.37thres ).

2.5. Macrostimulation—automatic assessment of the sites
related to the most beneficial clinical response

Automatic determination of the sites where intraoperative test
macrostimulation conferred greater clinical effectiveness was
based on increasing evidence that the beneficial effects of
STN-DBS are mediated by modification of the abnormal
firing pattern in the STN and disruption of neural population
synchrony (Carlson et al 2010, Walker et al 2011, Haupt-
mann et al 2007, Modolo and Beuter 2009, Wilson et al 2011,
Johnson et al 2013). Thereupon, employing a stochastic phase
model and using the multivariate phase synchronization index
Q as one of its constituent parameters, we simulated the
neuronal response to macrostimulation at selected recording
sites. This response could be quantified by means of a distinct
single biomarker, the Lyapunov exponent. In the context of
nonlinear dynamics, the Lyapunov exponent characterizes the
convergence/divergence properties of two nearby trajectories
in the phase space (Pikovsky et al 2001). Positive values of
the Lyapunov exponent indicate desynchronization. Based on
the aforementioned facts, we examined the Lyapunov expo-
nent as an implicit indicator of the clinical effectiveness of
stimulation during DBS surgery.

2.5.1. The phase model. We consider the following
Langevin equation (by virtue of the Stratonovich

Figure 2. Selection of optimal parameters for the NPE method and reconstruction of the relative phase series. (a) Mean value of
synchronization index Q within the STN boundaries for a range of combinations of embedding dimension d and number of neighbors N ,
averaged over 21 MER trajectories to which a positive detection was ascribed by the clinical experts. (b) The top panel shows the unwrapped
relative phase series Δϕ1,2, corresponding to the pair of the oscillatory signals presented in figures 1(c)–(d). The red line indicates the result
obtained based on combinatorial application of data-driven optimal filtering and the NPE method. The black line indicates the result that
would be obtained, in case a traditional linear band-pass filter in combination with the Hilbert transform were applied. In the lower panel, the
respective distributions P(Δϕ1,2) of the wrapped relative phase series are depicted.
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Figure 3. Assessment of the multivariate phase synchronization index Q along the lateral trajectory in the right hemisphere of case 1. (a)
Planning of the target based on the image fusion hardware system (StereoPlan; Integra Radionics, Burlington, MA, USA). (b) s10 MER
epochs obtained in sub-millimeter steps. Depth value 0 corresponds to the anatomical target point determined preoperatively. (c)–(d)
Respective changes in firing rate and noise level. (e)–(g) The mean amplitudes ρ1,2, ρ1,3 and ρ2,3 of the bivariate phase synchronization

indices as a function of the recording site depth. (h) The multivariate phase synchronization index Q. The dashed horizontal line indicates the
generic threshold =Q 0.37thres . The dark region corresponds to the STN length determined intraoperatively by the clinical experts.
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interpretation (Gardiner 1985)) describing an ensemble of N
globally coupled identical phase oscillators, driven by
intrinsic independent and extrinsic common noises, but also
subject to periodic forcing:

∑

∑

ϕ
ω π ϕ ϕ σ ϕ ξ

σ ϕ η Δ ϕ β δ

= + − +

+ + −
=

( )( ) ( )

( ) ( ) ( )

t

K

N
R t

R t t kT

d

d
sin 2 ( )

( ) , . (3)

i

j

N

j i I I i i

C C i i
k

s

1

Here ϕ ∈ [0,1)i is the phase variable of the ith oscillator,
ω is its natural frequency and K> 0 is the coupling strength.
We assume that ξi(t) is zero mean Gaussian white noise,
added independently to each oscillator, with correlation
specified by ξ ξ δ δ′ = − ′t t t t( ) ( ) ( )i j ij , where δ = 1ij if

=i j and 0 if ≠i j. We regard η t( ) as colored noise with zero
mean and unitary variance, i.e. with autocorrelation function

η η= =
τ

− τC t t( ) ( ) (0) e1

2 C

t

C . Thus, η t( ) can be regarded as

an Ornstein–Uhlenbeck process with correlation time τC

(Gardiner 1985). σI and σC are small parameters representing
the intensity of independent and common noise, respectively.

ϕ( )RC i and ϕ( )RI i are phase sensitivity functions that

represent the linear response of the phase variable ϕi to the

respective infinitesimal noise perturbations, while Δ ϕ β( ),i is
the phase response curve (PRC) to a single (DBS) impulse
(Kuramoto 1984, Winfree 2001) (see appendix B). β
represents the stimulus amplitude (see appendix B),

=T Hz130s is the period of the stimulation and ⩽ < ∞k0 .
Introducing the (complex) Kuramoto order parameter

defined by = ∑π ψ π ϕ
=re ei

N j
N i2 1

1
2 j (Kuramoto 1984), (3) can

be rewritten as (Strogatz 2000):

∑

ϕ ω π ψ ϕ σ ϕ ξ

σ ϕ η Δ ϕ β δ

= + − +

+ + −( )
t

Kr R t
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where r characterizes the degree of synchrony and ψ is the
mean phase of the oscillators. Next, defining the effective
drift and diffusion coefficients (Nakao et al 2010)
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we obtain the following white-noise Langevin equation:
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The Stratonovich equation (7) is converted to an
equivalent Itο stochastic differential equation (Gardiner 1985):
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Phase equation (8) is solved through the stochastic map
from one stimulus cycle to the next (Nesse and Clark 2010).
The phase dynamics during the inter-impulse interval Ts is
described by

⎟
⎞
⎠
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where W t( ) is a Wiener process with probability density
function fWt

, which is a Gaussian with zero mean and variance

Ts. The stochastic map is defined by the (‘modulo-one’)
Perron–Frobenius operator F , that maps the density of phases
at the time of the +n( 1)th impulse, ϕ+p ( )n 1 , onto the
density of phases at the time of the nth impulse, ϕp ( )n
(Ermentrout and Saunders 2006, Nesse et al 2007, Yamanobe
and Pakdaman 2002):
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and discretizing the density into M= 500 bins of size 1/M, we
obtain:
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Hence, the stochastic map is approximated using a
500 × 500 transition matrix (stochastic kernel) having all
positive entries and a spectral radius of 1 (figure 4). This
matrix possessed the strong Perron–Frobenius property
(Noutsos and Tsatsomeros 2008). The iterated mapping (10)
converges to the steady-state phase distribution (invariant
density) after h number of stimuli:

⎡⎣ ⎤⎦ϕ ϕ=p F p( ) ( ) . (13)st
h

0

This distribution is represented by the eigenvector
corresponding to the dominant (unit) eigenvalue of A
(figures 4(j)–(l)). To quantify the stability of the synchronized
states we calculate the Lyapunov exponent (figure 5), using
phase map (9), as (Pikovsky et al 2001, Teramae and
Tanaka 2004):
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2.5.2. Determination of model parameters. For each depth
position selected for macrostimulation, there are eight
parameters that must be estimated in the phase model (8):ω,
r , K , ψ , σC, v, D and σI . We set ω = 1 according to Wilson

et al (2011). We also consider ψ = 0. The remaining
parameters are estimated on the basis of the respective
signal acquired during MER, which is considered to reflect a
no-input stimulus epoch (figure 6).

The modulus r of the order parameter is set equal to the
value of the phase synchronization index Q, estimated in
section 2.4.5. Coupling strength K is estimated by (Allefeld
and Kurths 2004, Allefeld et al 2007):

λμ=K , (15)2

where λ > 1 is the largest eigenvalue of matrix (2) and μ is
the first element of the corresponding eigenvector.

As indicated by (5), calculation of parameters v and D is
dependent on estimation of σC and C t( ). The intensity of
common noise σC is determined through evaluation of the
power spectral density function of the background unit
activity (Moran and Bar-Gad 2010) using Welch’s method,
while the autocorrelation function of this signal is used as an
estimate of C t( ).

Once the above parameters were estimated, we proceed
to evaluate the intensity of independent noise σI , through
definition of the first passage time problem for the phase
model (8) with no input (see appendix C).

2.6. Performance evaluation

To assess the performance of the entire automatic metho-
dology, the dataset of the decisions made intraoperatively by
two clinical experts (PGS and GAT) was used as the gold
standard.

Significant changes in the multivariate phase synchroni-
zation index within the intraoperatively determined STN
length were evaluated by applying a two-sample t-test (sta-
tistical significance was defined at <p 0.05). Additionally,
stability of the phase synchronization indices in the presence
of measurement noise was assessed and compared with the
stability of firing rate and noise level measures within the
STN boundaries. Comparative assessment was based on
evaluation of the standard deviation of the corresponding
normalized measures (two-sample t-test, <p 0.05). Normal-
ization was performed by dividing each measure by its mean
value within the intraoperatively determined STN length. We
finally proceeded to comparative assessment of the number of
trajectories traversing the STN according to the automatic
method and the clinical experts and determined the sensitivity
of the method in detecting the dorsal and ventral borders of
the STN.

Performance of the stochastic dynamical model for des-
ignation of the sites where stimulation yielded the best clin-
ical benefit was assessed evaluating the sensitivity of the
corresponding method under two principal conditions (two-
sample t-test, <p 0.05).
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Figure 4. (a)–(i) Stochastic kernel functions φ φ′A ( , ) based on MERs at: (a)–(c) C 0, right STN, case 1, for β= 0, β= 5 and β= 10,
respectively, (d)–(f) P +2, right STN, case 5, for β= 0, β= 5 and β = 10, respectively and (g)–(i) P +2, right STN, case 6, for β = 0, β = 5 and
β= 10, respectively. (j)–(l) Steady-state phase distributions for β = 0 (red line), β= 5 (gray line) and β = 10 (black line), corresponding to the
cases described in (a)–(c), (d)–(f) and (g)–(i).
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Figure 5. The Lyapunov exponent, λ as a function of stimulus amplitude β for a pair of acceptable trajectories in two distinct cases. (a) Left
panels: the Lyapunov exponent, λ at three pre-selected sites of central (upper) and lateral (lower) trajectory, right hemisphere, case 1.
Asterisks denote significant differences. Right panel: sites where the highest values of λ were obtained for each of the acceptable trajectories.
At these sites, values of λ between the two trajectories were not significantly different. Circled is the optimal target point according to clinical
decision. (b) Left panels: the Lyapunov exponent, λ at three pre-selected sites of lateral (upper) and central (lower) trajectory, left hemisphere,
case 4. Right panel: sites where the highest values of λ were obtained for each of the acceptable trajectories. At these sites, values of λ
between the two trajectories were not significantly different. Circled is the optimal target point according to clinical decision.
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Figure 6. Parameter values based on MERs along 21 trajectories selected for macrostimulation testing by the clinical experts. For each
trajectory, parameters are assessed at three site depths selected for intraoperative macrostimulation. Parameters depicted are (a) effective drift
coefficient, v, (b) effective diffusion coefficient, D, (c) coupling strength, K, (d) modulus of the order parameter, r, (e) intensity of common
noise, σC, and (f) intensity of independent noise, σI.
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3. Results

3.1. Determination of acceptable MER trajectories

According to the annotations made intraoperatively by the
clinical experts, 40 out of 70 trajectories penetrated a sub-
thalamic dorsoventral extent greater than 3 mm. With refer-
ence to these positive detections Q displayed significantly
higher average values within the STN compared to its average
values within neighboring structures ( = −p 10 11). Figure 3
displays an application example of the STN detection meth-
odology, i.e. on the lateral trajectory, in the right STN of case
1. Importantly, there is a striking difference between the
stability of firing rate and noise level values and the stability
of phase synchronization index Q, observed within the STN.
This result provides an indication for the robustness of phase
synchronization index despite the presence of measurement
noise. Overall, multivariate phase synchronization index Q
displayed significantly higher stability within the STN com-
pared with firing rate (p= 10−17) and noise level measures
(p= 10−18) (figure 7).

Principally, the STN detection methodology demon-
strated a false negative rate (FNR) of 4.8% and a false posi-
tive rate (FPR) of 0%. With reference to the true positive
detections, the mean depth of the STN dorsal border
according to the automatic algorithm was
0.0357 ± 0.1336 mm above the STN entry designated by the
clinical experts. The mean depth of the STN ventral border
was 0.0714 ± 0.3852 mm above the STN exit determined
intraoperatively. Using a precision criterion of 0.5 mm within
the current gold standard, the STN detection methodology
yielded sensitivities of 100% and 92% for the STN dorsal and
ventral border, respectively (table 2).

Interestingly, performance of the STN detection metho-
dology based on the bivariate phase synchronization indices
ρ1,2 and ρ1,3, was identical to the one based on synchroni-
zation index Q (table 2). However, it should be pointed out
that the specific value of the multivariate synchronization
index Q lied in its particular utility as a model parameter
(section 2.5.2).

On the other hand, phase synchronization index ρ2,3
displayed no discriminating power, as its average values
within the STN were not significantly different from the
average values outside the STN (p= 0.9893). This observa-
tion may reflect the fact that there exists a sparse correlation
within the surrounding neural population not only within but
also across the STN boundaries (Moran and Bar-Gad 2010).

3.2. Predictability of the Lyapunov exponent of the stochastic
model in identification of the sites where stimulation yielded the
best clinical benefit

Figure 4 depicts the stochastic kernel functions and invariant
densities (obtained using (12)) for different values of stimulus
amplitude β, derived based on MERs at three distinct site
depths assessed for intraoperative macrostimulation. For
β= 0, the proposed phase model reproduces the pathological
synchronized state (ϕ=ϕ′), which appears to be more intense

in case 1 than in cases 5 and 6. With increasing β, the
obtained states become gradually less synchronized in all
cases. This observation was general across all site depths
examined and strongly suggested that the desynchronizing
effect of periodic stimulation was captured and validated by
the current model. Figure 6 depicts a set of parameter values,
derived based on 21 MER trajectories considered appropriate
for macrostimulation testing by the clinical experts. We make
the following observations: first and foremost, effective drift
coefficient v was always negative, as indicated by Nakao et al
(2010). Secondly, coupling strength K was positive, a criter-
ion imposed on phase model (3). Last, the condition σI≪ 1
was always satisfied (see appendix C), while for common
noise, moderate intensities were obtained.

Figure 5 displays the Lyapunov exponent as a function
of stimulus amplitude, derived based on the analysis of
MERs, at different site depths and trajectories selected for
intraoperative macrostimulation. Overall, the Lyapunov
exponent gradually increased with increasing stimulus
amplitude. This fact provided further corroboration that the
proposed model held the ability to simulate the desynchro-
nizing effect of stimulation. For each case in figure 5, two
trajectories traversing the broadest extent of the nucleus (i.e.
defined as acceptable by the clinical experts) are examined.
The optimal target points according to clinical decision are C
0 (case 1) and L −2.0 (case 4) (table 1). In the aforemen-
tioned cases, values of the Lyapunov exponent are for no
other site significantly higher than values for the optimal
stimulation site (p < 0.05), within the trajectory along which
the best stimulation effects are obtained. Comparing results
between trajectories, there is no site along the alternative
trajectory for which the derived exponent is significantly
higher than the one corresponding to the finally selected
site (p < 0.05).

In general, considering as true positive the result obtained
under the condition that the derived values of λ were not
significantly higher for the nearby sites than the values
derived for the optimal stimulation site (p < 0.05), the pro-
posed method yielded a sensitivity of 78.57%. Strengthening
the condition by including comparative assessment of the
Lyapunov exponent between two MER trajectories, the
method yielded a sensitivity of 71.43% (table 3).

Figure 8 provides an integrated visualization scheme of
the procedure of clinical decision making during DBS sur-
gery, based on the proposed stochastic model. Initially, syn-
chronization index Q was comparatively assessed for the five
trajectories (central, anterior, posterior, medial and lateral).
Accordingly, the acceptable trajectories could be determined
as described in section 2.4.5. Subsequently, values of bio-
marker Q at specific sites of the acceptable trajectories were
employed as one of the inputs (parameters) to the stochastic
phase model, while the respective values of biomarker λ
actually reflected the output of the model. Eventually, sites
where the highest positive values of λ were obtained, were
considered as the sites where stimulation yielded the best
clinical benefit.

Remarkably, the proposed stochastic model corroborated
the increased effectiveness of high frequency stimulation
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compared with low frequency stimulation in PD (Rizzone
et al 2001), (figure 9). Importantly, however, stimulation at
beta frequencies did not further synchronize oscillatory
activity, as indicated by positive values of the Lyapunov
exponent. This observation is in agreement with the study of
Tsang et al (2012), who suggested that beta frequencies did
not worsen PD motor signs.

4. Discussion

Physiologically guided neurosurgery has been adopted by the
majority of DBS centers and will apparently continue to be a
powerful practice in the field of stereotactic and functional
neurosurgery for many years to come (Lozano 2010, Abosch
et al 2013). Development of related automatic methodologies
having the potential to be intraoperatively incorporated,
thereby leading to significant reduction of surgical time and
optimization of clinical decision making, is therefore of
practical importance. Several studies have suggested certain
STN detection algorithms, based mainly on combinations of
quantitative measures (Falkenberg et al 2006, Danish
et al 2008, Zaidel et al 2009, Wong et al 2009, Cagnan
et al 2011, Pinzon-Morales et al 2011). Nevertheless, appli-
cation of a robust single-biomarker approach, having the
inherent potential to simplify and accelerate intraoperative
nucleus detection, has not been reported in the literature
before. Most importantly, to the best of our knowledge, no
extensive study has to date been published on an automatic
algorithm applicable to the entire electrophysiological pro-
cedure, i.e. encompassing both MER and intraoperative sti-
mulation, and pointing to the finally selected site for
implantation of the DBS electrode.

Pathological synchronization is considered to be related
to the severity of motor impairment in PD (Kühn et al 2009,
Pogosyan et al 2010). Furthermore, there is recent electro-
physiological evidence regarding patients with movement
disorders but also modeling studies suggesting that alterations
in the abnormal discharge pattern of STN neurons and dis-
ruption of neuronal synchronization probably explain the

therapeutic mechanism of action of STN-DBS (Carlson
et al 2010, Walker et al 2011, Hauptmann et al 2007, Modolo
and Beuter 2009, Wilson et al 2011, Johnson et al 2013).
Both of the above facts implicitly point to the possible use-
fulness of methods from stochastic nonlinear dynamics in the
context of clinical decision making during surgical implan-
tation of the DBS electrode. In that vein, in this work, we
have attempted to develop a novel integrated approach based
on two principal biomarkers, the multivariate phase syn-
chronization index, Q, and the Lyapunov exponent, λ, of a
stochastic phase model, for optimal target identification dur-
ing DBS surgery. To address this goal, we relied on assess-
ment of multi-scale neuronal activity through MER.
Essentially, the presence of noise constituted a key factor for
the twofold objective of the current study: on the one hand,
application of phase synchronization indices had to be robust
against the impact of measurement noise, while on the other
hand, intrinsic and extrinsic components of the noise were of
paramount importance in the phase model employed.

The results of this work signified the high discriminative
power of multivariate phase synchronization index Q (as well
as of the bivariate phase synchronization indices ρ1,2 and ρ1,3)
in the context of STN localization, a procedure forming the
first part of electrophysiological monitoring (Marceglia
et al 2010). Application of data-driven optimal filtering on the
examined signal components (Rossberg et al 2004) in com-
bination with NPE (Sun et al 2008) ensured remarkable sta-
bility of feature evolution inside the nucleus against the
presence of noise. To the best of our knowledge a single-
biomarker approach displaying similar stability for intrao-
perative nucleus detection has not been presented in the lit-
erature before. This biomarker was subsequently exploited as
one of the constituent parameters of the stochastic phase
model. Principally, the proposed model held the ability to
reproduce the desynchronizing effect of periodic stimulation.
This fact was validated through both the invariant measure
and the Lyapunov exponent λ of the stochastic phase map.
There are two principal reasons that could have contributed to
this result. Firstly, selection of a Type-II PRC as the phase
sensitivity function to common (extrinsic) noise (Abouzeid

Figure 7. Standard deviation of the normalized firing rate, noise level and multivariate phase synchronization measures within the
intraoperatively determined STN length, for 40 trajectories to which a positive detection was ascribed by the clinical experts. Principally, Q
displayed significantly higher stability within the STN compared with firing rate and noise level measures (p< 0.05).
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and Ermentrout 2009), guaranteed to a great extent that the
model would simulate the pathological synchronous state in
the absence of any stimulus, yielding a negative Lyapunov
exponent. On the contrary, a Type- I PRC would rather be
linked to the normal desynchronized state (Farries and Wil-
son 2012). Secondly, application of a type 0 PRC, potentially
optimal for stochastic desynchronization (Hata et al 2011),
contributed to simulation of one of the hypothetical
mechanisms of high frequency stimulation. Eventually, on the
basis of the simulations proposed, a neurosurgeon may be
able to determine the optimal stimulation sites with enhanced
sensitivity.

The proposed phase model was developed incorporating
multiple factors affecting neuronal dynamics: neuronal cou-
pling, intrinsic independent and extrinsic common noise
sources, and periodic forcing. Thus, the derived Lyapunov
exponent, λ, was combinatorially correlated with the set of the
respective parameter values and not uniquely determined by
multivariate phase synchronization index, Q. Some previous
studies (Tass et al 2006, Nabi et al 2013) have suggested
similar models in the framework of desynchronizing stimu-
lation, yet only embodying the effect of intrinsic noise, dis-
regarding extrinsic noise sources (Teramae and Tanaka 2004).
Additionally, the above models did not consider the phase
dependence of the noise (Ermentrout and Saunders 2006),
thus noise forcing was not necessarily multiplicative (Ly and
Ermentrout 2011). Most importantly, in this work, intending
to implement a more realistic model, we have considered
common noise as colored, namely as an Ornstein–Uhlenbeck
process with specific correlation time (Galán 2009). For this
reason, we required a transformation of the initial phase

model to a white noise Langevin equation, introducing the
effective drift and diffusion coefficients (Nakao et al 2010).

In what concerns the simplifications and limitations of
the presented approach, first and foremost, we do not claim
that application of the proposed method can be regarded as a
complete substitute for functional stimulation techniques.
Assessment of stimulation-induced side effects is undoubt-
edly a significant factor in clinical decision making during
intraoperative macrostimulation (Schlaier et al 2013) and was
not quantitatively incorporated in this study. However, it
should be pointed out that intraoperative quantification of the
therapeutic window (intensity threshold for side effects/
intensity threshold for clinical effects) depends to a large
extent on the assessment of the therapeutic effects of stimu-
lation (Marceglia et al 2010). Besides, a relatively low
threshold for the appearance of clinical effects is evidently
associated with reduced probability that a side-effect will be
evoked at the same intensity, since the most common side
effects induced by STN-DBS, i.e. pyramidal tract side effects,
occur at a median amplitude of 4.8 V (Tommasi et al 2008).
We believe that the above facts in combination with the good
consistency of the proposed scheme with expert annotations,
assign a specific value to the presented approach. Considering
further the limitations of this work, the fact that we do not
isolate single units prior to feature evaluation would likely
have influenced the results of our study. Still, similar
approaches in the context of automatic algorithms for nucleus
localization have been adopted by other studies as well
(Wong et al 2009, Cagnan et al 2011). Last, we should note
that we did not hereby characterize to what extent simulations
of the stochastic model would be distinct for different types of
phase response functions to the noise sources. The possible
disparities remain to be elucidated in future work.

Further future perspectives include assessment of the
predictive value of the stochastic model considering data from
more patients and other clinical implementations of DBS
(Mallet et al 2008, Chabardès et al 2013, Fytagoridis
et al 2012). Particularly, in patients with obsessive-compul-
sive disorder, evidence that the efficacy of STN-DBS prob-
ably lies in alteration of the abnormal bursty activity pattern
observed in the associative-limbic part of the nucleus (Piallat
et al 2011, Welter et al 2011) implicitly indicates possible
suitability of the current approach for DBS electrode locali-
zation. At the same time, appropriate modification of the
presented methodology to include quantitative measures
reflecting the evaluation of stimulation-induced side effects is
expected to enhance its practicability in the surgical proce-
dure. Furthermore, in light of evidence pointing to a possible
correlation between intra- and postoperative outcomes of
clinical evaluation (Xie et al 2010), proper adaptation of the
proposed scheme to DBS programming could potentially
facilitate clinical decision making postoperatively. Finally,
due to the considerably realistic nature of the stochastic phase
model employed, model variations could prove useful for
investigating the clinical efficacy induced by alternative pat-
terns of DBS (Brocker et al 2013), opening an intriguing
perspective for future study.

Table 2. Performance of the STN detection methodology.

Index FPR FNR
Sensitivity for the
STN dorsal bordera

Sensitivity for the
STN ventral bordera

Q 0% 4.8% 100% 92%
ρ1,2 0% 4.8% 100% 92%
ρ1,3 0% 4.8% 100% 92%
ρ2,3 — — — —

a

Within 0.5 mm accuracy of the current gold standard.

Table 3. Performance of the stochastic model under two principal
conditionsa,b for designation of the optimal stimulation site.

Measure Sensitivity

λa 78.57%
λb 71.43%

a

Values of λ within the optimal trajectory were for
no other site significantly higher than the values
derived for the optimal stimulation site (according
to clinical decision) ( <p 0.05).
b

In addition to a, there was no site along the
alternative trajectory for which the derived expo-
nent was significantly higher than the one corre-
sponding to the finally selected site ( <p 0.05).
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Figure 8. The proposed scheme for clinical decision making during DBS surgery for PD, based on the stochastic dynamical model. (a)
Assessment of the multivariate phase synchronization index Q across five trajectories of left STN, case 4. (b) Determination of the two
acceptable trajectories, including the one traversing the broadest extent of the nucleus. Biomarker Q was subsequently used as one of the
constituent parameters of the stochastic phase model through which we defined (c) the Lyapunov exponent, λ, as a function of stimulus
amplitude β, at three pre-selected recording sites, for both acceptable trajectories. Asterisks denote significant differences. (d) Sites where the
highest values of λ were obtained according to (c) for each of the acceptable trajectories. At these sites, values of λ between the two
trajectories were not significantly different. Circled is the site finally selected by the clinical experts.
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Appendix A. Bivariate phase synchronization index

Due to the nonstationarity of the data, we performed the
analysis over a sliding window of 1 s ( =M 1000 samples)
(Hurtado et al 2004) and computed for every sampling point
tk the distribution of the relative phase series Δϕ of the
interacting oscillators, using

= + − =I Mexp(0.626 0.4 ln( 1)) 30

bins (Gross et al 2000). The entropy of the distribution was
calculated as

∑= −
=

h t p k p k( ) ( ) ln ( ), (A.1)k

i

I

i i
1

where pi is the probability corresponding to the ith bin. The
synchronization index used was equal to the normalized
entropy of the distribution

ρ =
−

t
h h t

h
( )

( )
, (A.2)k

kmax

max

where =h Ilnmax . Obviously, ρ⩽ ⩽t0 ( ) 1k , where the
value ρ =t( ) 0k corresponds to a uniform distribution
(unsynchronized time series), whereas the value ρ =t( ) 1k

corresponds to perfect synchronization.

Appendix B. Determination of phase sensitivity
functions

Taking into consideration that for weak Gaussian common
driving noise, a Type-II PRC is optimal for stochastic syn-
chronization (Abouzeid and Ermentrout 2009), we use this
shape for the phase sensitivity to common noise in order to
simulate the state of pathological synchronization in PD. A
Type-I PRC is selected for the phase sensitivity to indepen-

dent noise. Both PRCs are normalized as ∫ ϕ ϕ =R ( )d 1.
0

1 2

Accordingly we consider

ϕ πϕ= −R ( ) 2 ( sin(2 )) (B.1)C

ϕ πϕ= −R ( )
2

3
(1 cos(2 )) . (B.2)I

Differently, there is evidence that the type 0 PRC may be
optimal for stochastic desynchronization (Hata et al 2011).
Hence, in order to simulate the desynchronizing effect of
DBS we consider Δ ϕ =( , 0) 0 and

⎪

⎪

⎧
⎨
⎩

Δ ϕ β
ϕ ϕ
ϕ ϕ

=
< ⩽

− ⩽ <

β ϕ

β ϕ

− −

− − −

e

e
( , )

0 0.5

( 1) 0.5 1
, (B.3)

(10 )( 0.5)

(10 )( 0.5)

where β< ⩽0 10.

Appendix C. Evaluation of the intensity of
independent noise

Let ρ ϕ t( , ) represent the probability density function of
phases at time t. The corresponding Fokker–Planck equation
is (Gardiner 1985)

ρ
ϕ

ω π ψ ϕ

σ
ϕ σ ϕ ρ

ϕ
σ ϕ ρ

∂
∂

= − ∂
∂

+ − +

+ ′ +

+ ∂
∂

+

}
{ }

( )

( )

t
Kr v

R R D

R D

{[ sin(2 ( ))

2
( ) ( )

1

2
( ) , (C.1)

I
I I I

I I

2

2

2

with periodic boundary condition

ρ ρ=t t(0, ) (1, ). (C.2)

Extending the definition of the phase from ϕ ∈ [0,1) to
Rϕ ∈ and considering σI≪ 1 we obtain the following

approximations (Ly and Ermentrout 2011)

ϕ
π ψ ϕ π ψ

≈
− ≈ −
R R t

Kr Kr t
( ) ( ) and

sin (2 ( )) sin(2 ( )).
(C.3)I I

Figure 9. Increased effectiveness of high frequency stimulation corroborated by the stochastic phase model. The Lyapunov exponent λ as a
function of stimulus amplitude β, at sites (a) C 0, right STN, case 7 and (b) C −1.5, right STN, case 9, for three different stimulation
frequencies (20 Hz, 75 Hz and 130 Hz).
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The Fokker–Planck equation for the corresponding
probability density function ζ ϕ t( , ) is

⎤
⎦⎥

ζ ω π ψ

σ
σ ζ

ϕ

σ ζ
ϕ

∂
∂

= − + − +

+ ′ + ∂
∂

+
+ ∂

∂

( )

( )

t
Kr t v

R t R t D

R t D

[ sin(2 ( ))

2
( ) ( )

( )

2
(C.4)

I
I I I

I I
2

2

2

Rζ ϕ δ ϕ ϕ= ∈( , 0) ( ), . (C.5)

An analytic solution to (C.4) is
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Respectively, the first passage time distribution is simply

ζ=z t t( ) (1, ). (C.7)

Finally, maximization of the log likelihood function L
over σI , yields an estimate for σI (Nesse and Clark 2010):

∑
σ

σ Δ
σ

Δ σ

=

× =

( )
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{ }L t v K r D

z t v K r D

d

d
, , , ,

d
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ln , , , , 0, (C.8)

I i

i

i I

1 1

where Δ{ }ti are the interspike interval data.
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